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  1    Basic Quantum Mechanics     

    1.1    MEASUREMENTS AND PROBABILITY 

 In the beginning of 20th century, it was discovered that the behavior of 
very small particles, such as electrons, the nuclei of atoms, and mole-
cules, cannot be described by classical mechanics, which had been quite 
successful in explaining the macroscopic world until then. Nonetheless, 
it was soon discovered that the description of these phenomena on the 
atomic scale is possible by the set of laws described by quantum mechan-
ics. Both classical mechanics and quantum mechanics are based on the 
description of measurements of observable quantities called dynamical 
variables, such as position, momentum, and energy. Consider an experi-
ment in which we can make three measurements successive in time. 
Let ’ s denote the fi rst of observable quantities  A , the second  B , and the 
third  C . We also denote   a b, , and   c as one of a number of possible results 
that could come from the measurement of  A ,  B , and  C , respectively. 
Let   P b a( | ) be the conditional probability that if the measurement of 
 A  results in   a, then the measurement of  B  will result in   b. From the 
elementary probability theory, the conditional probability   P b a( | ) can 
be written as follows:

    P b a
P a b
P a

( | )
( , )
( )

,=     (1.1)  

where   P a b( , ) is the joint probability that measurements of both  A  and 
 B  will give   a and   b, simultaneously, and   P a( ) is the probability that the 
measurement of   A will give the outcome   a. For three successive mea-
surements  A ,  B , and  C , the conditional probability   P cb a( | ) that if the 
measurement of  A  results in   a, then the measurement of  B  will result 
in   b, then the measurement of  C  will result in   c  is given by:

    P cb a P c b P b a( | ) ( | ) ( | ).=     (1.2)   
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4  BASIC QUANTUM MECHANICS

 Moreover, if we sum Equation  (1.2)  over all the mutually exclusive 
alternatives for   b, we obtain the conditional probability   P c a( | ):

    P c a P c b P b a
b

( | ) ( | ) ( | ).=∑     (1.3)   

 In classical mechanics, the above relation described by Equation 
 (1.3)  is always true. However, it was found that the above relation 
sometimes fails on the atomic scale, and one needs to modify 
Equations  (1.1)  to  (1.3)  by introducing new complex quantities   ϕba, 
  ϕcb, and   ϕca, called probability amplitudes, which are related to proba-
bilities by  [1,2] 

    P b a ba( | ) ,= ϕ 2     (1.4)  

and

    P c a cb ba

b

( | ) .= ∑ϕ ϕ
2

    (1.5)   

 Equations  (1.4)  and  (1.5)  describe the probability of measurement 
outcome in quantum mechanics. From the mathematical point of view, 
the probability amplitude is found to be the inner product of vectors 
in a special kind of vector space called the Hilbert space:

    ϕba b a= ,     (1.6)  

where   a  is the column vector, called the  “ ket vector, ”  corresponding 
to the observable   a, and   b  is the row vector, called the  “ bra vector, ”  
corresponding to the observable  b .  

   1.2    DIRAC FORMULATION 

 In quantum mechanics, a physical state corresponding to the observ-
able quantity   a is represented by the ket vector,   a , in a complex vector 
space  H  with dimension  N . For example, when  N     =    2, the ket vector   a  
is a column vector given by  [1,3] 

    a
a

a
= ⎛
⎝⎜
⎞
⎠⎟

1

2

,     (1.7)  
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DIRAC FORMULATION  5

where   a1 and   a2 are complex numbers. We can also consider the case 
where the dimension of the vector space is infi nite. In this case, the 
ket vector   a  is represented by a column vector given by

    a

a

a

a

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

∞

1

2

.

.

.

,     (1.8)   

 with complex quantities   a a a a1 2 3, , , ,… ∞. From now on, we will denote 
ket vectors simply as vectors. 

 If   a  and   b  are vectors in  H , and   α  and   β are complex numbers, 
then the linear superposition of these two vectors   α βa b+  is also a 
vector in  H . For each vector   a  in  H , we can relate a row vector   a  
called bra vector, which is given by

    a a a N= ( ) =1 2 2* * , ,for     (1.9)  

and

    a a a a a N= ( ) = ∞∞1 2 3
* * * *. . . . , ,for     (1.10)  

where  *  is the complex conjugate. By comparing Equations  (1.7)  
with  (1.10) , one can see that the ket vector   a  and bra vector   b  are 
related by

    a a= ( )†,     (1.11)  

where   † is the adjoint operation, which is the transposition, followed by 
the complex conjugation. 

 The inner product between two vectors   a  and   b  is a complex 
number   b a , which is given by

    b a b a b a b a a b= + + + =∞ ∞1 1 2 2
* * * .… *     (1.12)   

 The vector space where one can defi ne the inner product relation of 
Equation  (1.12)  is called the Hilbert space. The length of the vector   a  
is defi ned by
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6  BASIC QUANTUM MECHANICS

    a a a= ,     (1.13)  

and when the vector has the unit length, we call it a normal vector. 
 The vectors in the Hilbert space   H are mapped to different vectors 

in the Hilbert space   ′H  by the linear transformation   Â, which is often 
called the  “ linear operator ”  in quantum mechanics. Mathematically, the 
act of the linear operator   Â on the vectors of the Hilbert space   H is 
expressed as   ˆ :A H H→ ′. In most cases, the initial Hilbert space   H and 
the fi nal Hilbert space   ′H  are the same, and unless otherwise specifi ed 
explicitly, we will assume that is the case. Any two vectors   a  and   b  
in   H are transformed by   Â as

    ˆ ˆ ˆ ,A a b A a A bα β α β+( ) = +     (1.14)  

and

    ˆ ˆ ,
† †A a a Aα α( ) = *     (1.15)  

where   α  and   β are complex constants. If we set   c A a= ˆ  from Equation 
 (1.11) , we obtain   c c a A= ( ) =† †ˆ , and then, using Equation  (1.12) , 
we get

    b A a b c c b a A bˆ ˆ .* * †= = =     (1.16)   

 For a given operator   Â, there exists particular set of vectors 
  a a an1 2, , , ,… …{ } called eigenstates, which satisfy

    ˆ , ˆ , , ˆ ,A a a a A a a a A a a an n n1 1 1 2 2 2= = =… …     (1.17)   

 Here, the numbers   a a an1 2, , , ,… … are called eigenvalues. Of the many 
kinds of operators, one particular type of operator, called the Hermitian 
operator, plays an important role in quantum mechanics. If   Â is a 
Hermitian operator, then it satisfi es the following properties:

   (I)       ˆ ˆ†A A= .  
  (II)     Eigenvalues   a a an1 2, , , ,… … are real.  
  (III)     Eigenvectors corresponding to different eigenvalues are 

orthogonal.  
  (IV)       a a In n

n
∑ = , where   I  is an identity matrix.    

 The proof is as follows: From   Â a a ai i i=  and   Â a a aj j j= , 
we have
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DIRAC FORMULATION  7

    a A a A A a a aj j j j j
ˆ ˆ ˆ .† † *= = ( ) =     (1.18)   

 Then, we get

    a A a a a aj i i j i
ˆ ,=     (1.19)  

and

    a A a a a aj i j j i
ˆ .*=     (1.20)   

 Subtracting Equation  (1.20)  from Equation  (1.19) , we obtain

    ( ) .*a a a ai j j i− = 0     (1.21)   

 When   i j≠ , we get   a aj i = 0, which proves the property (III). On the 
other hand, if   i j= , then we have   a ai i= *, thus giving the property (II). 
The property (III) dictates that the set of eigenvectors   ai{ } of a 
Hermitian operator   Â form an orthogonal basis if the state   ai  is prop-
erly normalized — that is,   a ai i = 1 and   a ai j = 0 for   i j≠ . Let the 
Hilbert space spanned by these basis vectors be denoted as   H. Then 
any vector   ψ  that belongs to   H can be expressed as

    ψ =∑C am m

m

,     (1.22)  

where   Cm is an expansion coeffi cient that can be calculated by taking 
an inner product between the state vectors   ψ  and   am :

    C am m= ψ .     (1.23)   

 By substituting Equation  (1.23)  into Equation  (1.22) , we obtain

    

ψ

ψ

ψ

ψ

=

=

=
⎛
⎝⎜

⎞
⎠⎟

=

∑
∑

∑

C a

a a

a a

I

m m

m

m m

m

m m

m

,

    (1.24)   

 which proves the property (IV). It would be handy to memorize that 
given a chain of vectors or operators, we can insert the identity operator 
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8  BASIC QUANTUM MECHANICS

defi ned by (IV) in any place at our convenience. For example, the 
Hermitian operator   Â can be written as

    

ˆ ˆ

ˆ

ˆ
,

A I AI

a a A a a

a a A a a

a a a a

n n

n

m m

m

n n m m

n m

n m n m

=

=
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝⎜

⎞
⎠⎟

=

=

∑ ∑
∑

(( )

=

∑
∑

a

a a a

m

n m

n n n

n

,

,

    (1.25)   

 which is also called the spectral representation of an operator   Â. 
 Let   Â and   B̂ be linear operators, and we defi ne   D̂ as   ˆ ˆ ˆD AB= .

Moreover, we defi ne   b B a= ˆ  and   d D a A b= =ˆ ˆ . Then, from 
Equations  (1.11)  and  (1.15) , we obtain

    

d a D

b A

a B A

=

=

=

ˆ

ˆ

ˆ ˆ ,

†

†

† †

    (1.26)   

 or

    ˆ ˆ ˆ ˆ .
† † †AB B A( ) =     (1.27)    

   1.3    BRIEF DETOUR TO CLASSICAL MECHANICS 

 Almost seven decades ago, Dirac made a connection between classical 
mechanics and quantum mechanics by assuming that the linear opera-
tors correspond to the dynamical variables at that time. By  “ dynamical 
variables, ”  we mean quantities such as the coordinates and the compo-
nents of velocity, momentum, and angular momentum of particles, and 
functions of these quantities, the variables in terms of which classical 
mechanics is built. Even now, 70 years later, his postulates of quantum 
mechanics are still valid and perhaps only plausible approaches. Dirac ’ s 
postulates require that those dynamical variables shall also occur in 
quantum mechanics, but with the difference that they are now subject 
to an algebra in which the commutative axiom of multiplication does 
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BRIEF DETOUR TO CLASSICAL MECHANICS  9

not hold. Nonetheless, the dynamical variables of quantum mechanics 
still have many properties in common with their classical counterparts, 
and it will still be possible to build up a theory of them closely analo-
gous to the classical theory and form a generalization of it. In this spirit, 
the transition from classical mechanics to quantum mechanics can be 
made most conveniently and easily using the Hamiltonian formulation 
of classical mechanics  [4,5] . 

 Classical mechanics is based on the assumption that any physically 
interesting variable, that is, dynamical variable, can be measured with 
arbitrary precision and without mutual interference from any other 
such measurement. On the other hand, quantum mechanics is based on 
the realization that the measuring process may affect the physical 
system. The measurement of one variable affects other variables in such 
a way that it prevents us from knowing what their values might have 
been. The mathematical formulation of the law of physics that takes 
this basic idea into account is very different from the mathematical 
formulation of classical mechanics. 

 Hamilton ’ s least action principle, which is equivalent to Newton ’ s 
law, is formulated as follows. 

 The laws of physics are such that the time integral over a certain 
function   L q q ti i( , , )� , called Lagrangian of the physical system, 
assumes a minimum. 

 For mechanical systems, the variables   qi on which the Lagrangian 
depends on are the coordinates of all independent parts of the system. 
A system with  f  degrees of freedom has  f  coordinates   q q qf1 2, , ,�  and 
the time integral  J , which is defi ned by

    J L q q t dti i
t

t

= ∫ ( , , ) ,�
1

2

    (1.28)   

 is minimum. In other words, when   δqi = 0  at   t t t= 1 2, , we get

    

δ δ

δ δ

J L q q t dt

L
q

q
L
q

q dt

L

i i
t

t

i
i

i
i

t

t

=

= ∂
∂

+ ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= ∂

∫
∫

( , ; )�

�
�

1

2

1

2

∂∂
− ∂

∂
⎛
⎝⎜

⎞
⎠⎟

=

∫ q
d
dt

L
q

q dt
i i

i
t

t

�
δ

1

2

0.

    (1.29)   

 Equation  (1.29)  dictates that the Lagrangian satisfi es the following 
Euler equation:
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10  BASIC QUANTUM MECHANICS

    
∂
∂

− ∂
∂
⎛
⎝⎜

⎞
⎠⎟
= =L

q
d
dt

L
q

i f
i i�

…0 1 2 3, , , , , .     (1.30)   

 The behavior of the physical system is thus completely specifi ed by 
Euler ’ s equation once the Lagrangian is known. The proper Lagrangian 
is the one that leads to a description of the physical system that is in 
agreement with experimental observations. 

 For example, if we choose   L T V mx V x= − = −1
2

2� ( ) for a one - 
dimensional particle with mass  m  in the potential fi eld  V(x) , we obtain

    
∂
∂
= − ∂

∂
∂
∂
=L

x
V x

x
L
x

mx
( )

.and
�

�     (1.31)   

 Then the Euler equation yields

    mx
V x

x
F x�� = − ∂

∂
=( )

( ),     (1.32)   

 which is the famous Newton ’ s fi rst law of mechanics. 
 For later purpose, we make the following canonical transformation:

    p
L
q

H p q Li
i

i i

i

≡ ∂
∂

≡ −∑�
�, ,     (1.33)  

where  H  is called the Hamiltonian of the system. Then we obtain the 
following, Hamilton ’ s equation of motion:

    

∂
∂

=

= ∂
∂
⎛
⎝⎜

⎞
⎠⎟
= ∂
∂

= ∂
∂

−
⎛

⎝
⎜

⎞

⎠
⎟ = −

∂∑

H
p

q

p
d
dt

L
q

L
q q

p q H
H

i

i
i i i

j j

j

�

�
�

�

,

∂∂qi

,
    (1.34)   

 or,

    � �q
H
p

p
H
q

i
i

i
i

= ∂
∂

= − ∂
∂

, .     (1.35)   

 Here, the Hamiltonian  H  represents the total energy of the system. 
For any dynamical variable  F  that depends on canonical variables 
  ( , )q pi i , the time derivative of  F  is given by
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BRIEF DETOUR TO CLASSICAL MECHANICS  11

    

dF
dt

F
q

q
F
p

F
t

F
q

H
p

F
p

H
q

i
i

ii

i i i i

= ∂
∂

+ ∂
∂

⎧
⎨
⎩

⎫
⎬
⎭
+ ∂
∂

= ∂
∂

∂
∂

− ∂
∂

∂
∂

⎧
⎨
⎩

⎫

∑ �

⎬⎬
⎭
+ ∂
∂

= { }+ ∂
∂

∑ F
t

F H
F
t

i

, ,

    (1.36)  

where the Poisson bracket   A B,{ } for dynamical variables  A,B  is 
defi ned by

    A B
A
q

B
p

A
p

B
q

B A
i i i ii

, , .{ } = ∂
∂

∂
∂
− ∂
∂

∂
∂

⎧
⎨
⎩

⎫
⎬
⎭
= −{ }∑     (1.37)   

 Equations  (1.36)  and  (1.37)  imply that

    
dH
dt

H H
H
t

H
t

= { }+ ∂
∂
= ∂
∂

, ,     (1.38)   

 which says if  H  does not explicitly dependents on the time  t , the 
Hamiltonian, the total energy of the system, is conserved. Among many 
interesting properties of the Poisson bracket, the following relation is 
especially useful for the latter purpose:

    q pi j ij, .{ } = δ     (1.39)   

 For a particle moving in a one - dimensional world specifi ed by the 

coordinate  x , the Lagrangian is given by   L m x V x= ( ) −1 2 2/ ( ),�  as before. 

Then the canonical transformation yields,

    
p

L
x

mx

H px L mx V x
p
m

V x

= ∂
∂
=

= − = + = +

�
�

� �

,

( ) ( ).
1
2 2

2
2

    (1.40)   

 Equation  (1.40)  allows us to interpret the Hamiltonian  H  as the total 
energy of the system and  p  as the momentum. Hamilton ’ s equation of 
motion, Equations  (1.34)  and  (1.35) , gives

    �x
H
p

p
m

= ∂
∂
= ,  
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12  BASIC QUANTUM MECHANICS

    �p
H
x

V x
x

= − ∂
∂
= − ∂

∂
( )

,  

Newton ’ s law. 
 If we have a charged particle in an electromagnetic fi eld, the situa-

tion is a bit more complex. The electric fi eld   
�
E and the magnetic fl ux 

density   
�
B can be expressed by a vector potential   

�
A and a scalar poten-

tial   φ as

    

� �
�

� � �
E

A
t

B A

= −∇ − ∂
∂

= ∇ ×

φ ,

.
    (1.41)   

 The divergence of a magnetic fl ux density is zero, so it can be 
written as the curl of the vector, the well - known vector potential   

�
A. In 

static, the curl of the electric fi eld is zero, and it can be written as the 
gradient of a scalar function. In the time - varying case, the electric fi eld 
and the magnetic fi eld are related by the following Maxwell ’ s 
equations:

    

� �
�

� �

� �

� � �
�

∇ × = − ∂
∂

∇ ⋅ =

∇ ⋅ =

∇ × = + ∂
∂

E
B
t

B

D

H J
D
t

,

,

,

,

0

ρ
    (1.42)   

 with   
� �

D E= ε  and   
� �
B H= μ . Here,   

�
D is the electric fulx density,   

�
H is the 

magnetic fi eld,   ρ is the charge density,   
�
J  is the current density,   ε is the 

permittivity, and   μ is the permeability. We have used the international 
system of units (SI units) to write Maxwell ’ s equation. From substitut-
ing Equation  (1.41)  into  (1.42) , we fi nd that

    
� �

�
∇ × + ∂

∂
⎛
⎝⎜

⎞
⎠⎟
=E

A
t

0.   

 Then it is obvious that we have

    
�

�
�

E
A
t

+ ∂
∂
= −∇φ.     (1.43)   
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BRIEF DETOUR TO CLASSICAL MECHANICS  13

 Equation  (1.30)  implies that the generalized force   Qi is defi ned by

    Q
V
q

d
dt

V
q

i
i i

= − ∂
∂

+ ∂
∂
⎛
⎝⎜

⎞
⎠⎟�

.     (1.44)   

 The force acting on the charged particle, called the Lorentz force, is

    
� � �� �
F e E r B= + ×{ }.     (1.45)   

 Substituting Equation  (1.41)  into Equation  (1.45) , we obtain

    
� � �� �

�
F e r A

dA
dt

= −∇ − ⋅( ) −⎧
⎨
⎩

⎫
⎬
⎭

φ ,     (1.46)  

where we have used the following relation:

    
�� � � � �� � �� � �r A r A r A× ∇ × = ∇ ⋅( ) − ⋅∇( )( ) .   

 Equations  (1.44)  and  (1.46)  indicate that the generalized potential 
in the case of a charged particle moving in an electromagnetic fi eld is 
given by

    V e r A= − ⋅( )φ �� � ,     (1.47)  

and the corresponding Lagrangian is

    L mr er A e= + ⋅ −1
2

2�� �� � φ.     (1.48)   

 The generalized canonical momentum is then

    p
L
q

mx eA q xi
i

i i i i= ∂
∂

= + =
�

� , ,     (1.49)  

and the Hamiltonian is given by

    

H p q L

mx eA x mr er A e

mr e

i i

i

i i i

i

= −

= +( ) − − ⋅ +

= +

=

∑

∑

�

� � �� �� �

��

1
2

1
2

2

2

φ

φ

�� �
p eA

m
e

−( )
+

2

2
φ.

    (1.50)    
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14  BASIC QUANTUM MECHANICS

   1.4    A ROAD TO QUANTUM MECHANICS 

 In classical mechanics, we dealt with functions of the coordinates   qi and 
momentum   pi such as energy; we describe these quantities collectively 
as  “ observable. ”  The term  “ observable ”  describes any quantity acces-
sible to the measurement processes. We assume that every physical 
observable is mathematically represented by a Hermitian operator, and 
every measurement of the physical observable will result in one of the 
eigenvalues of the corresponding Hermitian operator. The eigenvector 
is used to characterize the state of the physical system. 

 Quantum mechanics assumes that any arbitrary state of the physical 
system is characterized by a state vector that is not necessarily an 
eigenvector of any particular Hermitian operator. After a measurement 
has been performed, the state vector collapses to one of the eigenvec-
tors with an eigenvalue   En. If we describe the state of the system 
by a ket vector   Ψ , then we can represent this state vector by
Ψ Ψ= ∑n n nE E , where   En  is an eigenvector of a particular 
Hermitian operator corresponding to the measurement done on the 
system. How does   Ψ  relate to possible measurements when the result 
of a measurement must be one of the eigenvalues   En{ }? For this, we 
need the following postulate. 

   1.4.1    Postulate 

 The quantity   Ψ ΨH  represents the average value of a series of mea-
surements on an ensemble of systems that are all described by the state 
vector   Ψ  and is given by

    Ψ Ψ ΨH E En n

n

=∑ 2 ,     (1.51)  

where   P En n= Ψ 2 is the probability of obtaining the value of   En as a 
result of a measurement. 

 Previously, we described that in quantum mechanics the dynamical 
variables of classical mechanics are replaced by corresponding 
Hermitian operators. In classical mechanics, the dynamics of an observ-
able are described by the Poisson bracket. We would like to extend the 
Poisson bracket to describe the dynamics of a quantum mechanical 
operator. The Poisson bracket for the classical observables   A B,  is 
defi ned in Equation  (1.37)  as

    A B
A
q

B
p

A
p

B
q

B A
i i i ii

, , .{ } = ∂
∂

∂
∂
− ∂
∂

∂
∂

⎧
⎨
⎩

⎫
⎬
⎭
= −{ }∑     (1.37)   
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A ROAD TO QUANTUM MECHANICS  15

 It is straightforward to show the following properties:

    A C B A B C B+{ } = { }+ { }, , , ,     (1.52a)  

    A B C A B A C, , , ,+{ } = { }+ { }     (1.52b)  

    AB C A C B A B C, , , ,{ } = { } + { }     (1.53a)  

    A BC A B C B A C, , , .{ } = { } + { }     (1.53b)   

 Let us assume that a quantum mechanical Poisson bracket is analo-
gous to a classical one. So we assume that a quantum mechanical 
Poisson bracket satisfi es all the conditions of Equations  (1.37) ,  (1.52) , 
and  (1.53) . We shall denote the quantum mechanical Poisson bracket 
for operators   Â and   B̂ as   ˆ , ˆA B⎡⎣ ⎤⎦. We use these conditions to determine 
the functional form of a quantum Poisson bracket by evaluating 
  ˆ ˆ , ˆ ˆAB CD⎡⎣ ⎤⎦ in two different ways from Equation  (1.53a,b) :

   

ˆ ˆ , ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ , ˆ ˆ

ˆ , ˆ ˆ ˆ ˆ

AB CD A CD B A B CD

A C D C A

⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦
= ⎡⎣ ⎤⎦ + ,, ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ , ˆ

ˆ , ˆ ˆ ˆ ˆ ˆ

D B A B C D C B D

A C DB C

⎡⎣ ⎤⎦{ } + ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦{ }
= ⎡⎣ ⎤⎦ + AA D B A B C D AC B D, ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ , ˆ ,⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦

    (1.54)  

and

   

ˆ ˆ , ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ , ˆ

ˆ , ˆ ˆ ˆ ˆ

AB CD AB C D C AB D

A C B A B

⎡⎣ ⎤⎦ = ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦
= ⎡⎣ ⎤⎦ + ,, ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ , ˆ

ˆ , ˆ ˆ ˆ ˆ ˆ

C D C A D B A B D

A C BD A

⎡⎣ ⎤⎦{ } + ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦{ }
= ⎡⎣ ⎤⎦ + BB C D C A D B CA B D, ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ , ˆ .⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦ + ⎡⎣ ⎤⎦

    (1.55)   

 Equating Equations  (1.54)  and  (1.55) , we obtain

    − ⎡⎣ ⎤⎦ −( ) + −( )⎡⎣ ⎤⎦ =
ˆ , ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ , ˆ .A C BD DB AC CA B D 0     (1.56)   

 Since the above condition holds for arbitrary Hermitian operators 
  ˆ , ˆ , ˆA B C, and   D̂, we must have

    ˆ , ˆ ˆ ˆ ˆ ˆ ˆ , ˆ ˆ ˆ ˆ ˆ .A C AC CA B D BD DB⎡⎣ ⎤⎦ = −( ) ⎡⎣ ⎤⎦ = −( )and     (1.57)   

 From now on, we shall call a quantum Poisson bracket a com-
mutator. We further assume that a commutator or a quantum 
Poisson bracket is proportional to the corresponding classical Poisson 
bracket:
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16  BASIC QUANTUM MECHANICS

    ˆ , ˆ , ,A B i A B⎡⎣ ⎤⎦ = { }�     (1.58)  

where   � is Planck ’ s constant divided by   2π. This suggests that quantum 
mechanics is based on the assumption that the Poisson bracket assumes 
the same physical meaning and the same numerical values as in classical 
mechanics. In particular,

    ˆ , ˆ , ,q p i q p ii j i j ij[ ] = { } =� �δ     (1.59)   

 which is the fundamental quantum condition. 
 The time evolution of a quantum mechanical operator can be 

obtained from the equation of motion for the classical observable:

    
dF
dt

F
t

F H= ∂
∂
+ { }, ,     (1.36)  

    dF
dt

F
t i

F H
ˆ ˆ

ˆ , ˆ ,= ∂
∂
+ ⎡⎣ ⎤⎦

1
�

    (1.60)  

where   Ĥ is the energy operator corresponding to the classical 
Hamiltonian. Equation  (1.60)  is called the equation of motion in the 
Heisenberg picture. This particular quantum mechanical representa-
tion assumes that the operators vary with time, while the state vector 
  Ψ  is time independent. This picture is formally analogous to classical 
mechanics, since the equations of motion for the operators closely 
resemble the corresponding classical equations. 

 Now, let us study a different picture, called the   Schrodinger��  picture, 
where the operators are constant in time, while the time variation is 
expressed by the state vectors. In this picture, the explicit time depen-
dence of an operator still remains. Different quantum mechanical pic-
tures follow from each other by a unitary transformation. From now 
on, we denote a quantum mechanical operator   Â simply as   A when we 
don ’ t need to distinguish it from the corresponding classical observable. 
Let us denote the state vector and operator in the new picture by   ′Ψ  
and   ′A , respectively. Then, they are related to   Ψ  and   A of an old 
picture by

    ′ = ′ =Ψ ΨU A UAU, †     (1.61)  

and

    ′ ′ ′ = =Ψ Ψ Ψ Ψ Ψ ΨA U UAU U A† † ,     (1.62)   
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A ROAD TO QUANTUM MECHANICS  17

 since

    U U UU I† † ,= =     (1.63)   

 when   U is a unitary operator. Equation  (1.62)  indicates that the 
unitary transformation does not change the physical content of the 
theory. Also, we have

    

dA
dt

dU
dt

AU U
dA
dt

U UA
dU
dt

dU
dt

AU U
A
t

U
i

U A H U

′ = + +

= + ∂
∂

+ [ ] +

† †
†

† † †,
1
�

UUA
dU
dt

†

.

    (1.64)   

 If   A is not explicitly dependent on time,   ∂ ∂ =A t/ 0, and the operator 
  A in the   Schrodinger�� picture is time independent except for an explicit 
time dependence. This implies that

    
dA
dt

U
A
t

U
′ − ∂

∂
=† .0     (1.65)   

 From Equations  (1.64)  and  (1.65) , we get

    

dU
dt

AU
i

U A H U UA
dU
dt

dU
dt

AU UA
dU
dt i

U AH HA U

d

† †
†

†
†

,+ [ ] +

= + + −( )

=

1

1
�

�
UU

dt
U A A U

dU
dt i

A H H A

dU
dt

U
i

H A A U
dU

†
†

†
†

′ + ′ + ′ ′ − ′ ′( )

= − ′⎛
⎝

⎞
⎠ ′ + ′

1

1
�

� ddt i
H+ ′⎛

⎝⎜
⎞
⎠⎟

=

1

0

�
.

    (1.66)   

 Equation  (1.66)  should hold for any quantum mechanical operators   ′A  
in the   Schrodinger��  picture, and, as a consequence, we have

    i
dU
dt

H U� = ′ .     (1.67)   
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18  BASIC QUANTUM MECHANICS

 Since   ′ =Ψ ΨU , we obtain the following   Schrodinger��  equation for 
the state vector

    i
d
dt

H� ′ = ′ ′Ψ Ψ .     (1.68)   

 The   Schrodinger��  picture is perhaps the most widely used because it 
leads directly to the formulation of wave mechanics. In this picture, 
eigenvectors of the position operator   q are used to represent the state 
vector of the system. We consider the continuous set of eigenvalues   ′q  
of the position operator   q  given by

    q q q q′ = ′ .     (1.69)   

 We assume that corresponding eigenvectors   ′{ }q  form a complete 
set. For simplicity, we consider the one - dimensional case only, but the 
extension to the higher dimensional case is straightforward. The posi-
tion representation of the state vector is defi ned by

    Ψ Ψ( ) .′ = ′q q     (1.70)   

 From Equation  (1.59) , the canonical momentum operator   p and the 
position operator   q satisfy the following quantum Poisson ’ s bracket or 
the commutator relation

    q p qp pq i, ,[ ] = −( ) = �     (1.71)  

and

    qp pq i−( ) =Ψ Ψ� .     (1.72)   

 If we take an inner product of Equation  (1.72)  by the bra vector   ′q , 
we obtain

    ′ −( ) = ′ ′ − ′q qp pq q q p q pqΨ Ψ Ψ .     (1.73)   

 Also,

    ′ −( ) = ′q qp pq i qΨ Ψ� .     (1.74)   

 Equations  (1.73)  and  (1.74)  are consistent only if the following con-
dition is satisfi ed
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A ROAD TO QUANTUM MECHANICS  19

    ′ = − ∂
∂ ′

′ = − ∂
∂ ′

′q p i
q

q i
q

qΨ Ψ Ψ� � ( ),     (1.75)   

 since Equation  (1.75)  implies

    ′ = − ∂
∂ ′

′ ′( )q pq i
q

q qΨ Ψ� ( ) .     (1.76)   

 Moreover, we have the following relations:

    ′ ′′ = −
∂
∂ ′

′ ′′ = −
∂
∂ ′

′ − ′′q p q i
q

q q i
q

q q� � δ( ),     (1.77)  

and

    I dq q q=
−∞

∞

∫ .     (1.78)   

 Then, we get

    
Φ Ψ Φ Ψ

Φ Ψ

=

=

−∞

∞

−∞

∞

∫
∫

dq q q

dq q q *( ) ( ),
    (1.79)  

    

Φ Ψ Φ Ψ

Φ

p dq dq q q p q q

dq dq q i
q

= ′ ′′ ′ ′ ′′ ′′

= ′ ′′ ′ − ∂
∂ ′

−∞

∞

−∞

∞

−∞

∞

∫ ∫
∫ *( ) � δ(( ) ( )

( ) (

′ − ′′⎛
⎝⎜

⎞
⎠⎟

′′

= ′ ′′
∂
∂ ′

′⎛
⎝⎜

⎞
⎠⎟

′ − ′′

−∞

∞

∫ q q q

dq dq i
q

q q

Ψ

Φ� * δ qq q

dq i
q

q q

dq q

) ( )

( ) ( )

(

Ψ

Φ Ψ

Φ

′′

= ′
∂
∂ ′

′⎛
⎝⎜

⎞
⎠⎟

′′

= ′ ′

−∞

∞

−∞

∞

−∞

∞

∫∫

∫ � *

* )) ( ),i
q

q�
∂
∂ ′

⎛
⎝⎜

⎞
⎠⎟

′′
−∞

∞

∫ Ψ

    (1.80)  

and

    ′ = ′ −
∂
∂ ′

⎛
⎝⎜

⎞
⎠⎟

′q F q p F q i
q

q( , ) , ( ).Ψ Ψ�     (1.81)   
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20  BASIC QUANTUM MECHANICS

 As a special case, we consider   F H= , where   H is the Hamiltonian of 
the system. Then the   Schrodinger��  equation  (1.68)  becomes

    i
t

q t H q i q q t� �
∂
∂

′ = ′ − ∂ ∂ ′ ′Ψ Ψ( , ) ( , / ) ( , ),     (1.82)   

 of the wave mechanics. 
 As an example, we consider a particle moving in a one - dimensional 

potential   V x( ). If we set the position operator as   ′ =q x, the classical 
Hamiltonian is given by Equation  (1.40) :

    H
p
m

V x= +
2

2
( ).   

 Then, the corresponding   Schrodinger��  equation is given by

    i
t

x t
m x

V x x t�
�∂

∂
= − ∂

∂
+⎛

⎝⎜
⎞
⎠⎟

Ψ Ψ( , ) ( ) ( , ).
2 2

22
    (1.83)   

 For three dimensions, we simply replace   ′q  with   
�
r  and   ∂ ∂ ′/ q  with   

�
∇. 

For example, the   Schrodinger��  equation for a charged particle moving 
in an electromagnetic fi eld is

    i
t

r t
m

i eA r t r t e r r t� � �
� � � � � �∂

∂
= − ∇ −( ) +Ψ Ψ Ψ( , ) ( , ) ( , ) ( ) ( , ).

1
2

2
φ     (1.84)   

 When the Hamiltonian   H is time independent, the time - dependent 
  Schrodinger��  equation can be rewritten in time - independent form by 
trying the solution of the form

    Ψ( , ) exp( / ) ( )
� � �
r t iEt rE= − ψ     (1.85)   

 into Equation  (1.83) . Then, we obtain the following time - independent 
  Schrodinger��  equation

    − ∇ + =� � � � � �2
2

2m
r V r r E rE E Eψ ψ ψ( ) ( ) ( ) ( ),     (1.86)  

where   E is the energy of the particle. 
 One can also consider the eigenvectors of the momentum operator 

  p , which are given by
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THE UNCERTAINTY PRINCIPLE  21

    p p p p′ = ′ ′ .     (1.87)   

 From

    ′ ′ = −
∂
∂ ′

′ ′ = ′ ′ ′q p p i
q

q p p q p� ,     (1.88)   

 we get

    ′ ′ = ′ ′( )q p C iq pexp / ,�     (1.89)  

where   C is a normalization constant. If we assume that
  ′ ′′ = ′ − ′′p p p pδ( ), then it is straightforward to calculate the 
normalization constant, which is given by   1 2π�. As a consequence, 
we have

    x p ixp= 1

2π�
�exp( / ),     (1.90)  

and

    � �
�

� � �r p ir p= ⎛⎝
⎞
⎠ ⋅( )1

2

3 2

π

/

exp / .     (1.91)     

   1.5    THE UNCERTAINTY PRINCIPLE 

 The most remarkable property of quantum mechanics is that the mea-
surements of different dynamical variables are not necessarily indepen-
dent. This property was fi rst formulated by Heisenberg, and is known 
as the uncertainty principle. We start with a quantum Poisson bracket 
for the position and momentum operators   q and   p,

    q p i, .[ ] = �   

 Let   Ψ  be a state vector, and   q and   p be the average values of the 
measurements of   q and   p, respectively:

    q q p p= =Ψ Ψ Ψ Ψ, .   

 We now calculate the mean - square deviations of measured values,

    
Δ Ψ Ψ

Ψ Ψ Ψ Ψ

q q q

q q

( ) = −( )
= − ( )

2 2

2 2,
    (1.92)  
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22  BASIC QUANTUM MECHANICS

and

    
Δ Ψ Ψ

Ψ Ψ Ψ Ψ

p p p

p p

( ) = −( )
= − ( )

2 2

2 2.
    (1.93)   

 We also defi ne   α = −q q and   β = −p p, and we get

    α β, , .[ ] = [ ] =q p i�   

 Also,

    Δ Δ Δ Δα β( ) = ( ) ( ) = ( )2 2 2 2q pand .     (1.94)   

 From Equation  (1.94) , we get

    

Δ Δ Δ Δ
Ψ Ψ Ψ Ψ

Ψ Ψ

q p( ) ( ) = ( ) ( )
=

≥

2 2 2 2

2 2

2

α β
α β

αβ ,

    (1.95)   

 from the Schwarz inequality. Since   αβ αβ βα αβ βα= −( ) + +( )1 2 1 2/ / , 
we also obtain

    
Ψ Ψ Ψ Ψ Ψ Ψ

Ψ Ψ

αβ α β αβ βα

α β

2 2

2
2

1
4
1
4 4

= [ ] + +( )

≥ [ ] =

,

, .
�

    (1.96)   

 Equations  (1.95)  and  (1.96)  give Heisenberg ’ s famous uncertainty 
relation:

    Δ Δq p ≥ �
2

.     (1.97)    

   1.6    THE HARMONIC OSCILLATOR 

 The one - dimensional simple harmonic oscillator is perhaps the most 
important and useful problem in quantum mechanics. The Lagrangian 
for the harmonic oscillator is

    L mx kx= −1
2

1
2

2 2� .     (1.98)   
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THE HARMONIC OSCILLATOR  23

 The canonical momentum is

    p
L
x

mx= ∂
∂
=
�

�,     (1.99)  

and the Hamiltonian becomes

    H px L
p
m

kx= − = +�
2

2

2
1
2

.     (1.100)   

 The time - independent   Schrodinger��  equation for the harmonic oscil-
lator is then given by

    − ∂
∂

+ =�2 2

2
2

2
1
2m x

kx E
ψ ψ ψ,     (1.101)   

 with the boundary condition   ψ = 0 at   x = ±∞. The solution of Equation 
 (1.101)  gives the energy eigenvalues of the harmonic oscillator and the 
eigenfunctions in terms of Hermite polynomials. In this section, we 
introduce an operator method that is based on the algebraic approach, 
and is much simpler than solving the   Schrodinger��  directly. We introduce 
new operators

    

a
m

m x ip

a
m

m x ip

k
m

= +( )

= +( )

=

1

2
1

2

�

�

ω
ω

ω
ω

ω

,

,†

.

    (1.102)   

 From

    aa
m

m x ip m x ip† ( )( ),= + −1
2 �ω

ω ω  

    a a
m

m x ip m x ip† ( )( ),= − +1
2 �ω

ω ω  

we obtain

    aa a a
i

px xp
i

i† † ( ) ( ) .− = − = − =
� �

� 1     (1.103)   
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24  BASIC QUANTUM MECHANICS

 We also have

    
x

m
a a

p i
m

a a

= +( )

= −( )

�

�
2

2

ω
ω

†

†

,

.

    (1.104)   

 Substituting Equation  (1.104)  into Equation  (1.100) , and using 
Equation  (1.103) , we get

   

H
p
m

m x

m
m

a a a a m
m

a a a

= +

= −( ) ⎛
⎝

⎞
⎠ −( ) −( ) + +( )

2
2 2

2

2
1
2

1
2 2

1
2 2

ω

ω ω
ω

� �† † † ++( )

= +( )

= +⎛
⎝

⎞
⎠

a

aa a a

a a

†

† †

† .

�

�

ω

ω

2
1
2

    (1.105)   

 Let ’ s assume that the state is in a particular eigenstate   ′E  with 
eigenvalue   ′E ,

    H E E E′ = ′ ′ .     (1.106)   

 Now,

    aH E aE E′ = ′ ′ ,   

 with   aH a a a= +⎛
⎝

⎞
⎠�ω † 1

2
. From   a a, †[ ] = 1 , we get   aa a a aa a† †= + , and

    aH E Ha E a E E E′ = ′ + ′ = ′ ′�ω .     (1.107)   

 Equation  (1.107)  can be rewritten as

    Ha E E E′ = ′ − ′( ) .�ω     (1.108)   

 In other words, if   ′E  is an eigenstate of a harmonic oscillator 
Hamiltonian   H with an eigenvalue   ′E ,   a E′  is also an eigenstate of   H 
but with different eigenvalue   ′ −E �ω. 
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 By the way,

    
E H E E a a E E E

E E E

= +

=

� �ω ω†

.

1
2     (1.109)   

 Since

    

E E dq E q q E

dq E q

=

=

≥

∫
∫ 2

0,

  

 we have

    E a a E dq q a E† .= ≥∫ 2 0     (1.110)   

 Combining Equations  (1.109)  and  (1.110) , the energy eigenvalue   E 
must be a nonnegative number. On the other hand, Equation  (1.108)  
indicates that the operation of an operator   a on the energy eigenstate 
  E  lowers the energy eigenvalue by an amount   �ω. Nonetheless, the 
energy eigenvalue must be always nonnegative, so the reduction of 
the eigenvalue must be terminated at the ground state   E0 , that is, 
  a E0 0= , and as a result, we obtain

    E0
1
2

= �ω.     (1.111)   

 Likewise,

    a H E E a E† † ,′ = ′ ′  

and after some mathematical manipulations, we get

    Ha E E a E† † .′ = ′ +( ) ′�ω     (1.112)   

 This indicates that   a E† ′ is also an eigenstate of   H, but with a new 
eigenvalue   ′ +E �ω. We can see that the operator   a† raises the eigen-
value by the amount of   �ω. So if   En  is the  n th eigenstate, one can 
generate   En  from   E0  by  n  successive applications of   a†,
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26  BASIC QUANTUM MECHANICS

    E A a En n
n= ( )† ,0     (1.113)  

where   An is the normalization factor. The normalization factor   An is 
determined from the condition

    E En n = 1  

 with the relations

    

a a aa a

a a a a

a a a a a

n n

n n

n n

† † †

† † †

† † † †

( ) = ( )
= ( ) + ( )
= ( ) + ( ) +

−

− −

− −

1

1 1

1 2
aa

a a a a

n a a a

n

n n

n

†

† † †

† †

( )⎡⎣ ⎤⎦

= ( ) + ( ) ( )
= ( ) + ( )

−

− −

2

1 2 2
2

 

    (1.114)  

and

    a a na a a a an n n n n n† † †( ) ( ) .( ) = +− − −1 1 1   

 Then we obtain

    

E E A E a a E

nA E a a E

n A E E

n A

n n n
n n

n
n n

n

n

= ( )
= ( )
=
=
=

− −

2
0 0

2
0

1 1
0

2
0 0

2

1

†

†

!

!

.

  

 The normalization factor is

    A
n

n =
1

!
 

and the normalized eigenstate is

    E
a

n
En

n

=
( )†

!
.0     (1.115)   
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 From Equations  (1.114)  and  (1.115) , we get

    

a E
a a

n
E

n a

n
E

n E

n

n

n

n

=
( )

=
( )

=

−

−

†

†

!

!

0

1

0

1

    (1.116)  

and

    
a E

a

n
E

n E

n

n

n

†
†( )

!

.

=

= +

+

+

1

0

11

    (1.117)   

 We call the operator   a an annihilation operator because it destroys 
a single quantum of energy. The operator  a† is called a creation operator 
since it raises (or creates) a quantum of energy. The operator   a a†  is 
called the number operator because if operating on the state, one can 
see that its eigenvalue is the number of energy quantum   n,

    a a E a n E n En n n
† † .= =−1     (1.118)   

 The operator method can also be used to determine the wave func-
tion of the one - dimensional harmonic oscillator in the coordinate space. 
Since   a E0 0= , from Equation  (1.102) , we have

    

x a E x
m

m
x i

m
p E

m
x x E

m x
x E

0 0

0 0

2

1

2

2 2
0

= +⎛
⎝

⎞
⎠

= + ∂
∂

=

ω
ω ω

ω
ω

� �

�
�

,

    (1.119)  

where Equations  (1.69)  and  (1.75)  are used. If we denote 
  ψ0 0( )x x E= , then Equation  (1.119)  can be rewritten as

    
d
dx

x
m x

xψ ω ψ0 0 0( ) ( ) .+ =
�

    (1.120)   

 Solving the fi rst - order differential equation is straightforward, and 
the solution is given by
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    ψ
ω

0
2

2
( ) exp ,x A

m
x= −⎛⎝
⎞
⎠�

    (1.121)  

where   A  is the normalization constant given by

    A
m= ⎛⎝

⎞
⎠
ω
π�

1 4/

.     (1.122)   

 In order to determine the normalization constant, we have used the 
condition

    ψ0
2 1( ) ,x dx =

−∞

∞

∫     (1.123)  

and the Gaussian integral

    exp( ) , .− = >
−∞

∞

∫ α π
α

αx dx2 0     (1.124)   

 The excited state wave functions can be obtained by successive appli-
cation of a creation operator   a† on the state   E0  and taking an inner 
product with the bra vector   x . For example, the fi rst excited state wave 
function is

    

ψ

ω
ω

ω ψ
ω

ψ

1 0

0

0 0

2 2

2 2

2

x x a E

x
m

x i
p

m
E

m
x x

m x
x

( ) =

= −
⎛
⎝⎜

⎞
⎠⎟

= ( ) − ∂
∂

( )

=

†

�

�
�

mm
x

m m xω ω
π

ω
� � �

⎛
⎝

⎞
⎠ −⎛

⎝⎜
⎞
⎠⎟

1 4 2

2

/

exp ,

    (1.125)  

and the  n th state wave function is given by

    ψ
ω ω

π
ω

n
n

nx
n

H
m

x
m m x

( )
!

exp .
/

=
⎛
⎝⎜

⎞
⎠⎟
⎛
⎝

⎞
⎠ −⎛

⎝⎜
⎞
⎠⎟

1

2 2

1 4 2

� � �
     (1.126)   

 Here,   Hn( )ζ  is the Hermite polynomials, and the fi rst few Hermite 
polynomials are

    H H H0 1 2
21 2 4 2( ) , ( ) , ( ) ,ζ ζ ζ ζ ζ= = = − �     (1.127)    
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   1.7    ANGULAR MOMENTUM EIGENSTATES 

 If the potential term   V r( )
�

 in the time - independent   Schrodinger��  equa-
tion has a spherical symmetry, then the angular momentum   

� � �
L r p= ×  is 

conserved. We need the following mathematical relations to prove the 
previous statement.

   

� � � � � � � � � � � �

� � �
r r r r r r

r r

×∇( ) ⋅ × ∇( ) = ×∇( ) ×{ }⋅∇ − ⋅ ×∇( ) ×∇{ }
= − ∇ ⋅( ) ++ ∇ ⋅( ){ }⋅∇ − ⋅ − ∇ ⋅∇( ) + ∇ ⋅∇( ){ }
= − ⋅∇ + ∇( ) ⋅

� � � � � � � � � � �

� � �
r r r r r

r r3 2 ∇∇ + ∇ − ⋅∇( ) ⋅∇( )
= − ∂

∂
+ ∇ − ∂

∂
∂
∂

⎛
⎝

⎞
⎠

= − ∂
∂

−

r r r

r
r

r r
r

r
r

r
r

r

2 2

2 2

2
2

2
2

� � � �

∂∂
∂
+ ∇

r
r2 2.

   
(1.128)

   

 Here, we used the vector identity

    
� � � � � � � � �
A B C A B C B C A×( ) × = − ⋅( ) + ⋅( )     (1.129)  

and

    �
�

r r
r

⋅∇ = ∂
∂

.     (1.130)   

 If we defi ne the orbital angular momentum operator   
�
L as

    
�

��
�

L i r= − ×∇,     (1.131)   

 then, from Equation  (1.128) , we obtain

    ∇ = ∂
∂

+ ∂
∂

− ⋅2
2

2 2 2 2

2
r r r

L L
r

� �

�
.     (1.132)   

 The time - independent   Schrodinger��  equation  (1.86)  becomes

   −
∂
∂

+ ∂
∂

− ⋅⎛
⎝⎜

⎞
⎠⎟

+ =�
� �

�
� � �2 2

2 2 2 22
2

m r r r
L L

r
r V r r E rE E Eψ ψ ψ( ) ( ) ( ) ( ),,     (1.133)  
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and the Hamiltonian with spherically symmetric potential is given 
by

    H
m r r r

L L
r

V r= − ∂
∂

+ ∂
∂

− ⋅⎛
⎝⎜

⎞
⎠⎟
+�

� �

�

2 2

2 2 2 22
2

( ) . . .     (1.134)   

 The angular momentum operator can be written, component - wise, as

    

L i r i y
z

z
y

L i r i z
x

x

x x

y y

= − ×∇( ) = − ∂
∂
− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= − ×∇( ) = − ∂
∂
−

��
�

�

��
�

�

,

∂∂
∂

⎛
⎝

⎞
⎠

= − ×∇( ) = − ∂
∂
− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

z

L i r i x
y

y
z

z z

,

,��
�

�

    (1.135)  

and they satisfy the following commutation relations

    

[ , ] ,

[ , ] ,

[ , ] .

L L i L

L L i L

L L i L

y z x

z x y

x y z

=
=
=

�

�

�
    (1.136)   

 Now consider the infi nitesimal rotation about the  z  - axis by an angle 
  θ. The rotated coordinates are given by

    

′ = + ≈ +
′ = − + ≈ − +
′ =

x x y x y

y x y x y

z z

cos sin ,

sin cos ,

.

θ θ θ
θ θ θ     (1.137)   

 Since the Hamiltonian is invariant under the rotation, we have

    H x y z E x y zE Eψ ψ( , , ) ( , , ),=     (1.138)  

and

    H x y z E x y zE Eψ ψ( , , ) ( , , ).′ ′ ′ = ′ ′ ′     (1.139)   

 Also, we have

   
ψ θ θ ψ θ ψ

ψ

E E E

E

x y x y z x y z y
x

x
y

x y z

x

( , , ) ( , , ) ( , , )

( ,

+ − + = + ∂
∂
− ∂
∂

⎛
⎝⎜

⎞
⎠⎟

= yy z
i

L x y zz E, ) ( , , ).− θ ψ
�

    (1.140)   
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 From Equations  (1.138)  to  (1.140) , we obtain

    HL L Hz E z Eψ ψ= ,   

 or

    [ , ] .H Lz = 0     (1.141)   

 In other words, the operators   H and   Lz share the same set of eigen-
functions. It is straightforward to show that

    [ , ] ,L Lz
2 0=     (1.142)   

 which implies that we can choose a common set of eigenfunctions for 
the operators   H L Lz, , .2  Let ’ s assume that the wave function   ψE x y z( , , ) 
is given by

    ψ θ φλE Ex y z R r Y( , , ) ( ) ( , ),=     (1.143)  

where   ( , , )r θ φ  is a set of spherical coordinates, and   Yλ θ φ( , ) is a simulta-
neous eigenfunction of   Lz and   L2 such that

    

L Y m Y

L Y l l Y

Y

z lm lm

lm lm

lm

( , ) ( , ),

( , ) ( ) ( , ),

( , )

θ φ θ φ
θ φ θ φ
θ φ

=
= +
�

�2 21

== θ φ, .lm

    (1.144)   

 By using the defi nition of the differential operator   
�
∇

    

�
∇ = ∂

∂
+ ∂
∂
+ ∂
∂

= ∂
∂
+ ∂

∂
+ ∂

∂

ˆ ˆ ˆ

ˆ ˆ ˆ
sin

,

x
x

y
y

z
z

r
r r r
θ

θ
φ

θ φ

    (1.145)  

we get

    

∂
∂
= ⋅∇

= ∂
∂
+ ∂

∂
− ∂

∂

x
x

r r r

ˆ

sin cos cos cos
sin
sin

,

�

θ φ θ φ
θ

φ
θ φ

    (1.146)  

    

∂
∂
= ⋅∇

= ∂
∂
+ ∂

∂
+ ∂

∂

y
y

r r r

ˆ

sin sin cos sin
cos
sin

,

�

θ φ θ φ
θ

φ
θ φ

    (1.147)  
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and

    

∂
∂
= ⋅∇

= ∂
∂
− ∂

∂

z
z

r r

ˆ

cos sin .

�

θ θ
θ

    (1.148)   

 Then, by combining Equations  (1.135)  to  (1.148) , we obtain

    

L i

L i

x

y

= ∂
∂
+ ∂

∂
⎡
⎣⎢

⎤
⎦⎥

= ∂
∂
− ∂

∂
⎡
⎣⎢

�

�

cot cos sin ,

cot sin cos

θ φ
φ

φ
θ

θ φ
φ

φ
θ
⎤⎤
⎦⎥

= − ∂
∂

,

.L iz �
φ

    (1.149)   

 We also defi ne the ladder operators   L±  as

    

L L L

i i

x y± = ±

= ± ± ∂
∂
+ ∂

∂
⎛
⎝⎜

⎞
⎠⎟

�exp( ) cot .φ
θ

θ
φ

    (1.150)   

 Then, we get the following relations among operators:

    

[ , ] ,

[ , ] ,

,

,

L L L

L L L

L L L L L

L L L L L

z

z

z z

z z

± ±

+ −

+ −

− +

= ±
=
= − +
= − −

�
�

�

�

2
2 2

2 2

LL L±( ) =† .∓

    (1.151)   

 This implies that

    
lm L L lm lm L L L lm

l l m m
z z+ − = − +

= + − +( ) ≥
2 2

2 21 0

�

� ( ) ,
 

and as a result

    − ≤ ≤ +l m l 1.     (1.152)   
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 Similarly, we also have

    − ≤ ≤l m l,     (1.153)  

from

    lm L L lm− + ≥ 0.     (1.154)   

 Also, we have

    lm L lm l l2 2 1 0= + ≥� ( ) .     (1.155)   

 Next, consider   L lm± . From   [ , ]L L Lz ± ±= ±� , we get

    

L L lm L L L L lm

L L L lm

m lm

z z z

z

± ± ±

± ±

= +( )
= ±( )
= ±

[ , ]

( ) .

 

�
� 1

    (1.156)   

 Thus,   L lm±  are eigenstates of   Lz with eigenvalues   m ± 1:

    L lm c lm± ±= ± 1 .     (1.157)   

 For this reason, we call   L± the ladder operators, in particular, the 
angular momentum - raising and  - lowering operators. The normalization 
constants   c± are evaluated with the aid of Equation  (1.151) :

    
c lm L L lm

l l m m
± ±=
= + − ±( )

2

2 1 1
∓

� ( ) ( ) .
    (1.158)   

 If we take   c±  as positive, then we have the following expressions:

    c l l m m± = + − ±� ( ) ( ).1 1     (1.159)   

 In order to fi nd the eigenfunction of the orbital angular momentum, 
we start with

    θ φ
φ
θ φ θ φ, , , ,L lm i lm m lmz = − ∂

∂
=� �     (1.160)   

 which gives

    θ φ θφ, , .lm e lmim= 0     (1.161)   
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 By the way, Equations  (1.157)  and  (1.159)  imply that

    L ll+ = 0,     (1.162)   

 Or, from Equation  (1.150) ,

    
∂
∂
−⎛

⎝
⎞
⎠ =

θ
θ θ φl lmcot , .0     (1.163)   

 Since the function   sinθ( )l satisfi es Equation  (1.163) , the orbital 
angular momentum eigenfunction has the following functional form:

    
Y ll

e

ll

il l

( , ) ,

sin .

θ φ θ φ

α θφ

=

= ( )
  

 The normalization constant   α  is evaluated from the condition

    

1

2 1

2
2

0

2
2 2

1

1

2

1

1
2

2
2 1

= ( )

= −( )

=

∫ ∫
∫
−

−
+

d d

du u

l

l

l

φ θ α θ

π α

π α

π
(cos ) sin

(ll
l l

!)
( )!( )

,
2

2 2 1+

    (1.164)   

 which gives

    Y
l

l l
ell

l

l
il l( , )

( )
!

( )( )!
sin .θ φ

π
θφ= − + ( )1

2
2 1 2

4
    (1.165)   

 Here,   ( )−1 l is the conventional phase factor. In order to get   Ylm( , )θ φ , 
we apply   L− to Equation  (1.165)    ( )l m−  times and from Equation  (1.157)  
we obtain

    Y
l

l l m
l m

d
d

im

l

l

l m

( , )
( )

!
( )( )!

( )! (cos )
sinθ φ

π θ
= − + +

−
⎛
⎝⎜

⎞
⎠⎟
−

1
2

2 1
4

θθ( )l.     (1.166)   

 In mathematical physics, the function   Ylm( , )θ φ  is called as spherical 
harmonics.  
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   1.8    QUANTIZATION OF ELECTROMAGNETIC FIELDS 

 There are cases where one needs to treat the electromagnetic fi eld 
quantum mechanically, such as the spontaneous emission, the Lamb 
shift, the resonance fl orescence, and nonclassical light, such as squeezed 
states. Also, the fl uctuation intensity of the laser near the threshold 
needs to be treated by the quantized electromagnetic fi elds. The clas-
sical electromagnetic fi elds are governed by Maxwell ’ s equations  (1.42) . 
In most treatment of the quantized electromagnetic fi elds, unbound 
regions are considered, and vector potentials are used. In many applica-
tions, we are primarily considering the interaction between the laser 
radiation with electrons in atoms or quantum structures, such as the 
semiconductor quantum dot within the electric - dipole approximation. 
In such a case, it is convenient to develop the theory in a gauge -
 invariant form more appropriate for quantum electronics, emphasizing 
the electric and magnetic fi elds;

    

� �
�

� �
�

� �

� �

∇ × = ∂
∂

∇ × = − ∂
∂

∇ ⋅ =

∇ ⋅ =

H
D
t

E
B
t

B

E

,

,

,

,

0

0

    (1.167)   

 with   
� �
B H= μ0  and   

� �
D E= ε0 . We also take the electric fi eld to have the 

spatial dependence appropriate for the cavity resonator with propaga-
tion axis in the z - direction such that  [6] 

    E z t q t
M

V
Kzx ( , ) ( ) sin

/

= ⎛
⎝⎜

⎞
⎠⎟

2 2

0

1 2Ω
ε

    (1.168)  

where   V  is the cavity volume,   K c= Ω /  is the wave number,   M is the 
constant with the dimension of mass, and   q t( ) is the quantum mechani-
cal variable with the dimension of length. Then, from Maxwell ’ s equa-
tions  (1.167) ,

    

� �

�

∇ × = −
∂
∂

= ⎛
⎝⎜

⎞
⎠⎟

H x
H

z

x q t
M

V
Kz

yˆ

ˆ ( ) sin ,
/

ε
ε0

2

0

1 2
2Ω

    (1.169)   
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 we obtain the magnetic fi eld

    H z t q t
K

M
V

Kzy( , ) ( ) cos .
/

= ⎛
⎝⎜

⎞
⎠⎟

� ε
ε

0
2

0

1 2
2Ω     (1.170)   

 The total electromagnetic energy contained in the cavity is then

    

H dv E H

dv q t
M

V
Kz q t

M
V

Kz

x y
V

= +{ }

= +

∫1
2
1
2

2 2

0
2

0
2

2
2

2 2 2

ε μ

( ) sin ( ) cos
Ω �⎧⎧

⎨
⎩

⎫
⎬
⎭

= +

∫V
p t

M
M q t

2
2 2

2
1
2

( )
( ),Ω

    (1.171)  

where we have defi ned the generalized momentum   p t Mq t( ) ( )= � . By 
comparing Equation  (1.105) , we see that the total electromagnetic 
energy inside the cavity is the same as that of the simple harmonic 
oscillator with mass   M and angular frequency   Ω. We can now defi ne 
the creation and annihilation operator for a single mode of electromag-
netic fi eld quanta denoted as a photon by

    
a t

M
M q t ip t

a t
M

M q t ip t

( ) = ( ) + ( )( )

( ) = ( ) − ( )( )

1

2
1

2

�

�

Ω
Ω

Ω
Ω

,

† .
    (1.171)   

 The quantization rule for the photon is then

    q p i a a, , ,[ ] = [ ] =� † .1     (1.172)   

 We also have

    a t a i t a t a i t( ) = ( ) −( ) ( ) = ( ) −( )0 0exp , expΩ Ω† .     (1.173)   

 Then, the quantized electric fi eld can be written as

    E z t a a E Kzx o,( ) = +( )† sin ,     (1.174)  

where   Eo is the electric fi eld per photon. The total electromagnetic 
energy contained in the cavity is

c01.indd   36c01.indd   36 4/20/2011   10:33:35 AM4/20/2011   10:33:35 AM



QUANTIZATION OF ELECTROMAGNETIC FIELDS  37

    H a a= +�Ω( / ),1 2     (1.175)  

and the  n  - photon state in which  n  photons is defi ned as   n , where each 
photon has an energy   �Ω. We interpret the vacuum state   0  as a state 
which contains no photon. Photons are quanta of a single mode of the 
electromagnetic fi elds, and are not localized at any particular position 
within the cavity. Rather, they are spread out over the entire cavity. The 
quantized electromagnetic fi elds seem to offer amazingly satisfying 
accounts of a very wide range of radiative phenomena, and there is no 
real need to have a corpuscular theory of photons. 

 When there is more than one mode of electromagnetic fi elds in the 
cavity, the electromagnetic fi elds can be expanded by multi - modes

    

�

�
�

E z t x q t
M

V
K z

H z t y q t

n
n n

n

n

n

( , ) ( ) sin ,

( , ) ( )

/

= ⎛
⎝⎜

⎞
⎠⎟

=

∑ 2 2

0

1 2Ω
ε

εε
ε

0
2

0

1 2
2

K
M

V
K z

n

n n
n

n

Ω⎛
⎝⎜

⎞
⎠⎟∑

/

cos ,

    (1.176)   

 with   Ωn n c L= π / ,   K n Ln = π / , and  L  is the length of the cavity. The total 
electromagnetic energy contained in the cavity is

    H M q
p

M
n n n

n

nn

= +⎛
⎝⎜

⎞
⎠⎟∑1

2
2 2

2

Ω ,     (1.177)  

and

    [ , ] , [ , ] [ , ] .,q p i q q p pn n n n n n n n′ ′ ′ ′= = =�δ 0     (1.178)   

 The annihilation and creation operators for the mode  n  are

    
a t M M q t ip t

a t M M

n n n n n n n

n n n n

( ) = ( ) ( ) + ( )( )
( ) = ( )

−

−

2

2

1 2

1 2

�

�

Ω Ω

Ω

/

/

,
† ΩΩn n nq t ip t( ) − ( )( ),

    (1.179)  

and a quantized electric fi eld is given by

    E z t a a E K zx n n n n

n

,( ) = +( )∑ † sin .     (1.180)   

 For a mode  s , we have

    a a n ns s s s s
† .= �Ω   
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 The general eigenstate of  H  has   n1 photons in the fi rst mode,   n2 in 
the second,   ns in the  s th, and so forth, and can be written as

    
n n n n

n n n
s s

s

1 2

1 2

… …
… …

≡ { }
=

    (1.181)   

 The annihilation operator   as destroys a photon in the   ns mode alone:

    a n n n n n n ns s s s1 2 1 2 1… … … …= − .     (1.182)   

 The general state vector for the fi eld is a superposition of these 
eigenstates:

    ψ = ∑ C n n nn n n s

n n n

s

s

1 2

1 2

1 2… …

… …

… …
, ,,

.     (1.183)   

 This state includes the correlations between different fi eld modes 
and is called an entangled state. The entangled state arises from per-
turbations such as the atom - fi eld interaction coupled by an electric -
 dipole interaction.  

   1.9    PERTURBATION THEORY 

 In this section, we deal systematically with the technique for calculating 
the effect of small extra potential, or Hamiltonian   ′H , acting on a 
system governed mainly by a free Hamiltonian   H0. Suppose for simplic-
ity that our unperturbed Hamiltonian   H0 governs the noninteracting 
system with

    H E0 0 0 0Ψ Ψ= ,     (1.184)  

and the corresponding eigenstate is normalized. When the perturbation 
is applied, we shall need to solve the equation

    E H H−( ) = ′0 Ψ Ψ .     (1.185)   

 Provided we make no condition on the normalization of the new 
eigenstate   Ψ , we may always split it into two terms  [3] 

    Ψ Ψ Φ= +0 ,     (1.186)  

where the change due to the perturbation is to be orthogonal to the 
unperturbed state:
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PERTURBATION THEORY  39

    Ψ Φ0 0= .     (1.187)   

 This condition can be expressed by the formal introduction of pro-
jection operator   P:

    P = Ψ Ψ0 0 ,     (1.188)   

 which acts on any quantum state   Φ  as

    P Φ Ψ Ψ Φ= 0 0 .   

 The complementary projection operator is defi ned as

    Q P= −1 .     (1.189)   

 The complementary operator is idempotent, that is,   Q Q2 = , as in the 
case of   P, and it projects any state upon the manifold in Hilbert space 
that is orthogonal to   Ψ0 . Then one can see that, from Equations 
 (1.186)  and  (1.187) , one can write

    Q Ψ Φ= .     (1.190)   

 Applying the unperturbed Hamiltonian operator to this function, 
we get

    

QH H H

H E

H

H Q

0 0 0 0 0

0 0 0 0

0

0

Φ Φ Ψ Ψ Φ
Φ Ψ Ψ Φ
Φ
Φ

= −
= −
=
= ,

    (1.191)   

 showing that   Q commutes with   H0. The one we write

    E H E E E H−( ) = −( ) + −( )0 0 0 0Ψ Ψ Φ ,     (1.192)  

    Q E H E H Q E H−( ) = −( ) = −( )0 0 0Ψ Ψ Φ ,     (1.193)  

and from Equations  (1.185)  and  (1.193) , we obtain

    E H QH−( ) = ′0 Φ Ψ .     (1.194)   

 Applying   P  to Equation  (1.185) , we get

    E E H= + ′0 0Ψ Ψ .     (1.195)   
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40  BASIC QUANTUM MECHANICS

 Equation  (1.194)  can also be written as

    Φ Ψ= −( ) ′−E H QH0
1 ,     (1.196)   

 which implies that there is an operator   E H−( )−0
1 which is the inverse 

of   E H−( )0 . Then, Equations  (1.185) ,  (1.186) , and  (1.192)  can be com-
bined into

    Ψ Ψ Ψ= + −( ) ′−
0 0

1E H QH .     (1.197)   

 This is an exact equation, but can only be solved approximately by 
iteration. Thus

    

Ψ Ψ Ψ Ψ

Ψ Ψ

= + −( ) ′ + −( ) ′( )
= + −( ) ′

+ −( )

− −

−

−

0 0
1

0 0
1

0 0
1

0

0

E H QH E H QH

E H QH

E H 11
0

1
0QH E H QH′ −( ) ′ +− Ψ �.

    (1.198)   

 This series is known as the Brillouin - Wigner perturbation expansion. 
Let   Ψn{ } be the complete eigenset of the free Hamiltonian   H0, then 
we have

    Ψ Ψn n

n

I∑ = ,     (1.199)  

and

    Q nn nΨ Ψ= ≠, .0     (1.200)   

 Thus from Equations  (1.195)  to  (1.200) , we obtain the energy equation 
 (1.195) , and represent all states and operators in eigenstates of   H0. 
We get

    

E E H

E H
E H

QH

E H E H

= + ′

= + ′ +
−

′ +⎛
⎝⎜

⎞
⎠⎟

= + ′ + −( )

0 0

0 0 0
0

0

0 0 0 0 0

1

Ψ Ψ

Ψ Ψ Ψ

Ψ Ψ Ψ

�

−−

≠

′ +

= + ′ + ′
−

+

∑

∑

1
0

0 0 0
0

2

0

Ψ Ψ Ψ

Ψ Ψ Ψ Ψ

n n

n

n

nn

QH

E H
H

E E

�

�.

   

 (1.201)   
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 The projection operator   Q automatically excludes certain matrix ele-
ments from the summations in each term of the series. It is an implicit 
equation to be solved for   E. Consider the very simple case where   ′H  
couples just two states of nearly equal energy. If the expectation value 
of   ′H  is zero in each of these states, we get

    E E
H

E E
E

H
E E

= + ′
−

= + ′
−0

0 1
2

1
0

01
2

1

Ψ Ψ
,     (1.202)   

 which has two roots to be obtained from the equation

    E E E E E E H2
0 1 0 1 01

2 0− +( ) + − ′ = .     (1.203)   

 Note that this is the same as the solution of the determinantal equa-
tion for the degenerate or nearly degenerate Rayleigh - Schr ö dinger 
perturbation theory, that is

    
E E H

H E E

− ′
′ −

=0 01

10 1

0.     (1.204)     

 PROBLEMS 

       1.    We consider the ket vector   a  represented by a column vector 
given by

    a

a

a

a

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

∞

1

2

.

.

.

,  

with complex quantities   a a a a1 2 3, , , ,… ∞, and the bra vector given 
by  b b b b b= ( )∞1 2 3

* * * *. . . . . The outer product of vectors   a  and   b  
is defi ned by

    a b

a b a b a b

a b a b a b

a b a b a b

=

⎛

⎝

⎜
∞

∞

∞ ∞ ∞ ∞

1 1 1 2 1

2 1 2 2 2

1 2

* * *

* * *

* * *

�
�

� � 	 �
�

⎜⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

.   
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42  BASIC QUANTUM MECHANICS

 In two - dimensional Hilbert space, the basis vectors are given by

   0
1

0
= ⎛
⎝⎜
⎞
⎠⎟
   and     1

0

1
= ⎛
⎝⎜
⎞
⎠⎟

. 

The Pauli operators are defi ned by

   σ σ σx y z

i

i
= ⎛
⎝⎜

⎞
⎠⎟

=
−⎛

⎝⎜
⎞
⎠⎟

=
−

⎛
⎝⎜

⎞
⎠⎟

0 1

1 0

0

0

1 0

0 1
, , .

Obtain the spectral representation of Puali operators from Equation 
 (1.25) .   

    2.    If A and B are two fi xed noncommuting operators, and   λ is a param-
eter, then show that

    
exp( ) exp( ) [ , ]

!
[ ,[ , ]]

!
[ ,[ ,[ , ]]]

λ λ λ λ

λ

A B A B a b A A B

A A A B

− = + +

+ +

2

3

2

3
��.

  

 When   [ ,[ , ]] [ ,[ , ]]A A B B A B= = 0, show that

    exp( ) exp( )exp( )exp [ , ] .A B A B A B+ = −⎛⎝
⎞
⎠

1
2

  

 Hint: Consider the operator function   f A B( ) exp( )exp( )λ λ λ= , 
and differentiate   f ( )λ  with respect to   λ to obtain 
  df d A A B A f( ) / exp( ) exp( ) ( )λ λ λ λ λ= + −( ) , and solve the differential 
equation.   

    3.    In one dimension, the Hamiltonian is given by   ˆ ˆ / ( ˆ)H p m V x= +2 2 . 
Let En  be the eigenvector of   Ĥ, and   En be the eigenvalue. Then 
show that

    E x E E E
m

n n n n

n

′′ ′ ′ ′′
′

−( ) =∑ ˆ .2
2

2
�

    

    4.    In two - dimensional Hilbert space, the basis vectors are given by

   0
1

0
= ⎛
⎝⎜
⎞
⎠⎟
   and     1

0

1
= ⎛
⎝⎜
⎞
⎠⎟

.

When the Hamiltonian of this two - dimensional system is given by
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    H E E V= + + +( )0 10 0 1 1 1 0 0 1 ,  

fi nd eigenvectors and eigenvalues of   H .   

    5.    A one - dimensional harmonic oscillator is under the electric fi eld  F , 
and the total Hamiltonian is given by   H p m x eFx= + −2 1

2
2 22/ ω . 

Using the perturbation theory equation  (1.201) , calculate the ground 
state energy.   

    6.    Find the wave functions and the energy levels of a particle in the 
potential well given by   V x( ) = 0  if   x L≤ / 2  and   V x V( ) = >0 0  if 
  x L> / 2  (Fig.  1.1 ).       

     Figure 1.1.     Finite potential well.  

L/2–L/2

V(x)

V0
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