
Developing Next-Generation
Web Applications

Web applications have historically been less rich and responsive than desktop applications. End
users don’t necessarily understand the details of how an application works, but they know that
interacting with a website in the browser is distinctly different from using an application installed
locally. When a development team tackles a new project, one of the first questions they are faced
with is whether end users can accept the limitations of web development or whether they need to
require a client desktop application to be installed. Web applications are accessible from just about
any browser, just about anywhere, but they are limited by what you can do with markup and
script code running in the browser.

Desktop applications, also called fat client applications, require that the user perform an installa-
tion on their machine, but let developers leverage the advanced mouse and graphics capabilities of
the operating system that would be extremely difficult to implement in a web browser, and also
take advantage of the user’s machine for tasks such as offline storage. Conversely, web applica-
tions can be updated just by changing what is running on the server, and site visitors get the latest
version instantaneously. However, it’s much more difficult to update a desktop application,
because you’d have to get users to perform yet another installation or else ensure that the applica-
tion has been coded to include a clever system for doing updates automatically.

Web applications are said to use a zero-deployment model, but desktop applications use a heavy
deployment and configuration model. The choice is often characterized as a tradeoff between rich
and reach: Desktop applications generally offer a richer user experience than what could be offered
in the browser, but with a web application you are able to reach users anywhere on any OS with
almost no extra effort. Further, many companies have restrictive policies in place regarding what
software can be installed on employees’ machines, and they often don’t allow employees to have
administrative access that is required to install new applications, so web applications will be the
only viable option in many situations.

04_109625 ch01.qxd 4/27/07 9:42 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Bringing Richness to Web Applications
Years ago, having a web presence was a distinguishing factor for companies. That is no longer the case.
Now just having a web presence is no longer enough. Companies are distinguishing themselves further
through web applications that react intuitively to customer actions and anticipate user input. This book
shows you how ASP.NET AJAX addresses specific web development challenges and paves the way for
taking your website to another level of user experience. In this chapter, I discuss the need for richer
frameworks in web application development. I talk about the key pieces of the ASP.NET AJAX platform
and highlight some other options.

The fundamental set of technologies that enable the next generation of web applications are not new.
Online news articles and blogs point to Google, Flickr, and several other services as prime examples of
leveraging these technologies in unique ways. The applications have some unique features, but in real-
ity, the underlying technologies have been around and in use for nearly a decade. Take a look at how
Microsoft Exchange Server provided rich access to email from a web browser in the Outlook Web Access
application, and you can see that the concept of ubiquitous access from a browser while leveraging a
common set of browser features for a rich user experience has been around and in practice for years.
Users get a remarkably full-featured application with no local installation and are able to access e-mail
from virtually any machine.

The technologies in use for building rich applications are generally referred to as AJAX (Asynchronous
JavaScript and XML). While the acronym is nice, it doesn’t do much to explain what is actually happen-
ing. Instead of building a web application to be just a series of page views and post backs, developers
are using JavaScript to communicate asynchronously with the web server and update parts of the page
dynamically. This means that the web page can dynamically adapt its appearance as the user interacts
with it, and it can even post or fetch data to or from the web server in the background. Gone are the days
of the ugly post back, which clears the user’s screen and breaks his concentration! Instead, we need to
post back now only if we want to change to a different web page.

Even that rule can be bent. Some applications are pushing this boundary and completely changing the
user’s view, just as though they navigated to a new page, but they do so through an asynchronous post
and by changing the page content without actually navigating to a new URL.

The AJAX acronym refers to XML as the data format being exchanged between client and server, but in
reality, applications are being built that retrieve simple pieces of text, XML, and JSON (JavaScript Object
Notation) (which I discuss in more detail in Chapter 4). Part of the AJAX appeal isn’t even covered by
the acronym: In addition to communicating with the server without blocking, developers are leveraging
Dynamic HTML (DHTML) and Cascading Style Sheets (CSS) to create truly amazing user interfaces.
JavaScript code running on the client communicates asynchronously with the server and then uses
DHTML to dynamically modify the page, which supports rich animations, transitions, and updates to
the content while the user continues interacting with the page. In many cases, users won’t even realize
they are using a web application!

Who Benefits from AJAX?
AJAX offers benefits to both end users and developers. For end users, it reduces the “rich or reach” con-
flict; for developers, it helps in overcoming the constraints raised by HTTP.

2

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 2

Why End Users Want AJAX Applications
Users tend to view desktop applications as a sort of commitment. They install a program, usually from a
disk pulled from a costly shrink-wrapped box. The program consumes hard disk space as well as a posi-
tion in the program menu. The user may need to update the program periodically or perform an
upgrade later on to get new features. If the program is proactive about updating itself, the user is con-
fronted regularly with dialogs about accepting patches or downloads. In exchange for this investment of
time, money, and energy, the user gets repaid by an application that is able to leverage the operating sys-
tem and machine resources. It is a rich application. It has local storage capabilities, offers quick response
times, and can present a compelling and intuitive graphical user interface.

More and more applications are accessible from the web browser, where the full resources of the hard-
ware and OS are not available, but the user commitment of a desktop application is not required. Over
the years, interacting with a web application has meant a predictable pattern for users. They click a link
in the page and the browser flashes while the user waits until the screen is repainted (the dreaded post
back). This cycle is repeated again and again. The user looks at what is presented on the page, interacts
with it, and clicks somewhere. The browser produces an audible click for feedback and begins to post
back to the server. The screen of the web browser flashes blank and some icon spins or flashes while the
user waits for a new version of the page to be returned from the server. Many times, the new version of
the page is almost exactly the same as the previous version, with only part of the page being updated.
And then the cycle begins all over again. This has a sluggish feeling even when the user has a high-
speed network connection.

The AJAX set of technologies has changed what users expect from web applications. JavaScript code
running in the browser works to exchange data with the web server asynchronously. There is no click
sound and the browser does not flash. The request to the server is nonblocking, which means the user is
able to continue viewing the page and interacting with it. The script gets the updated data from the
server and modifies the page dynamically using the DHTML coding methodology. The user is able to
continue looking at the page while parts of it are updated in the background. AJAX is used to provide a
more responsive experience, making web applications behave more like desktop installations. JavaScript
is used to provide a richer experience with support for drag-and-drop, modal dialogs, and seemingly
instantaneous updates to various parts of the page based on user inputs.

A big part of successfully leveraging AJAX technologies is in the perceived performance increase. Users
appreciate web applications that anticipate their actions. If you also use JavaScript code in the back-
ground to pre-fetch images and data that may be needed, users can get a speedy response without the
usual pause that accompanies their actions. Nobody wants to wait for data exchanges between client
and server; studies have shown that a time lag between user input and subsequent UI changes can sig-
nificantly reduce their productivity and give them the frustrating feeling that they are fighting the appli-
cation. Users want web applications to behave like desktop installations but without the overhead
associated with an installation. As more applications employ smart caching, anticipate user actions, and
provide richer UI, the difference between web and desktop applications is becoming blurred.
Expectations of web applications are rising. The end user has now seen that it is possible to avoid the
commitment of installing a desktop application and still have a rich and responsive experience.

Why Developers Want AJAX
Often, the first question to arise when starting a new development project is what type of application it
will be. Should it be a desktop application or a web application? This is a key decision because it has

3

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 3

historically dictated a lot about the nature of the application and the development problem space. Many
developers are now choosing to build web applications by default unless something about the applica-
tion dictates that it must be a desktop install. If it must run offline or if it requires a user interface that is
complex to achieve in HTML, targeting the web browser may be ruled out, and the choice to write a
standalone application is forced.

Developers have a difficult job writing modern web applications due to the inherent worldwide-web
functionality constraints imposed by the use of the Hypertext Transfer Protocol (HTTP) and the way
browsers use it. HTTP is a stateless protocol. The web browser requests a page, possibly carrying some
querystring or form input parameters, and the server processes the request and sends a response that
includes HTML-rendered content. The server can only react to the information supplied in the current
request and doesn’t know, based on the information in the request itself, details about the path the user
took to get to the current view. When the response is rendered, the connection may be broken and the
server won’t have any information to preserve for the next request. From the server’s perspective, it is
simply listening for requests to come in from any browser anywhere and then reacting. The browser
issues a request to the page and receives an HTML page in response. It uses the HTML it receives to ren-
der the user interface. The user interacts with the page, and, in response, the browser clears the screen
and submits a new request to the server, carrying some information about user input or actions. Again, a
complete HTML page is returned. The browser then presents the new version of HTML. Fundamentally,
the HTTP protocol is stateless. The server gets a request and responds to it. The request carries limited
information about the ongoing conversation that is happening between client and server.

AJAX makes this much better. AJAX breaks this pattern by updating portions of the page separately, via
partial page rendering. Figure 1-1 shows a typical non-AJAX series of browser and server interactions.
Each request results in a full page rendering, and, in response, the browser updates the user’s entire
view.

Figure 1-1

In Figure 1-2, AJAX is employed to improve the user’s experience. A request is made for the initial page
rendering. After that, asynchronous requests to the server are made. An asynchronous request is a back-
ground request to send or receive data in an entirely nonvisual manner. They are asynchronous because

Browser

XMLHttpRequest

JavaScript

CSS

HTML HTML

HTML

HTML

Page Request

Page Request

Page Request

Web Server

Web Services

ASP.NET

4

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 4

the user interface isn’t frozen during this time, and users can continue interacting with the page while
the data transfer is taking place. These calls get just an incremental update for the page instead of getting
an entirely new page. JavaScript running on the client reacts to the new data and updates various por-
tions of the page, as desired. The number of requests to the server may be no different, or in some cases
there may actually be more calls to the server, but the user perception is that the application feels more
responsive. They aren’t forced to pause, even if it’s only a slight pause, and wait for the server while
staring at a blank browser screen.

Figure 1-2

Almost a decade ago, the Microsoft Exchange Server team created an ActiveX control called
XmlHttpRequest that could be instantiated from JavaScript and used to communicate with the server.
This can occur without clearing the screen to paint a whole new page. Using the XmlHttpRequest object,
you could send information to the server and get data back without requiring a whole new HTML page.
JavaScript code could then manipulate the HTML dynamically on the client, avoiding the annoying flash
and the wait that users associate with web browsing. This functionality was not limited to Internet
Explorer for long. Soon, other browsers included XmlHttpRequest objects as well. Developers could
now write richer applications with reach extending across various operating systems.

The browsers also created an advanced DOM (Document Object Model) to represent the browser, the
window, the page, and the HTML elements it contained. The DOM exposed events and responded to
input, allowing the page to be manipulated with script. Dynamic HTML (DHTML) opened the door to
writing rich interfaces hosted within the web browser. Developers started writing hundreds and even
thousands of lines of JavaScript code to make rich and compelling applications that would not require
any client installation and could be accessed from any browser anywhere. Web applications began to
move to a whole new level of richness. Without AJAX libraries, you would be faced with writing lots
and lots of JavaScript code and debugging the sometimes subtle variations in different browsers to reach
this new level of richness.

Browser

XMLHttpRequest

Microsoft
AJAX Library

JavaScript

CSS

HTML

JSON / XML

JSON / XML

HTML

Asynchronous Request

Asynchronous Request

Page Request

Web Server

Web Services

ASP.NET AJAX
Extensions

ASP.NET

5

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 5

What Is ASP.NET AJAX?
ASP.NET AJAX is the name of Microsoft’s AJAX solution, and it refers to a set of client and server tech-
nologies that focus on improving web development with Visual Studio. Other companies have their own
AJAX solution, often taking a radically different approach, but Microsoft has sought to build upon the
popular ASP.NET technology by developing a comprehensive set of script libraries as well as server pro-
gramming enhancements. One piece, the Microsoft AJAX Library, is a JavaScript library that works on a
variety of browsers and serves to simplify JavaScript development. It provides you with the capability to
easily write JavaScript using an object-oriented programming approach similar to code-behind program-
ming in ASP.NET. You can use the functions of the Microsoft AJAX library to interact with the DOM,
dynamically update portions of the page, communicate with the web server asynchronously, and write
rich animations on the page. You’ll learn about the client features in Chapters 6 and 7, but for now think
of the Microsoft AJAX Library as a type system and set of class libraries that simplify writing JavaScript
to enhance the user experience, manipulate the DOM, and communicate with the web server. The huge
benefit in using this library is that it abstracts the tedious low-level DHTML programming into an OOP
model that is much easier to work with.

The other part of the ASP.NET AJAX release is the server-side ASP.NET 2.0 AJAX Extensions. These
extensions build on top of the ASP.NET classes and controls and leverage the Microsoft AJAX Library
sent to the browser. They make it easy to quickly take advantage of AJAX technologies to enrich an

6

Chapter 1: Developing Next-Generation Web Applications

JavaScript Libraries and AJAX
Developers have had access to AJAX technologies for years, and many have been
leveraging AJAX to push the limits of what can be done in the web browser. But what
is really making AJAX more compelling now are the comprehensive script libraries and
integration with server technologies that make it easier to write rich web applications
and avoid the need to become an expert on the different versions of JavaScript. A
JavaScript library is referenced within the HTML of a page using the <script> tag:

<html>
<head>
<script src=”http://theGibbs.us/someScript.js”

type=”text/javascript”></script>
</head>

...

The script is downloaded and cached by the browser. Other pages within the applica-
tion can reference the same URL for script, and the browser won’t even bother to go
back to the server to get it. The functionality of that script file is available for use from
within the page rendered to the browser. A script library sent to the browser and then
leveraged for writing a richer UI and a more responsive application is at the heart of all
AJAX libraries.

04_109625 ch01.qxd 4/27/07 9:42 PM Page 6

application. Through a set of standard web services, ASP.NET AJAX is also able to leverage server-based
application services such as authentication and user profile storage. The extensions both extend some of
the existing ASP.NET controls by adding new behaviors and include a new set of server controls that
make it easy to do asynchronous updates to a page and leverage server resources.

The client and server pieces of ASP.NET are shown in Figure 1-3. ASP.NET is built on top of the
Microsoft Internet Information Services (IIS) web server. ASP.NET AJAX builds on top of that and the
web services it includes. The Microsoft AJAX Library runs in the browser to manipulate the DOM, com-
municate asynchronously with the web server, and take advantage of ASP.NET services.

Figure 1-3

 Web Browser

XMLHttpRequest

Microsoft
AJAX Library

JavaScript Web
Services

JSON
Web
Seervices

Internet
Information
Services

ASP.NET
AJAX
Extensions

ASP.NET

7

Chapter 1: Developing Next-Generation Web Applications

Installing ASP.NET AJAX
The ASP.NET AJAX Extensions are an add-on to ASP.NET 2.0. There is a link to the
installer available at http://ajax.asp.net/downloads/default.aspx?tabid=47.
When you run the installer, it will install the System.Web.Extensions.dll assembly into
the Global Assembly Cache (gac) of your machine. Being in the gac allows the assem-
bly to assert the permissions necessary to provide the full range of functionality
ASP.NET AJAX offers. If Visual Studio 2005 or Visual Web Developer is present on the
machine, the installer will also set up ASP.NET AJAX project templates. This allows
you to create a new ASP.NET AJAX–enabled website. The web.config file and compi-
lation references will have everything necessary to start building AJAX applications.
The toolbox will include the UpdatePanel control discussed in Chapter 2, and the
ScriptManager control covered in Chapter 5. The details of what is included in the new
web.config file are discussed in detail in Chapter 10.

04_109625 ch01.qxd 4/27/07 9:42 PM Page 7

The ASP.NET Component
The original (ASP) Active Server Pages technology was released as part of Internet Information Server
3.0. It was then improved with support for transactions and access to COM objects with the release of
the NT 4.0 Option Pack almost ten years ago. At the time, most websites consisted of static HTML pages.
To the extent that there were any dynamic applications, they were CGI (Common Gateway Interface) or
ISAPI (Internet Server API) applications typically written in C and C++. With the release of Active
Server Pages (ASP), developers could use JavaScript or VBScript on the server to leverage a set of intrin-
sic objects provided by ASP. “Classic ASP,” as it is now called, provided a session object so that develop-
ers didn’t need to worry about the stateless nature of HTTP. It had Request and Response objects that
provided for easy access to data coming from forms on the client and a way to send updated informa-
tion back. The Server and Application objects were an avenue for accessing information from the
web server and utilizing a common set of COM objects across the application.

Although Classic ASP was a big win for developers, developers soon found that developing complex
applications became difficult. The lack of support for modularization meant that applications ended up
with such complex interdependencies in script that developers often referred to it as “spaghetti code.”
Debugging support was severely lacking, and there were no rich design tools for developing applica-
tions. Performance also suffered because ASP used a slow scripting model, and syntax errors could only
be detected at runtime. ASP.NET is a big leap forward. It provides compatibility for existing applications
by including the same set of intrinsic objects found in Classic ASP but moves from interpreting
JavaScript and VBScript on the fly to using a compiled set of pages and modules written in C# and
VB.NET. Classic ASP simply executed script in order from the top to the bottom of the page; ASP.NET is
an event-driven model with a page lifecycle, making it more like writing a desktop application. Now,
instead of including separate JavaScript files to represent business objects, you can create objects in any
.NET language and access them directly from ASP.NET.

ASP.NET takes a set of pages that contain code and markup and generates a Page class that is then com-
piled and cached. For each request to the page, the class is instantiated and a complete page lifecycle is
executed. A set of events are executed, some of which have been overridden by the generated Page class.
Controls in the page also participate in the lifecycle, databinding to backend databases, reacting to user
input, and dealing with changes to their state from the user’s previous view. To react to user actions, the
developer has only to provide an event handler for the given action. For example, the button control
exposes a Click event. When using it, you don’t need to write code to examine all form variables on a
page to know if the button was clicked. Instead, you just provide code for an event handler override. The
event handler code can then update the HTML for the page or the properties and data of other controls
on the page.

This book assumes some familiarity with ASP.NET as you look at how the new features of ASP.NET
AJAX extend its functionality and provide ways to enhance web applications. If you are new to
ASP.NET, I recommend looking at the set of QuickStart tutorials available at http://www.asp.net/
quickstart. Other excellent resources are Beginning ASP.NET 2.0 (VB.NET), Beginning ASP.NET
2.0 with C#, and Professional ASP.NET 2.0, all from Wrox Press. The ASP.NET website (http://
forums.asp.net/) also has an extensive set of discussion forums where you can interact with fellow
ASP.NET developers as well as members of the ASP.NET team.

The JavaScript Component
AJAX technologies take advantage of the common support for JavaScript found in modern browsers.
Because there is a standard that is supported across the various browsers, you can write scripts knowing
that they will run. This wasn’t always the case.

8

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 8

In the mid 1990’s, Netscape and Microsoft (along with others) collaborated on a standard for a scripting
language that they would support in their web browsers. The standard is called EcmaScript. Microsoft’s
implementation is called JScript, but the language is generally referred to as JavaScript, as it was called
in Netscape. (It has nothing to do with Java, but someone must have thought the association was useful
for marketing purposes.) JavaScript program snippets are sent down to the browser along with the
HTML, and they run inside the user’s browser to affect how the page is processed on the client.

JavaScript is not compiled; it is interpreted. There is no static type-checking like you get in C++ and C#.
You can declare a variable without needing to specify a type, and the type to which the variable refers
can change at any time. This makes it easy to get started programming in JavaScript, but there’s
inevitably a certain amount of danger in allowing the data type of a variable to change dynamically at
runtime. In the following snippet, notice that the variable can reference any type without difficulty:

var something = 1;
something = true;
something = “a string”;

JavaScript is a dynamic language. Types can actually be extended during program execution by other
code. This means that you can write code that creates types on the fly. Because there is no enforcement of
type safety, your code can receive these types as parameters or return values without any problem. This
provides a great degree of flexibility and coding power.

The fundamental types in JavaScript are strings, numbers, Booleans, and functions. There is also support
for objects and arrays, which are collections of the fundamental types. Some additional objects are
included that are considered essential for many programming tasks. This includes support for regular
expressions and date and time operations.

You can use the plus operator on strings in JavaScript to concatenate them:

var theEnd = “THE END.”;
var result = “Beginning, “ + “middle, and “ + theEnd;

In this example, the result variable is now the string: “Beginning, middle, and THE END.”

JavaScript interpreters use the IEEE floating-point standard for storing numbers. Ignoring the gory
details, you can assume that for most programming tasks you won’t have any trouble.

The Boolean type in JavaScript is about what you would expect it to be but maybe not exactly so. The
Boolean represents whether or not an expression is true, but it uses the C-style convention using integer
values 0 and 1.

Variables can exist in JavaScript without having a value, and a variable may simply be undefined, which
can produce unexpected results. In this piece of JavaScript, three variables are declared, and all of these
comparisons are designed to return a true value.

<script type=”text/javascript”>
var one = 1;
var zero = 0;
var undefinedVar;

if(one) {

9

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 9

alert(“1 is true”);
}

if(!zero) {
alert(“0 is false”);

}

if(!undefinedVar) {
// this test tells us that “undefinedVar” either contains 0,
// or is really undefined: both of which equate to false
alert(“undefinedVar is false”);

}

if(one != zero) {
alert(“one and zero are not the same”);

}
</script>

You can check specifically to see if a variable has been defined like this:

if(typeof(undefinedVar) == “undefined”) {
alert(“undefinedVar is undefined”);

}

Variables can also have a null value, which is not the same thing as being undefined, as a null value does
constitute a value.

Functions are also real types in JavaScript. They can accept arguments and return values. Functions can
be passed to other functions and can be created dynamically by other script code.

Here are two equivalent definitions for a function called Add that will take two variables and return the
result of applying the plus operator. Notice that I didn’t state that it takes two numbers. Remember,
JavaScript variables don’t have a defined type, so I could just as easily pass two strings and get them
concatenated by my Add function.

<script type=”text/javascript”>
function Add(x, y) {

return x + y;
}
var AddAgain = function(x, y) { return x + y; }
</script>

Once either of these styles is used to create a function, it can be called from that scope and any nested
scope to perform the addition. There is no advantage to one of these forms over the other. You can sim-
ply choose to use the syntax that you prefer.

<script type=”text/javascript”>
var result = Add(36, 24);
alert(result); //displays 60

var stringResult = Add(“Hello “, “there.”);
alert(stringResult); //displays “Hello there.”
</script>

10

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 10

Objects and arrays are just collections of other types. Array types do not require that the values they
hold be named; instead, you can access them by index. The values held in an object are referenced by
field or property names. Objects can also hold functions (which can be accessor functions to give public
visibility to local variables), which lets you create data structures that represent entities in JavaScript
code. Missing from this sort of object-oriented programming is a concept of type inheritance. The
Microsoft AJAX Library provides a set of classes and recommended patterns for achieving inheritance in
JavaScript, making it more natural for switching between JavaScript and other high-level languages. The
following code example includes a definition for an Album object that holds and returns the artist and
album title. An array is then used to store information about several albums.

<script type=”text/javascript”>
// define an object named Album – note that this object is typeless
Album = function(title, artist) {

var _title = title;
var _artist = artist;

this.get_title = function() { return _title; }
this.get_artist = function() { return _artist; }

}

// create object instances by calling the constructor
var albumA = new Album(“Rift”, “Phish”);
var albumB = new Album(“A Picture of Nectar”, “Phish”);

// create an array to hold the instances (also typeless)
var albumArray = new Array();

albumArray[0] = albumA;
albumArray[1] = albumB;

// iterate over the array to show the album titles
for(var i = 0; i < albumArray.length; i++) {

alert((albumArray[i]).get_title()); // call get_title accessor
}
</script>

The Web Services Component
The fundamental concept of web services is powerful and continues to evolve and advance. The original
SOAP (Simple Object Access Protocol) standard is the use of the HTTP protocol to pass XML-formatted
data to the server from a client and receive XML-formatted results in return. This can be from within a web
browser using the XmlHttpRequest object or directly from a desktop application or another server. Before
web services became widely adopted, it was not uncommon for developers to programmatically request a
page as an HTML document and extract the desired data from it, a technique known as screen-scraping. This
causes all sorts of frustrations as sites are continually updated and the screen-scraping clients must try to
keep up by modifying their parsing code to adapt to the new HTML the target site is rendering.

This produced frustration, as sites that presented data using HTML visual pages were prone to modify-
ing those pages and this would break the screen-scraping program, which expected to see the data in the
original format. Web services were created as a nonvisual way to transfer data over the web, and they
are the natural way to isolate remote method calls from the presentation layer. Now, instead of screen-
scraping, you are able to call a web service and get XML-formatted data returned that is easily con-
sumed by a program.

11

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 11

By passing plain text data formatted as XML and by eliminating the visual elements, data passed in web
services is much easier to parse than HTML. And, since XML can contain an embedded schema, code
can inspect the schema and use it to determine the structure and types used in the data. You can extend
the schema passed with the data being returned without worrying that consuming applications will be
broken, and therefore XML readers can be somewhat tolerant of modifications that would have certainly
caused a screen-scraper a great deal of grief!

The schema for data can be extended without requiring all consumers to be updated. Consumers can
easily get the parts of the XML document they wish to process and disregard the rest. This has pro-
gressed beyond simple XML formats. Unlike previous implementations of web services, you can now
define web service contracts to be built to employ arbitrary encoding and utilize any one of a number of
wire protocols. What drives the web service concept is the ability to access data easily from various
applications in a loosely coupled way, and the new Microsoft Windows Communication Foundation
(WCF) takes this concept to a whole new level, allowing the contract to specify wire protocols, deploy-
ment strategies, and logging infrastructure, along with providing support for transactions.

ASP.NET AJAX provides a set of JavaScript proxy objects to access some new web services built-in to
ASP.NET. Profile information, membership services, and role management can be easily accessed from
the client. Developers don’t need to create their own infrastructure to support these fundamental appli-
cation services, but can include a few lines of code to take advantage of server resources from JavaScript
code running in the browser, thereby dramatically extending the reach of ASP.NET to include both the
client and the server. And because the JavaScript libraries are designed to be easy to use for developers
already familiar with server-side .NET programming, all of this extra functionality comes in a friendly
package that is easy to leverage.

The Dynamic HTML Component
Dynamic HTML is not a freestanding technology. It is the use of a set of technologies in a specific way.
HTML is returned to the browser following a web server request. The browser then renders the page,
and the user is able to view it. The browser also exposes the Document Object Model (DOM) that repre-
sents the structure of the HTML being displayed. The DOM can be accessed from JavaScript embedded
in, or referenced by, the page. The appearance of the HTML is affected by applying CSS (Cascading Style
Sheets) that control colors, fonts, position, visibility, and more. You can bind JavaScript code to events
that the browser will raise when users perform certain actions, such as hovering over a particular ele-
ment or entering text in a textbox. The JavaScript code can update text or manipulate the CSS settings for
elements within the page. And, of course, it can communicate with the server to expand the dynamic
nature of the page even further. The user will see a dynamically changing user interface that responds to
his actions in real-time, which will greatly enhance his overall experience, thereby increasing his produc-
tivity and satisfaction with the application.

Other AJAX Libraries
In addition to ASP.NET AJAX, many third-party AJAX libraries are available that can be used with
ASP.NET, although not all of them were specifically designed for it. Some are mostly focused on
providing JavaScript libraries for use from within the browser to make manipulation of the browser
DOM (Document Object Model) easier. Others include some level of server functionality for use within
ASP.NET pages (where server controls will render on the client side). This section briefly highlights
some of what these libraries offer. The ASP.NET AJAX Framework can coexist with script and controls

12

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 12

from other libraries, although given the dynamic nature of the JavaScript language, it is possible to
extend types so that they conflict with each other. Mixing and matching libraries might work just fine for
many uses, but you might find conflicts in other cases.

❑ Ajax.NET Professional: Michael Schwartz developed Ajax.NET Professional as a tool primarily
used to simplify the data transport mechanism that enables a client JavaScript routine to com-
municate with a server program. The server code is simple to use: You merely need to register
the control in your page and decorate some code-behind methods with attributes to designate
which ones can be called from the client. Then you can leverage the script library to make the
calls and pass data. This is intended for developers who are well versed with DHTML, and
there aren’t many prebuilt visual controls. This is a lightweight solution with very little over-
head in terms of bytes transferred and processing cycles needed on the client and server. The
source code is available, and the package is free (http://www.ajaxpro.info).

❑ Anthem.NET: Anthem.NET is a SourceForge project where users are able to download the
sources to the project. It targets ASP.NET 1.1 and ASP.NET 2.0. It has a set of server controls that
use their underlying JavaScript library to communicate with the server. They provide the ability
to access the state of controls on the page during an asynchronous callback. At the time of writ-
ing, the Anthem.NET web page (http://anthem-dot-net.sourceforge.net) points out
that the Anthem.NET user needs to be an experienced ASP.NET developer to get the most out of
it. However, this is generally easier to use than Ajax.NET Professional, especially for developers
who aren’t well-versed in DHTML. This project is similar to ASP.NET Ajax in many ways but
isn’t as comprehensive.

❑ DoJo: The DoJo toolkit can be found at http://dojotoolkit.com. It is a client-side library for
AJAX development without ties to any server technology. DoJo has a type system for JavaScript
and a function for binding script to events from JavaScript objects or DHTML elements. One of
its strengths is rich support for dynamic script loading. You can specify dependencies and
ordering in the way that scripts are retrieved and processed.

❑ Prototype: The Prototype script library is available at http://prototype.conio.net. It does
not target any server technology for integration. It has a type system for scripting in a more
object-oriented way, along with some shortcut syntaxes for dealing with JavaScript arrays as
well as accessing and manipulating HTML elements on the page. Prototype provides network-
ing functionality and a method for automatically updating an HTML element with the results of
an HTTP request when given a URL. The Prototype library also has functions for associating
script objects and methods with DOM objects and events. The library is focused on simplifying
tasks that can be cumbersome and tedious. It doesn’t provide much help for producing a richer
user interface but puts forth the building blocks for an improved web-scripting experience.

❑ Script.aculo.us: The Script.aculo.us library can be found at the website of the same name:
http://script.aculo.us. Their tagline is “it’s about the user interface, baby!” which accu-
rately describes their focus. Script.aculo.us is built on top of the Prototype library and picks up
where it stops. It includes functionality for adding drag-and-drop support to an application. It
has a lot of effects code for fading, shrinking, moving, and otherwise animating DOM elements.
Script.aculo.us also has a slider control and a library for manipulating lists of elements.

❑ Rico: The Rico library also builds on top of the Prototype system. It has support for adding
drag-and-drop behavior to browser DOM elements. It also has some controls to bind JavaScript
objects to DOM elements for manipulating data. Rico has constructs for revealing and hiding
portions of a page using an accordion style. It also has animation, sizing, and fading effects pre-
built for easier use. These UI helpers are available at http://openrico.org.

13

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 13

Balancing Client and Server Programming
with ASP.NET AJAX

Without the advanced use of JavaScript running in the browser, web applications have their logic run-
ning on the server. This means a lot of page refreshes for potentially small updates to the user’s view.
With AJAX, much of the logic surrounding user interactions can be moved to the client. This presents its
own set of challenges. Some examples of AJAX use include streaming large datasets to the browser that
are managed entirely in JavaScript. While JavaScript is a powerful language, the debugging facilities and
options for error handling are very limited. Putting complex application logic on the client can take a lot
of time, effort, and patience. ASP.NET AJAX allows you to naturally migrate some parts of the applica-
tion processing to the client while leveraging partial page rendering to let the server control some
aspects of the page view.

Some websites make an application run entirely from a single page request, where JavaScript and AJAX
will do a great deal of work. This presents some tough challenges. Users generally expect that the Back
button will take them to the state of the application they were just viewing, but with AJAX applications
this is not necessarily the case. The client may be sending some information to the server for persistent
state management (perhaps in server memory or a database), but this requires extra code and special
attention to error handling and recovery.

The richest, most maintainable applications seem to be those that balance client and server resources to
provide quick response times, easy access to server resources, and a minimum of blocking operations
while new page views are fetched.

ASP.NET AJAX provides a mix of client and server programming features. The Microsoft AJAX Library
is aimed at client development. It provides a type system for an object-oriented approach to JavaScript
development. It makes it easy to register code to respond to events. It provides useful functions to sim-
plify common tasks like finding elements on the page, attaching event handlers, and accessing the
server. The server features include functionality for managing JavaScript code to be sent to the client,
declaring regions of the page to be updated asynchronously, creating timers for continuous updates, and
accessing ASP.NET services such as user profile data and authentication.

Summary
The web has evolved over the last decade from providing a static presence to being the default choice for
developers writing applications. With web applications, you get reach without having to deal with
deployment and servicing issues that accompany desktop applications. But the bar continues to move
higher for web applications as users come to expect more. AJAX technologies are driving web applica-
tions to rival rich desktop apps. You can use the results of asynchronous communication with the web
server to update portions of the page without forcing the user to stop his work and wait for the page to
post back and repaint. Dynamic HTML allows you to create a rich GUI with transitions and animations
leveraging CSS for colors, fonts, positioning, and more.

ASP.NET AJAX includes the Microsoft AJAX Library that makes writing browser-based JavaScript easier
and simplifies many common client programming tasks. It is easy to attach code to DOM events, write
JavaScript in an object-oriented way, and access the server for persistent storage, authentication, and
updated data.

14

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 14

ASP.NET AJAX also includes extensions to version 2.0 of the .NET Framework that can greatly improve
your web application. There is built-in support for returning data in the JSON format that is easily con-
sumed by JavaScript in the browser.

In this book, you will see how the client and server features of ASP.NET AJAX make it easier to push the
limits of what you can do with a web application! You will learn how to update portions of a page asyn-
chronously and how to manage the scripts that are used in the browser. You’ll find out how to use the
networking facilities, with a dive into accessing ASP.NET services like authentication and profile stor-
age. You’ll get a closer look at the JavaScript language and how the Microsoft AJAX Library builds on
top of the language to simplify programming tasks. You’ll also see what ASP.NET AJAX offers for
adding richer UI to web applications and look at how to debug and test web applications. And you’ll
learn about some details of deploying and debugging applications and look at other resources available
for use with ASP.NET AJAX.

15

Chapter 1: Developing Next-Generation Web Applications

04_109625 ch01.qxd 4/27/07 9:42 PM Page 15

04_109625 ch01.qxd 4/27/07 9:42 PM Page 16

