
Chapter 1: Database Management

In This Chapter
� Discovering the basics of databases

� Figuring out how to manipulate data

� Understanding database programming

Database management is all about storing organized information and know-
ing how to retrieve it again. Although the idea of storing and retrieving

data is simple in theory, managing databases can get complicated in a hurry.
Not only can data be critical, such as bank records, but data retrieval may be
time-sensitive as well. After all, retrieving a person’s medical history in a hospi-
tal emergency room is useless if that information doesn’t arrive fast enough to
tell doctors that the patient has an allergic reaction to a specific antibiotic.

Because storing and retrieving information is so important, one of the most
common and lucrative fields of computer programming is database manage-
ment. Database management involves designing and programming ways to
store and retrieve data. Because nearly every business from agriculture to
banking to engineering requires storing and retrieving information, database
management is used throughout the world.

The Basics of Databases
A database acts like a big bucket where you can dump in information. The
two most important parts of any database is storing information and yank-
ing it back out again. Ideally, storing information should be just as easy as
retrieving it no matter how much data you may need to store or retrieve.

To store and retrieve data, computer scientists have created three types of
database designs:

✦ Free-form

✦ Flat-file

✦ Relational

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 609

CO
PYRIG

HTED
 M

ATERIA
L

The Basics of Databases610

Free-form databases
Free-form databases are designed to make it easy to store and retrieve infor-
mation. A free-form database acts like a scratch pad of paper where you can
scribble any type of data, such as names and addresses, recipes, directions
to your favorite restaurant, pictures, or a list of items that you want to do
the next day. A free-form database gets its name because it gives you the
freedom to store dissimilar information in one place, as shown in Figure 1-1.

Being able to store anything in a database can be convenient, but that conven-
ience is like the freedom to throw anything you want in a closet, such as pants,
books, written reports, and photographs. With such a wide variety of stuff
dumped in one place, finding what you need can be much more difficult.

Cake Recipe

1 egg
1/2 cup milk
2 oz. of sugar
Dash of red dye
Stir and bake

Database File

Bogg Smith
153 Main Street
Detroit, MI 48154

To-do list

Wake up
Eat breakfast
Look for a job
Go back to sleep

Directions
East on I-10
Exit on Broadway
Turn left at light
Turn right at first
driveway

Ann Johnson
43 Parkway
Boston, MA 01245

Ideas for making
money

Write programming
books

Develop comedy
routine

Figure 1-1:
A free-form
database
can store
randomly
structured
information.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 610

Book VII
Chapter 1

Database
M

anagem
ent

The Basics of Databases 611

To retrieve data from a free-form database, you need to know at least part of
the data you want to find. So if you stored a name and phone number in a
free-form database, you could find it again by just typing part of the name
you want to find (such as typing Rob to find the name Robert). If you stored
a recipe in a free-form database, you could find it by typing one of the ingre-
dients of that recipe, such as milk, shrimp, or carrots.

Free-form databases have two big disadvantages:

✦ They’re clumsy for retrieving information. For example, suppose you
stored the name Robert Jones and his phone number 555-9378. The only
way to retrieve this information is by typing part of this data, such as
Rob, 555, or nes. If you type Bob, the free-form database doesn’t find
Robert. So it’s possible to store information in a free-form database and
never be able to find it again, much like storing a cherished photo album
in an attic and forgetting exactly where it might be.

✦ They can’t sort or filter information. If you want to see the phone num-
bers of every person stored in a free-form database, you can’t. If you
want to see only information in the free-form database that you stored in
the past week, you can’t do that either.

Because free-form databases are so limited in retrieving information, they’re
best used for simple tasks, such as jotting down notes or ideas but not for
storing massive amounts of critical information. To store data with the abil-
ity to sort, search, and filter data to view only specific types of information,
you need a flat-file database.

Flat-file databases
The biggest difference between a free-form database and a flat-file database
is that a flat-file database imposes structure. Whereas a free-form database
lets you type random information in any order, flat-file databases force you
to add information by first defining the structure of your data and then
adding the data itself.

Before you can store data, you must design the structure of the database.
This means defining what type of data to store and how much room to allo-
cate for storing it. So you might decide to store someone’s first name and
last name and allocate up to 20 characters for each name.

Each chunk of data that you want to record, such as a first name, is a field. A
group of fields is a record. If you want to store names and telephone numbers,
each name and telephone number is a field, and each name and its accompa-
nying telephone number make up a single record, as shown in Figure 1-2.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 611

The Basics of Databases612

Flat-file databases impose a structure on the type of information you can store
to make retrieving information much easier later. However, you need to design
the structure of your database carefully. If you define the database to store
only first and last names, you can’t store any other information other than first
and last names.

Designing the size and types of fields can be crucial in using the database
later. If you create a Name field but allocate only ten characters to hold that
data, the name Bob Jones fits but another name, such as Daniel Jonathan
Perkins, cuts off.

Another problem is how you define your fields. You could store names in
one big field or separate them into three separate fields for holding first,
middle, and last names. Using a single field to store a name might initially
look simpler, but separating names in different fields is actually more useful
because this allows the database to sort by first, middle, or last name.

Database File

Bogg Smith
153 Main Street
Detroit, MI 48154

Fields

Records

Bo Katz
948 Main Street
Baltimore, MD
01478

Ann Johnson
43 Parkway
Boston, MA 01245

Ian Slater
934 Black Drive
San Francisco, CA
94781

Jim Bagley
459 Terrance
Houston, TX
84501

Sally Riggins
3 Darth Street
Billings, MO
78140

Figure 1-2:
A flat-file
database
stores data
in fields and
records.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 612

Book VII
Chapter 1

Database
M

anagem
ent

The Basics of Databases 613

Although such a rigid structure might seem to make flat-file databases harder
to use, it does make flat-file databases easier to search and sort information.
Unlike free-form databases that may contain anything, every record in a flat-
file database contains the exact same type of information, such as a name,
address, and phone number. This makes it possible to search and sort data.

If you want to find the telephone number of Robert Jones, you could tell the
flat-file database to show you all the records that contain a first name begin-
ning with the letter R. If you want to sort your entire database alphabetically
by last name, you can do that, too.

A flat-file database gets its name because it can work only with one file at a time.
This makes a flat-file database easy to manage but also limits its usefulness. If you
have a flat-file database containing names and addresses and a second flat-file
database containing names and telephone numbers, you might have identical
names stored in the two separate files. Change the name in one flat-file database
and you need to change that same name in the second flat-file database.

Relational databases
For storing simple, structured information, such as names, addresses, and
phone numbers (similar to a Rolodex file), flat-file databases are adequate.
However, if you need to store large amounts of data, you’re better off using a
relational database, which is what the majority of database programs offer.

Like a flat-file database, you can’t store anything in a relational database
until you define the number and size of your fields to specify exactly what
type of information (such as names, phone numbers, and e-mail addresses)
that you want to save.

Unlike flat-file databases, relational databases can further organize data into
groups, or tables. Whereas a free-form database stores everything in a file
and a flat-file database stores everything in file, but organizes it into fields; a
relational database stores everything in a file that’s divided into tables,
which are further divided into fields, as shown in Figure 1-3.

Think of database tables as miniature flat-file databases that can connect
with each other.

Just as storing a name in separate First Name and Last Name fields gives you
more flexibility in manipulating your data, grouping data in separate tables
also give you more flexibility in manipulating and sharing information.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 613

The Basics of Databases614

Suppose you have a list of employees that includes names, addresses, and
telephone numbers. Now you may want to organize employees according to
the department where they work. With a flat-file database, you’d have to
create a separate file and store duplicate names in these separate databases,
as shown in Figure 1-4.

Every time you add a new employee, you’d have to update both the employee
database and the specific department database that defines where he works.
If an employee leaves, you’d have to delete his name from two separate data-
bases as well. With identical information scattered between two or more
databases, keeping information updated and accurate is difficult.

Relational databases solve this problem by dividing data into tables with a
table grouping the minimum amount of data possible. So, one table might
contain names and employee ID whereas a second table might contain only
employee names and department names, as shown in Figure 1-5.

Database File

Bogg Smith
153 Main Street
Detroit, MI 48154

Customers Prospects

Employees

Contractors

Suppliers

Temp workers

Tables

Bo Katz
948 Main Street
Baltimore, MD
01478

Ann Johnson
43 Parkway
Boston, MA 01245

Ian Slater
934 Black Drive
San Francisco, CA
94781

Jim Bagley
459 Terrance
Houston, TX
84501

Sally Riggins
3 Darth Street
Billings, MO
78140

Figure 1-3:
A relational
database is
divided into
tables.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 614

Book VII
Chapter 1

Database
M

anagem
ent

The Basics of Databases 615

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Table
Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Table

Figure 1-5:
Tables
separate
data into
pieces.

Employees

Bogg Smith
153 Main Street
Detroit, MI 48154

Bo Katz
948 Main Street
Baltimore, MD
01478

Ann Johnson
43 Parkway
Boston, MA 01245

Ian Slater
934 Black Drive
San Francisco, CA
94781

Jim Bagley
459 Terrance
Houston, TX
84501

Sally Riggins
3 Darth Street
Billings, MO
78140

Media Department

Bo Katz
948 Main Street
Baltimore, MD
01478

Ann Johnson
43 Parkway
Boston, MA 01245

Jim Bagley
459 Terrance
Houston, TX
84501

Figure 1-4:
Flat-file
databases
must store
duplicate
data in
separate
files.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 615

The Basics of Databases616

A column in a table represents a single field, often called an attribute. A row
in a table represents a single record, often called a tuple.

What makes tables useful is that you can link them together. So whereas one
table may appear to contain names and addresses while a second table might
also contain names and departments, the two tables are actually sharing infor-
mation. Instead of having to type a name twice in both tables, you need to
type the name only once, and the link between separate tables automatically
keeps that information updated and accurate in all other linked tables.

By linking or relating tables together, you can combine data in different
ways. If you have a list of customers stored in one table and a list of sales in
another table, you can relate these two tables to show which customers are
buying which products, or which products are most popular in specific sales
regions. Basically, relating tables together allows you to create virtual data-
bases by sharing and combining data from separate database tables. By
combining data from separate tables, you can uncover hidden information
behind your data, as shown in Figure 1-6.

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Table
Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Table

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Figure 1-6:
Relational
databases
let you
combine
data from
different
tables.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 616

Book VII
Chapter 1

Database
M

anagem
ent

Manipulating Data 617

Tables divide data into groups, but taken on a larger scale, it’s possible to
divide an entire database into multiple databases that are physically sepa-
rate. Such databases are distributed databases.

A company might use a distributed database to keep track of all its employ-
ees. A branch office in Asia might have a database of employees in Singapore,
another branch in Europe might have a database of employees in England,
and a third branch in America might have a database of employees in California.
Combining these separate databases would create a single database of all the
company’s employees.

Manipulating Data
After you define the structure of a database by organizing information in tables
and fields, the next step is to write commands for modifying and manipulating
that information. This can be as simple as adding data to a specific table or as
complicated as retrieving data from three different tables, reorganizing this
information alphabetically by last name, and displaying this list on the screen
with mathematical calculations showing sales results for each person and a
total amount for an entire department and company.

The three basic commands for manipulating data are Select, Project, and Join.
The Select command retrieves a single row or tuple from a table. So if you
want to retrieve someone’s name to find her e-mail address, you could use
the Select command, as shown in Figure 1-7.

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Select

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Employee ID

 1Q55

Name

Sam Collins

Department

 Engineering

Figure 1-7:
The Select
command
retrieves a
single
record or
tuple.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 617

Manipulating Data618

Besides retrieving a single record or tuple, the Select command can retrieve mul-
tiple tuples, such as a list of all employees who work in a certain department.

The Project command retrieves the entire column or attribute from a data-
base table. This can be useful when you just want to view certain informa-
tion, such as the names of employees along with the department where they
work, as shown in Figure 1-8.

The Project command acts like a filter, hiding data that you don’t want to see
and displaying only data that you do want to see. Combining the Select and
Project commands can find just the names and e-mail addresses of all
employees who work in a certain department.

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Project

Figure 1-8:
The Project
command
retrieves an
entire
column or
attribute.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 618

Book VII
Chapter 1

Database
M

anagem
ent

Manipulating Data 619

The Join command combines separate tables together to create a virtual
table that can show new information. For example, a Join command might
combine a table of products, and a table of customers with a table of sales
people can show which sales person is best at selling certain products and
which products are most popular with customers, as shown in Figure 1-9.

The Select, Project, and Join commands are generic terms. Every database
uses its own terms for performing these exact same actions, so be aware of
these terminology differences.

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Employee ID

 4Y78
 8U90
 4T33
 4A24
 9Z49
 1Q55
 2E03
 4M79
 2B27

Table

Join

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Table

Name

Bill Adams
Sally Tarkin
Johnny Brown
Doug Hall
Yolanda Lee
Sam Collins
Randy May
Al Neander
Kal Baker

Department

 Public relations
 Human resources
 Engineering
 Engineering
 Human resources
 Engineering
 Public relations
 Public relations
 Human resources

Figure 1-9:
The Join
command
matches
two tables
together.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 619

Manipulating Data620

Writing database commands
Every relational database program includes commands for manipulating data.
These commands essentially form a proprietary programming language
specific to that database program. Microsoft Access uses a programming
language called VBA (Visual Basic for Applications) whereas FileMaker uses
a language called FileMaker Script. Most databases actually consist of sepa-
rate files with one file containing the actual data and a second file containing
programs for manipulating that data.

The main difference between a general purpose language, like C++, and a
database language is that the database language needs only to define what
data to use and how to manipulate it, but the database program (or the data-
base engine) takes care of the actual details. Database languages only need
to define what to do, not how to do it.

The SQL language
Although every relational database program comes with its own language,
the most popular language for manipulating large amounts of data is SQL
(Structured Query Language). SQL is used by many different database pro-
grams, such as those sold by Oracle, Microsoft, and Sybase. If you’re going
to work with databases as a programmer, you have to figure out SQL.

SQL commands, like all database programming languages, essentially hide
the details of programming so you can focus on the task of manipulating
data. To retrieve names from a database table named Employees, you could
use this SQL command:

SELECT FirstName, LastName FROM Employees

To selectively search for certain names, you could use this variation:

SELECT FirstName, LastName FROM Employees
WHERE FirstName = ‘Richard’

To add new information to a table, you could use this command:

INSERT INTO Employees
VALUES (‘John’, ‘Smith’, ‘555-1948’)

To delete information from a table, you could use the delete command, such as:

DELETE FROM Employees
WHERE LastName = ‘Johnson’

To modify a phone number, you could use this command:

UPDATE Employees

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 620

Book VII
Chapter 1

Database
M

anagem
ent

Manipulating Data 621

SET PhoneNumber = ‘555-1897’
WHERE LastName = ‘Smith’

An ordinary user can type simple database commands to retrieve informa-
tion from a database, but because most users don’t want to type a series of
commands, it’s usually easier for someone else to write commonly used
database commands and then store these commands as miniature programs.
Then instead of forcing the user to type commands, the user can just choose
an option and the database will run its program associated with that option,
such as sorting or searching for information.

Data integrity
With small databases, only one person may use the database at a time.
However with large databases, it’s possible for multiple people to access the
database at the same time. The biggest problem with multi-user databases is
data integrity.

Data integrity is insuring that data is accurate and updated, which can cause
a problem when multiple users are modifying the same data. An airline reser-
vation system might let multiple travel agents book seats on the same airplane,
but the database must make sure that two travel agents don’t book the same
seat at the same time.

To prevent two users from modifying the same data, most database programs
protect data by letting only the first user modify the data and locking others
out. While the first user is modifying the data, no one else can modify that
same data.

Locking can prevent two users from changing data at the same time, but
sometimes, changing data may require multiple steps. To change seats on an
airline reservation system, you may need to give up one seat (such as seat
14F) and take another one (such as seat 23C). But in the process of giving up
one seat, it’s possible that another user could take the second seat (23C)
before the first user can, which would leave the first user with no seats at all.

To prevent this problem, database programs can lock all data that a user
plans to modify, such as preventing anyone from accessing seats 14F and
23C. Another solution to this problem is a rollback. If a second user takes
seat 23C before the first user can get to it, the database program can roll-
back its changes and give the first user back the original seat 14F.

Multi-user databases have algorithms for dealing with such problems, but if
you’re creating a database from scratch, these are some of the many problems
you need to solve, which explains why most people find it easier just to use an
existing database program rather than write their own database program.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 621

Database Programming622

Data mining
Large chunks of data are data warehouses. Data mining simply looks at separate
databases to find information that’s not obvious in either database. For exam-
ple, one database might contain tax information, such as names, addresses,
and Social Security numbers. A second database might contain airline passen-
ger information, such as names, addresses, and flight numbers. A third data-
base might contain telephone calling records that contain names, addresses,
and phone numbers called.

By themselves, these separate databases may seem to have no connection,
but link the tax database with an airline passenger database and you can tell
which passengers traveled to certain countries and reported an income less
than $25,000. Just by combining these two databases, you can flag any suspi-
cious travel arrangements. If someone reports income under $25,000, but has
made ten different trips to Saudi Arabia, Venezuela, and the Philippines, that
could be a signal that something isn’t quite right.

Now toss in the telephone calling database and you can find everyone who
reported less than $25,000 income, made ten or more overseas trips to other
countries, and made long-distance phone calls to those same countries.
Retrieving this type of information from multiple databases is what data
mining is all about.

Data mining finds hidden information stored in seemingly innocuous databases.
As a result, data mining can be used to track criminals (or anti-government
activists) and identify people most likely to have a genetic disposition to certain
diseases (which can be used for preventative treatment or to deny them health
insurance). With so many different uses, data mining can be used for both
helpful and harmful purposes.

Database Programming
At the simplest level, a database lets you store data and retrieve it again. For
storing a list of people you need to contact regularly, a Rolodex-type database
can be created and used with no programming. However, if you want to store
large amounts of data and manipulate that information in different ways, you
may need to write a program.

The three parts of a database program include the user interface, the data-
base management system (which contains commands for manipulating data),
and the actual information stored in a database, as shown in Figure 1-10.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 622

Book VII
Chapter 1

Database
M

anagem
ent

Database Programming 623

The user interface lets people use the data without having to know how the
data is stored or how to write commands to manipulate the data. The data-
base stores the actual information, such as dividing data into tables and
fields. The commands for manipulating that data may include printing,
searching, or sorting through that data, such as searching for the names of
all customers who recently ordered over $10,000 worth of products in the
past month.

Here are three ways to write a database program. The first way is to use an
ordinary programming language, such as C++ or BASIC. The problem with
using a programming language like C++ is that you have to create all three
parts of a database from scratch. Although this gives you complete control
over the design of the database, it also takes time.

As a simpler alternative, many programmers buy a database toolkit, written
in their favorite programming language, such as C++. This toolkit takes care
of storing and manipulating data, so all you need to do is design the data-
base structure (tables and fields) and create the user interface.

A second way to write a database program is to start with an existing rela-
tional database program and use its built-in programming language to create
a user interface and the commands for manipulating the data. The advantage
of this approach is that you don’t have to create an entire database manage-
ment system from scratch, but the disadvantage is that you have to know
the proprietary language of that particular database, such as Microsoft
Access or FileMaker.

A third way to write a database program involves a combination of existing
database programs and general-purpose programming languages, like C++:

1. Use a database program to design the structure of the data and then
you use the database’s programming language to write commands for
manipulating that data.

User User
interface

Database
management

system

Actual
Database

Figure 1-10:
The three
parts of a
database
program.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 623

Database Programming624

2. Use your favorite programming language, such as C++ or BASIC, to
create a user interface for that database.

This approach takes advantage of the database program’s strengths
(designing database structures and manipulating data) while avoiding
its weakness in designing user interfaces. General-purpose languages,
like C++ or BASIC, are much better for designing user interfaces, which
can make your database program much easier to use.

If you have a lot of time on your hands, create an entire database from scratch
with C++ or BASIC. However, if you don’t want the hassle of creating an entire
database management system yourself, buy a commercial database program
and customize it using the database program’s own programming language.
This second approach is the most common solution for creating database
programs.

If you find a database programming language too clumsy or too restrictive
for designing user interfaces, write your own user interface in your favorite
programming language and slap it on an existing database program. This
may involve the hassle of integrating your user interface (written in C++)
with the database file and data manipulating commands created by a data-
base program (such as Microsoft Access).

Ultimately, database programming involves making data easy to access and
retrieve no matter which method you choose. Because storing information is
so crucial in any industry, database programming will always be in demand.
If you figure out how to design and program databases, you’ll always have
plenty of work to choose from.

46_108543-bk07ch01.qxp 4/30/08 8:34 PM Page 624

