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NEWTON’S LAWS FOR PARTICLES
AND RIGID BODIES

In the basic course in dynamics you learned about various coordinate frames and how
to express displacement, velocity, and acceleration with respect to these different
frames of reference (see, e.g., [1]). You also covered Newton’s laws and learned the
basics of relating forces to acceleration when the system motion was prescribed and
calculations were made for particular instantaneous system configurations.

In your first exposure to engineering dynamics it was appropriate to separate the
concepts of kinematics and kinetics, the former dealing with how physical elements
fit and move together and the latter dealing with the forces required for the prescribed
motion to occur. A further distinction was to treat the motion of single particles as
separate from that of rigid bodies. Here we treat kinematics and kinetics as simply
all part of the dynamic system analysis, and particle and rigid, body mechanics are
treated together. You will see that there really are only a few principles that govern
the dynamics of all systems, and that, dynamically, all systems are pretty much the
same.

The emphasis in this chapter is on choosing appropriate coordinates for deriving
complete equations of motion such that if the resulting equations are solved, the
entire motion–time history of the system can be predicted, including any special
configurations of interest. The resulting equations of motion for most engineering
systems will be nonlinear, and thus solutions will be obtained using simulation. This
topic is covered in later sections.

We start by reviewing the most common coordinate frames and learn how to
express position, velocity, and acceleration with these coordinates. This is followed
by a discussion of free-body diagrams, where internal forces are exposed acting on
the inertial components of the system, and how Newton’s laws are used to derive the
equations of motion. We then show the increased complexity of working with rigid
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2 NEWTON’S LAWS FOR PARTICLES AND RIGID BODIES

bodies rather than particles. In a later chapter you will see how to solve equations of
motion using time-step simulation.

1.1 NEWTON’S SECOND LAW

The fundamental principle upon which dynamics is based is Newton’s second law,
which states that force is equal to mass times acceleration:

F = ma (1.1)

where the boldface notation indicates vector or matrix quantities. Equation (1.1)
simply states that the force acting in some direction on a mass particle causes an
acceleration of that particle in the same direction as the force. It is implied that the
acceleration is measured with respect to an inertial reference frame, and for most
engineering problems the inertial reference frame is attached to the Earth. The pro-
portionality constant is the particle mass expressed in kilograms (kg). We use the
SI system of units in this book, where force is measured in newtons (N), length is
measured in meters (m), and time is measured in seconds (s).

You should remember that for a particle currently at position r moving at velocity
v and having acceleration a, the position, velocity, and acceleration are related by

v = d

dt
r = ṙ

a = d

dt
v = v̇ = r̈

(1.2)

or

v =
∫

a dt

r =
∫

v dt

(1.3)

Note in Eq. (1.2) that we introduce the “dot” notation for derivatives. This is used

interchangeably with
d

dt
throughout the book.

Although Eq. (1.1) is often seen emblazed on posters and T-shirts, it is not very
applicable in the form shown. To derive equations of motion that lead to predictions
of system response, we must be able to express acceleration in terms of position and
velocity coordinates. Next we describe the most common coordinates to use for this
purpose.



COORDINATE FRAMES AND VELOCITY AND ACCELERATION DIAGRAMS 3

1.2 COORDINATE FRAMES AND VELOCITY AND
ACCELERATION DIAGRAMS

In this section the most common coordinate frames for expressing position, velocity,
and acceleration are shown.

Rectangular Coordinates

Figure 1.1a shows an inertial reference frame and a particle traveling along some
path. At the instant shown, the particle has a position vector r, velocity vector v, and
acceleration vector a. The velocity vector is aligned tangent to the path of the particle,
but the acceleration vector could be in any direction. In Figure 1.1b the general vector
representation has been removed and the perpendicular components of the vectors are
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Figure 1.1 Rectangular coordinates.
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shown aligned in the inertial X and Y directions. At this point we do not know whether
the particle is moving right or left or up or down. We do not know in which direction
the acceleration vector is actually pointing. So we choose the directions that we define
as positive and point the components in their assumed positive directions. When we
ultimately derive the equations of motion for a particular system, the solution will
tell us in which direction the system parts are actually moving. In Figure 1.1b the
velocity components are pointing in the positive X and Y directions. These are the
rectangular components of the velocity vector with respect to the inertial X,Y frame
and they are displayed on a velocity diagram. Figure 1.1c shows the components of
the acceleration vector displayed on an acceleration diagram.

Polar Coordinates

With polar coordinates we start with the position vector shown in Figure 1.1a and use
the unit vectors �r and �θ as indicated in Figure 1.2a. The unit vector �r is pointing
in the positive r-direction and the unit vector �θ is perpendicular to the r-direction.
Polar coordinates are less obvious than rectangular coordinates because when we take
the time rate of change of the position vector to obtain the velocity, it is necessary to
account for the change in direction of the position vector. In rectangular coordinates
this is not necessary. The x-direction component of velocity is always pointing in the
x-direction. Its length can change, but its direction never does.
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Figure 1.2 Polar coordinates.
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Figure 1.2b shows an expanded view of the unit vectors at time t and their orien-
tation �t seconds later. To determine the change of the unit vectors over this time
period, we need

��r = �r(t + �t) − �r(t)

�t

��θ = �θ(t + �t) − �θ(t)

�t

(1.4)

and these vectors are shown in Figure 1.2b. The reader should remember that the
difference between two vectors, say A − B, is the vector drawn between their tips,
from B pointing toward A. From Figure 1.2b it is seen that ��r is pointing in the �θ-
direction and that ��θ is pointing in the negative �r-direction. Since �θ is very small,
the magnitudes of ��r and ��θ are very nearly equal to the magnitude of �r or �θ

(which is unity by definition), times the angle that has been swept through, �θ. Thus,

��r

�t
→ 1

�θ

�t
�θ

��θ

�t
→ −1

�θ

�t
�r

(1.5)

and the final result is

�̇r = .
θ�θ

�̇θ = .
θ�r

(1.6)

Later we will see that the change in these unit vectors can be expressed as a
cross-product,

�̇r = � × �r

�̇θ = � × �θ

(1.7)

where the angular velocity vector � has length
.
θ and direction given by the right-hand

rule, where the fingers of your right hand are oriented in the r-direction and swept in the
direction of defined positive angular motion. The direction of � is the direction your
thumb is pointing after sweeping your fingers appropriately. For the case of Figure 1.2,
� is pointing toward the reader, out of the page. We would call this the �z-direction.

Starting with the position vector

r = r�r (1.8)

the velocity vector is determined from

ṙ = ṙ�r + r�̇r = ṙ�r + r
.
θ�θ (1.9)
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and the acceleration vector is determined by differentiating again:

r̈ = r̈�r + ṙ�̇r + ṙ
.
θ�θ + r

..
θ�θ + r

.
θ�̇θ (1.10)

which becomes the final result when Eqs. (1.6) are substituted; thus,

r̈ = r̈�r + ṙ
.
θ�θ + ṙ

.
θ�θ + r

..
θ�θ − r

.
θ

2
�r or r̈ = (r̈ − r

.
θ

2
)�r + (r

..
θ + 2ṙ

.
θ)�θ

(1.11)

The components of velocity and acceleration in polar coordinates are shown in
Figure 1.2c.

The reader may wonder why one would ever use polar coordinates over rectangular
coordinates since polar components seem so much more complicated. We demonstrate
through examples that there are cases when polar coordinates are far more convenient
than rectangular coordinates for setting up and deriving equations of motion. For
now it is worthwhile to remember that velocity components come from Eq. (1.9) and
acceleration components from Eq. (1.11) when using polar coordinates.

As an example of the use of rectangular and polar coordinates, consider the sys-
tem in Figure 1.3a. It consists of a spring and a mass pendulum in a gravity field.
It is desired to derive the equations of motion that, if solved, would predict the
motion–time history of this system from any set of initial conditions. We first need to
show acceleration and force components so that Newton’s laws can be used to derive
equations. The position components in both coordinate frames are shown in part a
of the figure. The velocity components and acceleration components in rectangular
coordinates are shown in Figure 1.3b, and the velocity and acceleration components
in polar coordinates are shown in part (c). As introduced above and indicated in
Figure 1.3, it is convenient to show velocity components using arrows and symbols
on a velocity diagram. Similarly, we show the acceleration components on an ac-
celeration diagram. When these diagrams are coupled with a force diagram we will
discover that it is very straightforward to derive the equations of motion directly using
Newton’s law.

It should be noted that both coordinate representations are describing exactly the
same motion. At this instant in time, the mass particle has some absolute velocity
vector and absolute acceleration vector measured with respect to the inertial frame.
Rectangular coordinates represent these vectors with mutually perpendicular com-
ponents in the X and Y directions, and polar coordinates use mutually perpendicular
components in the r and θ directions. If the respective components from each descrip-
tion were added vectorially, the result would be the instantaneous absolute velocity
and acceleration of the particle.

Another example of choosing coordinates is the system of Figure 1.4a. In this
system the spring and mass pendulum are connected to a cart of mass mc and the
cart is attached to ground through a spring kc . An external force F(t) is prescribed on
the cart. Our ultimate desire is to derive equations of motion which, if solved, would
predict the motion–time history of this system. For now we just want to choose



COORDINATE FRAMES AND VELOCITY AND ACCELERATION DIAGRAMS 7

X

Y

g

m

k
x

y

r

X

Y

x

y

Velocity diagram

X

Y

x

Acceleration diagram

(a)

(b) Rectangular

X

Y

Velocity diagram

X

Y

Acceleration diagram(c) Polar

r

rq

.

.

.

.

y
..

..

rq + 2rq.
...

r + rq 2
...

q

Figure 1.3 Coordinates for a spring and pendulum.

reasonable coordinates with which we can conveniently express the velocity and
acceleration of the inertial components.

In Figure 1.4b rectangular coordinates are used for both mass elements. We only
need one component for the cart, as it is constrained to move only horizontally. We
need both the x and y components for the pendulum mass since it can move in the
entire plane. In part c of the figure, rectangular coordinates are used for the cart
and polar coordinates are used for the pendulum mass. The velocity and acceleration
components are indicated. In addition to the polar coordinate components, the velocity
and acceleration components of the cart have been transferred to the pendulum mass.
This is required because the polar coordinates are defined with respect to a frame



8 NEWTON’S LAWS FOR PARTICLES AND RIGID BODIES

X

Y

g

m

k
x

y

θ

rq

(a) System 
schematic

ck
cm ( )F

X

Y

(b) Rectangular only

( )F t

X

Y
( )F t

cy
yc

x x

Velocity diagram Acceleration diagram

X

Y
( )F t

cy

r X

Y

(c) Rectangular and 
polar combined 

(t)F

r

2rq
rq 2

Velocity diagram Acceleration diagram

.
yc
..

yc

yc

yc
..

yc
..

..

..

y
..

..

.
. .

rq

.

.

y
.

.
.

.

t

Figure 1.4 Coordinates for spring and pendulum attached to a cart.

that is attached to the cart, and we must account for the fact that the pendulum mass
experiences the motion of the cart plus additional motions described by the polar
coordinates. In other words, if r and θ were fixed and not permitted to change, it is
pretty obvious that the pendulum mass would move identically to the cart. Later we
formalize this idea of transferring velocity and acceleration components from one
location to another. For now it is simply stated that when the equations of motion are
derived for the system of Figure 1.4, the reader will discover that it is much more
convenient to use combined coordinates rather than rectangular components only.

Coordinate Choice and Degrees-of-Freedom

A major emphasis of this book is the derivation of equations of motion that allow
prediction of the response of a system. These equations will typically be nonlinear
differential equations in terms of the coordinates chosen. Choosing the most conve-
nient coordinates for large, complex problems is not an easy task. Sometimes there are
multiple choices for appropriate coordinates, and some choices are better than others
(meaning easier to work with), but prior to working on the problem, it is difficult to
know which choice is better. For smaller systems, as demonstrated primarily in this
book, choosing coordinates is not so hard.

We typically need a position coordinate for each direction in which a mass par-
ticle can move, which can include an angular position coordinate, and we need a
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Figure 1.5 Coordinates and degrees of freedom for several systems.

position coordinate for each direction in which the center of gravity of rigid bodies
can move. We also need the angular position of each rigid body if that body can
rotate. Sometimes there exist constraints among the coordinates, and sometimes we
can use the constraint relationships to reduce the number of coordinates needed. With
some restrictions, the minimum number of geometric specifications needed to de-
scribe any possible position that a system can attain is called its degrees-of-freedom.
Thus, a single degrees-of-freedom system requires only one coordinate to describe
its motion, a two degree-of-freedom system requires two coordinates, and so on. In
Figure 1.5 we show several systems, some possible coordinate choices, and identify
the degrees-of-freedom. Equations of motion are derived in terms of these coordinates
and their derivatives.

1.3 FREE-BODY DIAGRAMS AND FORCE DIAGRAMS

Newton’s second law states that forces in a given direction cause acceleration in that
direction. Force is a vector quantity just as position, velocity, and acceleration are
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vector quantities. There are a few forces that act mysteriously from afar.
Electromagnetic and gravity forces are examples of these.All other forces and torques
are a direct result of physical contact between system components, and these forces
and torques must be identified before equations of motion can be derived. It is conve-
nient to show all forces and torques acting on inertial components of a system using
arrows and symbols in a separate diagram called a force diagram. With the exception
of some prescribed input forces, and gravity forces, we do not know the magnitude or
actual direction of any of the system force vectors. So we choose a positive direction
and use arrows and symbols to indicate the force components. For plane motion we
need to show two mutually perpendicular components for each force. There are some
elements that can sustain forces only along their axis. For such elements we need
only show one force component.

Consider the system shown in Figure 1.6. It consists of two rigid bodies pinned
together at the right end of body 1 and the left end of body 2. Body 1 is pinned to
ground at its left end and has an applied torque τ1(t). Body 2 is constrained to move
only horizontally at its right end, and there is a spring attached at the right end of body
2. In Figure 1.6b the bodies are separated and the forces at their connection points
are exposed. These force vectors are indicated by their respective components. At the
left end of body 1 we have the force components Fx1 and Fy1. At the left end of body
2 we have the force components Fx2 and Fy2. According to Newton’s laws, we must
show these force components as equal and opposite in direction on the right end of
body 1. We do not know if at this instant of time component Fx2 is acting to the right
on body 2 as indicated, but if it is, a force of the same magnitude must be acting to the
left on body 1. This is a requirement of Newton’s laws which must not be forgotten
when making a diagram such as Figure 1.6b. At the right end of body 2 the spring
force is indicated as Fs and the normal force required to constrain body 2 to move
horizontally at its right end is indicated as FN . This normal force has an equal but
opposite effect on the constraining slot. There are equal and opposite forces acting on
the ground at the left end of body 1, but these are not shown. The spring force passes
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Figure 1.6 Free-body diagram for a two-rigid-body system.
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Figure 1.7 Force diagram for the system of Figure 1.4.

through the spring as shown. A diagram in which forces are exposed and arrows and
symbols are used to indicate force components is known as a free-body diagram or
force diagram. We will be sketching a lot of these.

Figure 1.7 repeats the system from Figure 1.4. In part b the system elements have
been separated and the internal forces have been exposed. The forces have been given
symbolic names and are pointing in arbitrarily chosen positive directions. It makes
absolutely no difference whether or not any of these force components ever actually
point in the directions chosen. When a solution is obtained for the dynamic motion
of this system and we plot the respective force components, if they are sometimes
positive, they are pointing in the directions shown in the figure. If they plot negative,
they are pointing in the opposite direction. We ultimately know in what direction
the forces are pointing, but we have to wait until we solve the equations of motion.
Obviously, we first need to derive the equations of motion.

In Figure 1.7 several different symbols have been used to represent force compo-
nents. The pendulum and spring can support a force only along the axis; thus, only
one force component is shown. It is called T and acts equal and oppositely on the two
mass elements connected to the spring. The gravity forces on both masses are shown
acting downward. The force between the cart and the ground is called a normal force
and is given the symbol N in this example. The horizontal spring force is called Fs .
Both spring forces have been defined arbitrarily to be positive in tension. With the
acceleration diagram of Figure 1.4 and the force diagram of Figure 1.7, the equations
of motion are derived straightforwardly, which we do in Chapter 2.

1.4 TRANSFERRING VELOCITY AND
ACCELERATION COMPONENTS

The concept of relative motion is introduced in any first course in dynamics [1].
The idea is to be able to express absolute velocity and absolute acceleration when
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Figure 1.8 Absolute motion of a particle with respect to a moving frame.

coordinate descriptions are stated with respect to an intermediate coordinate frame
that accelerates and rotates. Figure 1.8 shows such a situation. The particle p has
instantaneous absolute velocity vp and absolute acceleration ap . The particle has
absolute position vector rp , and this vector is the vector sum of the vector that locates
the base of the moving frame r0 and the vector that locates the particle relative
to the moving frame r. The frame itself has angular velocity and acceleration �
and �̇, with vector orientation defined by the right hand rule, and the base of the
moving frame has absolute velocity v0 and absolute acceleration a0. To keep the
figure less busy, these vectors are not shown in Figure 1.8. It is straightforward to
write

rp = r0 + r
vp = ṙ0 + ṙ = v0 + ṙ
ap = r̈0 + r̈ = a0 + r̈

(1.12)

The motion of the base of the frame can be described using either of the coordinate
frames already discussed, but the rate of change of the relative vector r must take
into account the rotational motion of the relative frame. It turns out [1] that for any
vector A expressed with respect to a frame that is rotating, its absolute rate of change
is given by

dA
dt

= ∂A
∂t

∣∣∣∣
rel

+ � × A (1.13)

where the first term on the right-hand side symbolizes the change in the vector as
observed from the moving frame and accounts for the change in length of the vector.
The second term in (1.13) accounts for the change in direction of the vector. We used
the second term in (1.13) above in Eq. (1.7) when determining the rate of change
of the unit vectors in polar coordinates. Unit vectors do not change their length, so
only the second term in Eq. (1.13) is needed.
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When the vector in Eq. (1.13) is a position vector like r,

ṙ = vrel + � × r (1.14)

and

r̈ = v̇rel + �̇ × r + � × ṙ or r̈ = arel + � × vrel + �̇ × r + � × (vrel + � × r)

where Eq. (1.13) has been used for v̇rel, to yield

v̇rel = arel + � × vrel (1.15)

and Eq. (1.14) has been substituted for ṙ. The final result for (1.15) is

r̈ = �̇ × r + � × (� × r) + 2� × vrel + arel (1.16)

Combining (1.12), (1.14), and (1.15) yields the final result,

vp = v0 + � × r + vrel

ap = a0 + �̇ × r + � × (� × r) + 2� × vrel + arel
(1.17)

Equation (1.17) expresses symbolically the absolute velocity and acceleration of a
point when the position of that point is defined with respect to a frame that is moving
and rotating. In (1.16), �, �̇ is the angular motion of the moving frame and r is the
vector drawn from the base of the moving frame to point p.

It is important to be able to apply Eqs. (1.17) and to transfer velocity and accel-
eration components from one part of a system to another. Consider the rotating disk
and slot of Figure 1.9. The disk is pinned at its center and has angular velocity

.
θ = ω

and angular acceleration
..
θ = ω̇. The angular motion vectors have the magnitudes

.
θ

and
..
θ , respectively, and the direction given by the right-hand rule, in this example

pointing out of the page toward the reader. Within the radial slot is a mass particle
m that can move within the slot. Inertial axes are indicted, as are axes attached to
the disk and rotating with the disk. The rotating coordinate frame executes the same
motion as the disk.

The velocity and acceleration diagrams are shown in Figure 1.9b and c. It should
be noted that the particle motion could be represented simply using polar coordinates
for this system, but this is a good starting example to demonstrate use of the relative
motion relationships of Eqs. (1.17). On velocity and acceleration diagrams the com-
ponents are identified along with the term from Eq. (1.17) from which each comes.
For the velocity diagram the � × r term comes from pointing the fingers of your right
hand in the �-direction (out of the page in this instance) and sweeping your fingers
toward the vector r (of length x in this instance), resulting in your thumb pointing in
the component direction indicated in the figure with a magnitude of x

.
θ .

The vrel-component comes from imagining that you are located on the moving
frame at the location of the particle and asking if the particle has any additional
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Figure 1.9 Rotating disk with a radial slot.

velocity that you are not experiencing. In this case the particle can move radially
within the slot and has an additional velocity component ẋ as indicated. Another test
for the existence of vrel is to imagine that the moving frame, as you have defined it,
is stopped. Then assess if the particle has additional velocity. In this case the particle
could continue moving radially.

The acceleration diagram is shown in Figure 1.9c. The cross product for �̇ × r is
carried out exactly as for the � × r term in the velocity diagram. The � × (� × r)
term is made easier to assess due to the presence of the velocity diagram. Notice that
the � × r term is already exposed on the velocity diagram. To cross � into � × r
we take the � vector and place it at the base of the � × r vector and take the cross
product using our right hand. Point the fingers of the right hand in the direction of
� (out of the page for this example) and sweep the fingers toward the � × r vector.
The thumb will be pointing in the resultant direction, in this case toward the center of
the disk. Thus, the resulting component has magnitude equal to |r| × |�|2, or ×ω2,
as shown. Similarly, the cross product for 2� × vrel is obtained by putting the �
vector at the base of the vrel vector and carrying out the cross product with the right
hand. The resultant vector is oriented as shown in the figure. The relative acceleration
arel is determined in a manner similar to that described for vrel. If one were either
located on the defined moving frame at the location of the particle or if the moving
frame were stopped temporarily, we would determine that the particle could still
have an acceleration component ẍ directed along the slot. When creating velocity and
acceleration diagrams using the relative motion, Eqs. (1.17), it is quite convenient to
identify the components as is done in Figure 1.9.

As a second example, consider the rotating pinned disk shown in Figure 1.10.
This time a vertical tube is located a distance a from the center and a particle can
move within the tube. Inertial and rotating frames are indicated. To use the relative
motion, Eqs. (1.17), the r vector is officially the vector from the base of the moving
frame to the particle m. To always take cross products of vectors at right angles, it is
convenient to think of the r vector as the sum of vector components of length a along



TRANSFERRING VELOCITY AND ACCELERATION COMPONENTS 15

x 

X 

Y 
y 

a 

z 

m 

(a) Disk pinned at the center and rotating  
..  

z 

m 

(b) Velocity diagram 

 aq (� × r)  z (vrel) 

(arel) 

z 

m 

(c) Acceleration diagram

z 

.. . 
q,q,q .. . 

q,q,q 

.. 

.. 

. 
q,q,q 

. 

 aq (� × r) 

 aq 2 [(� ×(� × r)] 
. 

. 

Figure 1.10 Rotating disk with a vertical slot.

the disk plane and of length z vertically upward. When cross products are needed,
say � × r, we simply take the cross product of � with each component of r. In the
velocity diagram, Figure 1.10b the � × r term was generated by first taking the cross
product of � with the a-component of r, resulting in the component aθ̇ in the direction
indicated. The cross product of � with the z-component of r results in zero, since
the two vector components are parallel. The relative velocity component ż comes
from the thought experiment described above. If the moving frame were stopped
temporarily, the particle could still have a velocity component along the tube.

The acceleration diagram, Figure 1.10 c, is generated term by term according to Eq.
(1.17). The �̇ × r term is just like the � × r term, but in terms of angular acceleration
instead of angular velocity. The � × (� × r) term is generated conveniently, due to
the presence of the � × r term in the velocity diagram. Placing the � vector at the
base of � × r and carrying out the cross product with the right hand results in the ap-
propriate component in the acceleration diagram. The 2� × vrel term is zero because
the � vector is parallel to the vrel vector. Finally, there is the arel-component, which
comes from stopping the moving frame and assessing any additional acceleration.

As a third example, consider the pinned rotating disk in Figure 1.11, with a slot
creating a chord out a distance a from the center. In the slot is a mass particle located
with the relative position vector of length y. The inertial frame and a rotating frame
are shown in the figure. The position vector is officially the vector drawn from the
base of the moving frame out to the mass particle. It is more convenient to consider
the position vector as composed of vector components of length a oriented radially
and of length y oriented along the slot. The velocity diagram is shown in Figure 1.11b.
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Figure 1.11 Rotating circular disk with a chord slot.

The � × r term has two components. This comes from first placing the � vector at the
base of the a component of the position vector and carrying out the cross product with
the right hand. This produces a

.
θ , as shown. We next place the � vector at the base

of the y-component of the position vector and carry out the cross product, producing
the y

.
θ-component. The vrel vector comes from the familiar assessment determining

any additional velocity of the particle if the moving frame were stopped.
There are quite a few components in the acceleration diagram shown in Figure

1.11c, but each was generated term by term from Eqs. (1.17). The base of the moving
frame has no acceleration; thus, a0 = 0. The �̇ × r term is identical to � × r but using
angular acceleration rather than angular velocity. Then � × (� × r) vector benefits
from having the � × r vector exposed on the velocity diagram. The � vector is placed
at the base of each component of � × r and the cross product is carried out using
the right hand. This produces the two terms shown for components of � × (� × r).
Having vrel exposed on the velocity diagram facilitates generation of 2� × vrel. We
simply place the base of the � vector at the base of the vrel vector and carry out the
cross product.

1.5 TRANSFERRING MOTION COMPONENTS OF RIGID BODIES
AND GENERATING KINEMATIC CONSTRAINTS

Equations (1.17) are very useful when dealing with rigid bodies. It is very typical
to need the velocity and acceleration of the center of mass [or center of gravity
(c. g.)] of rigid bodies, and it is also very typical to need the velocity and acceleration at
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attachment points of a rigid body to other rigid bodies or system components. We will
find that when rigid bodies share motion at an attachment point, a kinematic constraint
is generated. It turns out that using Eqs. (1.17) is actually easier when dealing with
rigid bodies than in the particle motion examples done above. The particles that
comprise a rigid body by definition do not execute any relative motion. Points on
a rigid body located some distance apart remain at that distance regardless of the
forces acting. Thus, in Eqs. (1.17) the terms involving relative velocity and relative
acceleration are all zero when working with rigid bodies. For rigid bodies,

vp = v0 + � × r

ap = a0 + �̇ × r + � × (� × r)
(1.18)

We say that the velocity of some point p on a rigid body is equal to the velocity some
other point 0 on the rigid body plus � of the rigid body crossed into the vector drawn
from point 0 to point p. Similarly, we can relate the acceleration of some point on a
rigid body to the acceleration of any other point on the rigid body. This is demonstrated
through example.

The rigid bodies from Figure 1.6 are shown again in Figure 1.12. The velocity
components of the center of mass of each body are shown in inertial directions. For
this example, body 1 uses inertial coordinates with the X-axis pointing to the right
and positive rotation counterclockwise, and body 2 uses inertial coordinates with the
X-axis pointing to the left and positive rotation clockwise. Using the right-hand rule
for rotational vectors, the positive direction for the � vector of body 1 is pointing out
of the page and the positive direction for the � vector of body 2 is pointing into the
page. The first of Eqs. (1.18) is used to transfer the velocity components to the ends of
the two bodies. This is accomplished by treating the center of gravity of the body as
point 0 and the end to which velocity is transferred as point p. For example, to transfer
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Figure 1.12 Rigid bodies with kinematic constraints.
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components from the center of gravity of body 1 to its right end, we first transfer the
c.g. velocity components to accomplish the first requirement of Eqs. (1.18) followed
by using our right hands to perform the cross-product requirement. For body 1 we
point the fingers of the right hand out of the page (positive � direction) and sweep the
fingers toward the r vector (length l½ and from the center of gravity to the right end
of body 1). The thumb is pointing as indicated in Figure 1.12. We similarly transfer
velocity components to the left end of body 1, except that this time the r vector is
directed from the center of gravity toward the left end of body 1. The cross-product
term points in the direction shown. Identical steps are carried out for body 2. The
only difference is that the positive angular velocity vector points into the page. The
cross-product terms are carried out the same way as for body 1 using the right-hand
rule.

Kinematic Constraints

The bodies in Figure 1.11 do not move independently, and one of the reasons for
transferring velocity components to the attachment points of rigid bodies is to allow
specification of kinematic constraints. At the left end of body 1, the body is pinned to
inertial ground and the absolute velocity in the X and Y directions must be zero at the
left end. From Figure 1.12 we can write down the horizontal and vertical components
of velocity as

vH1L = vx1 + l1

2
ω1 sin θ1 = 0

vV1L = vy1 − l1

2
ω1 cos θ1 = 0

(1.19)

These components must each equal zero to enforce the kinematic constraint at the
left end of body 1. For the right end of body 2 there can be no vertical velocity, as
motion is constrained to be horizontal only. Thus, we have the kinematic constraint

vy2 − l2

2
ω2 cos θ2 = 0 (1.20)

For a perfect pin joint at the center of the two bodies it is simplest to write down the
horizontal and vertical components at the ends of each body and then enforce that the
respective components must be equal. Thus, in the horizontal direction,

vx2 − l2

2
ω2 sin θ2 = −

(
vx1 − l1

2
ω1 sin θ1

)
(1.21)

and in the vertical direction,

vy2 + l2

2
ω2 cos θ2 = vy1 + l1

2
ω1 cos θ1 (1.22)
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Figure 1.13 Rigid bodies with an alternative approach to kinematic constraints.

These constraint equations can be used to eliminate some variables from the formu-
lation of system equations while retaining others. This is demonstrated in subsequent
chapters.

An alternative way to enforce kinematic constraints for the system of Figure 1.12
is shown in Figure 1.13. The velocity components of the center of gravity of body
1 are transferred to the left and right ends exactly is in Figure 1.12. The velocity
components at the right end of body 1 are shared by the left end of body 2. Then
the velocity components are transferred to the center of gravity of body 2 and to the
right end of body 2 using the first of Eqs. (1.18). We never introduce independent
specification of the velocity of body 2. The kinematic constraint at the pin joint of
bodies 1 and 2 is enforced automatically, and the constraint of zero vertical velocity
at the right end of body 2 becomes

vy1 + l1

2
ω1 cos θ1 − l2ω2 cos θ2 = 0 (1.23)

As a final example of transferring velocity components and enforcing kinematic con-
straints, consider the slider–crank mechanism of Figure 1.14. This mechanism com-
prises the fundamental geometry of virtually every internal combustion engine. The
astute reader will notice that the slider–crank device is really identical to the system
of Figure 1.12. It is shown here to introduce the concept of body-fixed coordinates. In
Figure 1.14 the absolute velocity vector of the center of gravity of the connecting rod
is shown as two mutually perpendicular components, one aligned along the rod and
the other oriented perpendicular to the rod. The axes shown in Figure 1.14a are called
body fixed in that they are attached to the body and execute all the motions of the body.
The velocity components referred to this coordinate frame, called body-fixed velocity
components, differ from inertial direction components in that they change direction
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Figure 1.14 Slider–crank mechanism.

as the body moves. More will be said of body-fixed coordinates in later chapters. For
the problem here we simply want to transfer the components to the ends of the rod in
order to generate kinematic constraints. The angular motion of the connecting rod is
indicated by the angle α and its derivatives. The angular velocity vector is pointing
into the page by the right-hand rule.

Applying Eqs. (1.18) allows us to transfer the body-fixed velocity components at
the center of gravity to the body-fixed components at the left and right ends of the rod.
The crankshaft rotational motion is indicated by the angle θ and its derivatives. For
the crankshaft we use polar coordinates and indicate the velocity at the connection
with the rod as shown. At the right end of the rod only horizontal motion is permitted,
so the constraint that the vertical velocity at the right end equals zero becomes

vx sin α + (vy − bω) cos α = 0 (1.24)

At the left end of the rod, one way to enforce the kinematic constraint is to equate the
horizontal and vertical velocity components from the crankshaft and connecting rod;
thus,

R
.
θ sin θ = vx cos α − (vy + aω) sin α
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for the horizontal direction and

R
.
θ cos θ = vx sin α + (vy + aω) cos α (1.25)

for the vertical direction. Another way to enforce the constraint at the left end of the
rod is to equate components in the direction tangent to the crankshaft and set to zero
the component perpendicular to the crankshaft. Thus,

vx sin (θ + α) + (vy + aω) cos (θ + α) = R
.
θ

vx cos (θ + α) − (vy + aω) sin (θ + α) = 0
(1.26)

It is left as an exercise to show that Eqs. (1.25) and (1.26) are the same.

1.6 REVIEW OF CENTER OF MASS, LINEAR MOMENTUM, AND
ANGULAR MOMENTUM FOR RIGID BODIES

In elementary courses in dynamics using texts such as ref. [1] or very similar texts, the
concepts of center of mass, linear momentum, and angular momentum are presented.
For plane motion the concept is as shown in Figure 1.15. The rigid body is composed
of many small particles glued together such that no single particle executes relative
motion with respect to any other; each particle obeys Newton’s laws. One such particle
is shown in Figure 1.15. Axes are attached at an arbitrary point 0, and a special point
called the center of mass or center of gravity of the rigid body is located by the position
vector rc/0. The ith particle of mass dmi , which is part of the rigid body, is located
by the position vector ri and has the absolute velocity vi . Acting on the particle is the
internal force vector fi , which is a result of contact with other particles surrounding
this one, and the external force Fi , which is due to contact at that point with some
external element not shown.

0

p
if

iF

iv

ir
/ 0cr

X

Y

idm
cv ic

r

...
q,q,q 

Figure 1.15 Rigid body that demonstrates angular momentum.
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The linear momentum of a particle is a vector quantity equal to the product of mass
and velocity. Thus, for the mass particle that is part of the rigid body of Figure 1.15,
the momentum contribution to the to the total momentum of the body is

dpi = dmi vi (1.27)

The total momentum of the body comes from summing all the momentum contribu-
tions from all the particles:

p =
∑

vi dmi =
∑

(vc + � × rci ) dmi (1.28)

where the transfer relationship has been used to express the velocity of the ith particle
in terms of the velocity of the center of mass plus the cross-product term, which ac-
counts for the rotation of the position vector rci .As the number of particles approaches
infinity, Eq. (1.28) can be expressed as

p =
∫

(vc + � × rc) dm = mvc + � ×
∫

rc dm (1.29)

where integration takes place over the continuous mass distribution. Since vc is in-
dependent of any dm particle, it can be taken outside the integral to produce the first
term on the right-hand side of (1.29). Also, � is the angular velocity of the frame
and is independent of any dm particle or its location; thus, � can be taken outside the
integral, resulting in the second term of (1.29).

The final integral on the right side of (1.29) is zero, due to the definition of the
center of mass. Consider the axes through zero in Fig. 1.15. The center of mass is
defined as

mrc/0 =
∫

r dm (1.30)

To actually find the center of mass of a rigid body or collection of mass particles,
we would cast Eq. (1.30) into component form and carry out the operations. In this
way we could locate the x, y, z location of the center of mass relative to the original
axes. A nice physical way to think about the center of gravity is to imagine pinning
the body to a wall with a pin through the center of gravity. You could rotate the body
to any orientation, release it, and it would remain in that location and not move under
the influence of gravity.

For our purposes here we need to recognize that if we are working with axes
attached at the center of gravity as in Eq. (1.29), rc/0 is zero and the integral on the
right side of (1.29) is zero when measuring from the center of gravity [1]. Thus, the
linear momentum of a rigid body is equal to the mass of the body times the velocity
of the center of mass,

pc = mvc (1.31)
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where the subscript c has been appended to the momentum to enforce that it is the mo-
mentum of the center of mass of the rigid body that characterizes the total momentum.

Angular momentum is defined as the moment of the momentum vector with respect
to some axes. The moment of a force is probably familiar to the reader. In Figure 1.15,
if we desired the moment of the force Fi about the axes through zero, we would need to
resolve the force into components perpendicular to ri and parallel to ri . The moment of
the component parallel to ri would be zero, the moment of the component perpendic-
ular to ri would be the magnitude of the perpendicular component times the length of
ri , and the direction of the moment vector would be given by the right-hand rule. The
vector notation that accounts for the total moment Mi of the force vector Fi is given by

Mi = ri × Fi (1.32)

This relationship is easy to demonstrate from Figure 1.16. The force vector F is
resolved into two components and the position vector r is resolved into two compo-
nents. If we carry out the operation r × F, we need to cross each component of r into
each component of F. We first cross the x-component of r into the Fx -component and
then into the Fy -component of F. Since x and Fx are parallel, their cross product is
zero. As shown in Figure 1.16, by placing the x-component at the base of the Fy com-
ponent and using our right hands to take the cross product, we align out fingers along
the x-component and sweep them toward the Fy -component, with the result indicated
in Figure 1.16b. We do a similar operation to cross the y-component of position into
the Fx -component of force, with the result indicated in the figure. The final result is

r × F = xFy − yFx with a vector direction out of the page (1.33)
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Figure 1.16 Demonstration of the vector moment equation.
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We see that carrying out the operations indicated by Eq. (1.32) results in properly
taking the moment of a force with respect to some axes.

Let’s return to angular momentum, which is the moment of the momentum vec-
tor. With respect to the axes through zero in Figure 1.15, the angular momentum
contribution of the ith particle is

dhi = ri × vi dmi = ri × (v0 + � × ri) dmi (1.34)

using the transfer of velocity relationship. The total angular momentum of all the
particles comes from summing the contribution from each:

H0 =
∑

ri dmi × v0 +
∑

ri × (� × ri) dmi (1.35)

As the number of particles becomes infinite, the summations become integrations
over the continuous mass distribution, and the angular momentum of a rigid body
with respect to axes through the general point zero is

H0 =
∫

r dm × v0 +
∫

r × (� × r) dm (1.36)

We now make a simplification that is used throughout the book. The first term on the
right side of (1.36) adds unnecessary complexity. If the rigid body happens to have
a fixed point (i.e., a point that is literally pinned to inertial ground) and the base of
the reference frame is placed there, then for a fixed point v0 = 0 and the first term of
(1.36) is zero. If the base of the reference frame happens to be on the center of gravity,
then

∫
r dm = 0. This comes from the definition of the center of mass as described

in Eq. (1.30). Thus, if the base of the reference frame is placed on a fixed point or the
center of gravity, the angular momentum of the body is given by

H0 =
∫

r0 × (� × r0) dm

Hc =
∫

rc × (� × rc) dm

(1.37)

where sub 0 and sub c are used to indicate measurements from a fixed point or the
center of gravity, respectively. For all the applications discussed in this book we will
always work with axes attached at a fixed point if one exists or at the center of gravity.
If you want to remember only one thing, it would be always to attach axes to rigid
bodies at the center of gravity. Then the angular momentum is always the second of
Eqs. (1.37). We next have to interpret the operational meaning of Eqs. (1.37).

These expressions for angular momentum are applicable in three dimensions, and
such use is described in later chapters. It is much easier to get a physical understanding
of Eqs. (1.37) by first considering plane motion. Angular momentum is a vector quan-
tity and the vector direction is given by the cross-product terms in the integrand of
(1.37) using the right-hand rule. Figure 1.17 shows a planar rigid body with axes
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Figure 1.17 Interpretation of angular momentum.

attached at the center of gravity. The angular velocity vector is defined positive coun-
terclockwise and is pointing out of the page by the right-hand rule. In part b of the
figure, the cross-product � × rc has been done using the right hand. It is pointing
orthogonally to the position vector and has length rcω. If the vector rc is placed at the
base of � × rc and the required cross product is taken, the result will be a vector point-
ing out of the page with magnitude r2

cω. Thus, for plane motion, Eq. (1.37) becomes

Hc = ω

∫
r2
c dm = Icω pointing out of the page (1.38)

The quantity Ic = ∫
r2
c dm, called the moment of inertia, is a property of the body.

Because we are working with axes attached at the center of gravity, Ic is called
the centroidal moment of inertia. For simple geometric shapes such as disks and
rods, the moment of inertia can be calculated directly from its integral definition.
For complex shapes such as engine case castings, the moment of inertia might be
determined by testing or by finite-element analyses. The thing that changes in Eq.
(1.37) if a fixed point is used rather than the center of gravity is the moment of inertia,
since measurements are made from a different location for the two axes choices.
The reader may recall the parallel axis theorem, which allows transfer of inertial
properties from a set of axes through the center of gravity to another set of parallel
axes at some other location on a rigid body. We discuss this further in another section.

1.7 NEWTON’S LAW APPLIED TO RIGID BODIES

Returning to Figure 1.15, Newton’s second law applied to the particle shown has the
result

Fi + fi = dmi

dvi

dt
= d

dt
pi (1.39)
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where pi is the momentum of the ith particle. Summing over all the particles
yields

∑
Fi +

∑
fi = d

dt

∑
vi dmi = d

dt

∑
pi (1.39a)

The first summation on the left side of (1.39a) is the sum of all the external forces acting
on the collection of particles that make up the rigid body. The second summation on
the left is zero since the internal forces are a result of physical contact among particles,
and each internal force will have an equal but opposite counterpart. As the summation
is carried out, each positive internal force will be canceled by its negative counterpart,
resulting in zero net force. The summation on the right side of (1.39a) is the momentum
of the rigid body as developed above, resulting in Eq. (1.31). Thus, the final result
becomes

F = m
dvc

dt
= dpc

dt
(1.39b)

where F is the vector sum of all the external forces acting on the body, and these
forces cause an acceleration of the center of mass or center of gravity of the rigid
body.

Taking the moment of the forces about the center of gravity from Figure 1.15
results in

rci × Fi + rci × fi = rci × dvi

dt
dmi (1.40)

Using the velocity transfer relationship, we get

rci × Fi + rci × fi = rci × d(vc + � × rci )

dt
dmi (1.41)

We next sum over all the particles, yielding

∑
rci × Fi +

∑
rci × fi =

∑
rci dmi × dvc

dt
+ d

dt

∑
rci × (� × rci ) dmi

(1.42)

The first term on the left side is the moment of all the external forces about the center
of gravity. The second term on the left is zero because these are the moments of the
internal forces. This means that for every positive contribution there will be an equal
and opposite contribution. In other words, if particle a pushes on particle b with an
internal force, and this force has a moment about the center of gravity, then particle
b is pushing on particle a with equal but opposite internal force and the moment
contribution is canceled. The first term on the right side of (1.42) would become an
integral over the mass distribution as the number of particles goes toward infinity.
The first summation or integral will be zero from the definition of the center of mass
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since we are measuring from the center of gravity. The second term on the right side
of (1.42) as it becomes an integral is the time rate of change of the angular momentum
as it was defined in Eq. (1.37). Thus, we have the rotational equation of motion,

Mc = d

dt
Hc (1.43)

where Hc comes from Eq. (1.38).
In Chapter 2 we make use of velocity, acceleration, and force diagrams to derive

equations of motion which, if solved, would predict the motion–time history of the
physical system represented.
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PROBLEMS

1.1 For the systems shown in Figure P1.1, state the number of degrees-of-freedom
and choose and name coordinates that could be used to describe the motion of
the systems.
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1.2 The system shown in Figure P1.2 is sometimes called the half-car model. It can
be thought of as the side view of a car, with the right side being the front and
the left side being the rear. It can also be thought of as the front view of a car
where the right side of the figure is the left/front of the car and the left side of
the figure is the right/front of the car. The rigid body has mass and c.g. moment
of inertia. The suspension elements have a spring and a damper at each end.
The unsprung mass is represented by the point masses mr and ml , and the tire
stiffnesses are represented by the springs kt . The ground inputs are indicated at
the bottom of the right and left sides of the figure. Identify the number of degrees
of freedom and show several different choices for coordinates that would fully
describe the motion of the system. Make it clear from which reference point
each coordinate is measured.

yil(t)

yir(t)

kt

kt

ksl

ksr bsr

bsl
mr

ml

Rigid body of mass, m
c.g. moment of inertia, Ig 

a

b

g

Figure P1.2

1.3 For the systems of Problem 1.1, use your chosen coordinates and show velocity,
acceleration, and force diagrams. An example is shown in Figure P1.3 from
Problem 1.1 (b). The coordinate y is measured from equilibrium in a gravity
field such that the spring force, positive in tension, is Fs = k(y − yeq) where
yeq = [(m1 + m2)g]/k. Note that you must make use of the velocity transfer
formula from Eq. (1.17).

1.4 For the half-car model of Problem 1.2, using the coordinates indicated in the
Figure P1.4, show velocity, acceleration, and force diagrams. You can define
spring free lengths if you find it necessary. The coordinates are defined such
that when all are zero, the system is at equilibrium under the influence of
gravity.
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1.5 Figure P1.5 shows the front view of what might be an engine block in a heavy
truck. The engine is represented as a rigid body and is suspended by soft
mounts at the right and left at the bottom. What would probably be a single
self-contained isolator in application is shown here as separate horizontal and
vertical stiffness elements. The horizontal springs are constrained to remain
horizontal and the vertical springs are constrained to remain vertical. The co-
ordinates that describe the possible motions of the engine block are the inertial
location of the center of gravity xg , yg , and the angular rotation θ.
(a) Show a velocity diagram for the center of gravity and transfer these compo-

nents to the bottom right and left corners so that the spring displacements
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could ultimately be determined. You will be making use of the velocity
transfer Eq. (1.18), vp = v0 + � × r.

(b) Show acceleration and force diagrams. You will need to assign appropriate
names for the spring forces.

(c) Try to express the spring forces in terms of the coordinates.

1.6 The system shown in the Figure P1.6 is a cylinder that rolls without slip on a
horizontal ground surface and has an offset center of mass. If this device were
given some initial velocity to the left, it would roll in a not-very-smooth motion.
We ultimately desire the equations of motion for this system, but first we need
the velocity, acceleration, and force diagrams. The constraint of rolling without
slip makes this a single degree-of-freedom system, and either the location of

R

x

a

g

q

Figure P1.6
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the center of the cylinder x or the angular position of the center of gravity, θ

can be used as the coordinate for the problem. Assuming that θ = 0 when x =
0, the constraint is x = Rθ.

The mass of the cylinder is m and the c.g. moment of inertia is Ig . Con-
struct velocity, acceleration, and force diagrams for this rigid body in terms of
coordinates x and in terms of the coordinate θ.

1.7 A cylinder of mass mc and c.g. moment of inertia Ic rolls without slip on a
horizontal surface shown in Figure P1.7 . On the inner surface of the cylinder,
a mass particle m can slide without friction. This is a two degree-of-freedom
system and two coordinates are needed to describe the system motion. Since
the cylinder rolls without slip, either X or θ can be used to locate the cylinder.
The angle φ is used to locate the mass particle. Using arrows and symbols,
show velocity, acceleration, and force diagrams for the cylinder and the mass
particle. Imagine that a set of axes is attached to the cylinder at the center
of gravity and is rotating with the cylinder. Use the transfer of velocity and
acceleration formulas, Eqs. (1.17), to identify all the motion components of
the mass particle. Be methodical—there are a lot of individual components.

X

R

Cylinder of mass, mc
c.g. moment of inertia, Ic
Rolls without slip such that X = Rq 

Particle mass, m
Slides without friction on the inner 
surface of the cylinder

x
y

Axes attached to the 
cylinder such that the 
base of the frame 
translates and the 
axes rotate  

  

q

f

Figure P1.7

1.8 This is basically the same problem as Problem 1.7 except that this time a
small cylinder rolls without slip on the inner surface of a big cylinder (Figure
P1.8). This remains a two degree-of-freedom system, and either X or θ can
be used to locate the big cylinder, with φ locating the small cylinder. Using
arrows and symbols for the coordinates, construct velocity, acceleration, and
force diagrams for this system. When you show the forces, be sure to include
a rolling friction force between the bottom of the small cylinder and the inner
surface of the big cylinder.

1.9 Acylinder of radius R rolls without slip on a horizontal surface shown in Figure
P1.9. The construction is such that there is an inner radius r wrapped with string
that extends out horizontally as shown. This is somewhat like a spool of thread.
A force F is applied to the end of the string and the cylinder will execute some
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motion. Either X or θ can be used as the coordinate for this single degree-of-
freedom system. Using arrows and symbols, construct velocity, acceleration,
and force diagrams for this system.

R

F

X

Cylinder has mass, mc ,
rotational inertia, Ic , and 
radius, R. It rolls without slip 
on the horizontal surface.

r

q

Figure P1.9

1.10 This problem is similar to Problem 1.6, but this time a spring is attached at a
height R on the left side wall and extends to the edge of the cylinder diametrally
across from the offset center of gravity (Figure P1.10). The cylinder still rolls
without slip on the horizontal surface such that either x or θ can be used as the
coordinate for the single degree-of-freedom system. The system is set up such
that when θ = 0, x = 0 and the spring is horizontal and relaxed with no force.
In this position the distance from the left wall to the center of the cylinder is
D. The mass of the cylinder is m and the c.g. moment of inertia is Ig . Starting
from the velocity diagram for the center of gravity of the cylinder, transfer
the velocity components to the attachment point of the spring on the cylinder
and determine the velocity component in the instantaneous longitudinal spring
direction. You might want to use the angle α to make evaluation easier, but as
a last step, try to express α as a function of θ.
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1.11 Figure P1.11 shows the top view of a vehicle that has mass m and c.g. moment
of inertia about the axis out of the page, Ig . The center of gravity is located a
distance a from the front axle and a distance b from the rear axle. The half-
width of the vehicle is w/2. The front wheels can be steered, indicated by the
steer angle δ. A body-fixed coordinate frame is attached to the vehicle at its
center of gravity and aligned as shown. The body-fixed velocity components
of the center of gravity and the yaw angular velocity are indicated.
(a) Using arrows and symbols, transfer the c.g. velocity to body-fixed direc-

tions at the four wheels.
(b) If each wheel is constrained to have no velocity perpendicular to the plane

of the wheel, state the kinematic constraints for each wheel.

1.12 This system is identical to that of Problem 1.11, but this time inertial coordinates
are used to locate the center of gravity of the vehicle, and the angle θ indicates
the angular orientation (Figure P1.12).
(a) Using arrows and symbols, transfer the c.g. velocity to body-fixed direc-

tions at the four wheels.



34 NEWTON’S LAWS FOR PARTICLES AND RIGID BODIES

a

b x

y
x

y

X

Y

δ

Vehicle has mass, m and c.g. 
moment of inertia, gI

2

w

w

q

Figure P1.11

a

b

X

Y

δ

Vehicle has mass, m and c.g.
moment of inertia, Ig         

2

w

X

Y

q

w

Figure P1.12

(b) If each wheel is constrained to have no velocity perpendicular to the plane
of the wheel, state the kinematic constraints for each wheel.

1.13 This is the same problem as Problem 1.5, with an engine block of mass m and
c.g. moment of inertia I suspended at the base by some horizontal and verti-
cal springs (Figure P1.13). In this problem the inertial coordinates have been
replaced with body-fixed coordinates and the body-fixed velocity components
of the center of gravity are indicated.
(a) Using arrows and symbols, show a velocity diagram where the body-fixed

c.g. components are transferred to body-fixed directions at the attachment
points of the springs.

(b) Resolve the body-fixed components at the attachment points into inertial
components and write an expression for the velocity at the end of each
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spring. For each spring state whether the spring velocities are compressing
or extending the spring.
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1.14 This is the same vehicle as Problem 1.12, but this time the vehicle is towing
a trailer of mass mt and c.g. moment of inertia It . The trailer is pinned to
the towing vehicle as shown in Figure P1.14 and the center of gravity of the
trailer is located c distance behind the hitch point. The rear axle of the trailer is
located d from the trailer center of gravity. Body-fixed coordinates are used for
the vehicle, and the body-fixed c.g. velocity components vx , and vy are shown.
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Figure P1.14
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(a) Using arrows and symbols, transfer the velocity components of the
vehicle to body-fixed directions at the wheels and at the trailer hitch point.

(b) Transfer the velocity components at the hitch point to the center of gravity
of the trailer and to its wheels. Show this on a velocity diagram.

(c) If the wheels of the vehicle and the trailer are constrained to have no
sideways velocity, state the kinematic constraints that enforce this for all
the wheels of the system.

1.15 On fixed tabletop sliding without friction is a mass particle attached to a string
(Figure P1.15). The string runs through a hole in the center of the table and
another mass particle is attached hanging vertically in a gravity field. The
string has length L and this is a two degree-of-freedom system in that position
r and angular position θ fully locate the entire system. The mass particle and

radial string on the table have been given some initial angular velocity
.
θini

and some initial radius rini and released. Ultimately, we want the equations
of motion that would predict the motion–time history of this system, but right
now we want the velocity, acceleration, and force diagrams in terms of the
two coordinates and their derivatives.
(a) Using arrows and symbols, construct velocity, acceleration, and force

diagrams for this system. The string can only support a tensile force, and
you will have to give this force a symbolic name.

(b) You may have noticed that there is no force perpendicular to the
r-direction. This means that the acceleration in that direction must be
zero. Using your acceleration diagram, write an expression which states
that the acceleration perpendicular to the r-direction is zero.

r

Fixed tabletop 
with hole in center 

m

m

X

Y

g

Total length of the string is L 

q

Figure P1.15
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(c) The angular momentum of the mass on the table about the axes through
the center is the moment of the momentum vector. From your velocity
diagram, confirm that the angular momentum is h = mr2 .

θ . Since the
tensile force in the string has no moment about these axes, the angular
momentum must be constant; thus, mr2 .

θ = const. Differentiate this
expression with respect to time and see if it states the result from part (b).

1.16 A rigid body of mass m, c.g. moment of inertia Ig , and length L rotates without
slip on a fixed rigid cylinder (Figure P1.16). Because the rigid body rotates
without slip, this is really only a single degree-of-freedom system and only
the angle θ is needed to locate the rotated body. Several coordinate systems
are shown. The angle θ tracks the contact point on the cylinder, the inertial
coordinates X, and Y locate the center of gravity, and body-fixed velocity
components are shown in the body-fixed x, and y directions. Springs attached
to the rigid body at its ends are constrained to remain vertical regardless of
the rotational motion of the rigid body.
(a) For each of the coordinate systems indicated, show velocity diagrams for

the attachment points of the springs. Derive the velocity components in
the vertical spring directions.

(b) For the θ and X,Y coordinates, show acceleration diagrams for the center
of gravity of the rigid body.
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c.g. moment of inertia, Ig
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1.17 Angular momentum is the moment of the momentum vector about some
specified axes. In this chapter, expressions for the angular momentum were
derived for rigid bodies with axes attached at a fixed point and for axes
attached to the center of gravity. In this problem a rigid body is executing plane
motion and has c.g. velocity vg and angular velocity ω with respect to inertial
X,Y axes. The rigid body is constructed from an infinite number of particles of
mass dm, and the ith particle is shown in Figure P1.17. From the inertial X,Y
axes, the center of gravity is located by the position vector rg , the ith particle
is located by the position vector r0, and the ith particle is located with respect
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to the center of gravity by the position vector r. Using procedures discussed in
the chapter text, derive an expression for the angular momentum with respect
to the inertial axes in terms of the c.g. velocity and the angular velocity. You
will need to recognize that r0 = rg + r, and you will need to make use of the
definition of the center of gravity, where

∫
r dm = 0. The result of your work

should be H0 = rg × mvg + ∫
(r × � × r) dm, and the interpretation of this

result is that the angular momentum of a rigid body with respect to inertial axes
is the angular momentum of the center of gravity plus angular momentum due
to rotation about the center of gravity. Keep in mind that angular momentum
is a vector quantity with direction given by the right-hand rule.
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and c.g. moment of inertia, Ig
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Figure P1.17

1.18 A rigid body with the inertial properties indicated in the Figure P1.18 is
traveling at constant initial velocity vgi toward the left. It is about to encounter
an impediment that stops the lower left corner instantaneously. When this
happens the body attains a rotational speed ω and the center of gravity attains
a velocity vgf

.
(a) Before impact with the impediment, what is the angular momentum of

the body with respect to axes attached to the impediment?
(b) Using the results from Problem 1.17, derive an expression for the angular

momentum just after impact in terms of vgf
and ω.

(c) Relate vgf
to ω and derive an expression for the angular momentum

after impact in terms of ω only. Using your knowledge of the angular
momentum of a rigid body about a fixed point and your knowledge of the
parallel axis theorem, does your result support what must be the angular
momentum of the body just after impact?

(d) It turns out that angular momentum is conserved during the short duration
of the impact. Set the initial and final angular momentum equal to each
other and derive an expression for the angular velocity just after impact.
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1.19 This is a pretty interesting system (Figure P1.19). A pinned cylinder is rotating
at an initial angular velocity ωi. A string is wrapped around the cylinder and a
mass particle m is attached to the end of the string and is somehow attached to
the surface of the cylinder. At some instant the mass is released and begins to
swing out from the cylinder until it attains the position shown in Figure P1.19
b. It is released at this point and the mass flies away at some final velocity vf

m

Pinned cylinder of c.g.,
moment of inertia, Ig,
and radius, R 
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(a) Initial configuration (b) Final configuration
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Figure P1.19
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and the cylinder has some final angular velocity ω f . What makes this system
interesting is that it is possible to choose the proper mass and proper string
length such that the final angular velocity is absolutely zero.
(a) Derive expressions for the initial angular momentum and final angular

momentum of the system.
We have not yet covered energy of rotating and translating bodies,

but from a first course in dynamics the kinetic energy of the cylinder
in configuration a is Tci = 1

2Igω
2
i and the kinetic energy of the mass

particle is Tmi = 1
2m(Rωi)2. The final kinetic energy in configuration b is

Tcf
= 1

2Igω
2
f for the cylinder and Tmf

= 1
2mv2

f for the mass particle.
(b) It turns out that both angular momentum and energy are conserved

during the motion from configuration a to b. Equate initial and final
angular momentum and initial and final total system energy, postulate
that ωf = 0, and determine a length L when the mass is released that will
make the postulate true.

1.20 In this system a rigid body can move without friction on a horizontal surface,
and it can rotate with positive direction clockwise (Figure P1.20). This is a
two degree-of-freedom system and it is decided to use coordinate x to locate
the bottom of the body and coordinate θ to locate the angular orientation.
(a) Using arrows and symbols, construct velocity, acceleration, and force

diagrams for this system. You will have to assign names to the forces.
(b) Write an expression for the angular momentum of the body with respect

to the X,Y axes.
(c) Write an expression for the linear momentum of the body in the inertial

directions.
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