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FEATURE SELECTION FOR
GENOMIC AND PROTEOMIC

DATA MINING
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1.1 INTRODUCTION

The extreme dimensionality (also known as the curse of dimensionality) in genomic
data has been traditionally a serious concern inmany applications. This hasmotivated
a lot of research in feature representation and selection, both aiming at reducing
dimensionality of features to facilitate training and prediction of genomic data.

In this chapter,N denotes the number of training data samples,M the original feature
dimension, and the full feature is expressed as an M-dimensional vector process

xðtÞ ¼ ½x1ðtÞ; x2ðtÞ; . . . ; xMðtÞ�T ; t ¼ 1; . . . ;N:

The subset of features is denoted as an m-dimensional vector process

yðtÞ ¼ ½y1ðtÞ; y2ðtÞ; . . . ; ymðtÞ�T ð1:1Þ
¼ ½xs1ðtÞ; xs2ðtÞ; . . . ; xsmðtÞ�T ; ð1:2Þ

where m�M and si stands for index of a selected feature.
From the machine learning’s perspective, one metric of special interest is the

sample–feature ratio N/M. For many multimedia applications, the sample–feature
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ratios lie in a desirable range. For example, for speech data, the ratio can be as high as
100 : 1 or 1000 : 1 in favor of training data size. Formachine learning, such a favorable
ratio plays avital role in ensuring the statistical significance of training and validation.

Unfortunately, for genomic data, this is often not the case. It is common that the
number of samples is barely compatible with, and sometimes severely outnumbered
by, the dimension of features. In such situation, it becomes imperative to remove the
less relevant features, that is, features with low signal-to-noise ratio (SNR) [1].

It is commonly acknowledged that more features means more information avail-
able for disposal, that is,

I½A� � I½A [ BÞ� � � � � ; ð1:3Þ

where A and B represent two features, say xi and xj, respectively, and I(X) denotes
information of X. However, the redundant and noisy nature of genomic data makes it
not always advantageous but sometimes imperative to work with properly selected
features.

1.1.1 Reduction of Dimensionality (Biological Perspectives)

In genomic applications, each gene (or protein sequence) corresponds to a feature in
gene profiling (or protein sequencing) applications. Feature selection/representation
has its own special appeal from thegenomic dataminingperspective.For example, it is
avital preprocessing stage critical for processingmicroarray data. Forgene expression
profiles, the following factors necessitate an efficient gene selection strategy.

1. Unproportionate Feature Dimension w.r.t. Number of Training Samples. For
most genomic applications, the feature dimension is excessively higher than the
size of the training data set. Some examples of the sample–feature ratios N/M
are

protein sequences ! 1 : 1

microarray data ! 1 : 10 or 1 : 100

Such an extremely high dimensionality has a serious and adverse effect on the
performance. First, high dimensionality in feature spaces increases the compu-
tational cost in both (1) the learning phase and (2) the prediction phase. In the
prediction phase, themore the features used, themore the computation required
and the lower the retrieval speed. Fortunately, the prediction time is often
linearly proportional to the number of features selected. Unfortunately, in the
learning phase, the computational demand may grow exponentially with the
number of features. To effectively hold down the cost of computing, the features
are usually quantified on either individual or pairwise basis. Nevertheless, the
quantification cost is in the order of O(M) and O(M2) for individual and
pairwise quantification, respectively (see Section 1.2).
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3. Plenty of IrrelevantGenes. From the biological viewpoint, only a small portion
of genes are strongly indicative of a targeted disease. The remaining
“housekeeping” genes would not contribute relevant information. Moreover,
their participation in the training and prediction phases could adversely affect
the classification performance.

4. Presence of Coexpressed Genes. The presence of coexpressed genes implies
that there exists abundant redundancy among the genes. Such redundancy plays
a vital role and has a great influence on how to select features as well as how
many to select.

5. Insight into Biological Networks. A good feature selection is also essential for
us to study the underlying biological process that lead to the type of genomic
phenomenon observed. Feature selection can be instrumental for interpretation/
tracking as well as visualization of a selective few of most critical genes for
in vitro and in vivo gene profiling experiments. The selective genes closely
relevant to a targeted disease are called biomarkers. Concentrating on such a
compact subset of biomarkers would facilitate a better interpretation and
understanding of the role of the relevant genes. For example, for in vivo
microarray data, the size of the subset must be carefully controlled in order to
facilitate an effective tracking/interpretation of the underlying regulation
behavior and intergene networking.

1.1.2 Reduction of Dimensionality (Computational Perspectives)

High dimensionality in feature spaces also increases uncertainty in classification. An
excessive dimensionality could severely jeopardize the generalization capability due
to overfitting and unpredictability of the numerical behavior. Thus, feature selection
must consider a joint optimization and sometimes a delicate trade-off of the compu-
tational cost andpredictionperformance. Its success lies in a systematic approach to an
effective dimension reduction while conceding minimum sacrifice of accuracy.

Recall from Equation 1.3 that the more the features the higher the achievable
performance. This results in a monotonically increasing property: the more the
features selected, the more the information is made available, as shown in the lower
curve in Fig. 1.1a.

However, there are a lot of not-so-informative genomic features that are noisy and
unreliable. Their inclusion is actually much more detrimental (than beneficial),
especially in terms of numeric computation. Two major and serious adverse effects
are elaborated below:

. Data Overfitting. Note that overoptimizing the training accuracy as the exclu-
sive performance measure often results in overfitting the data set, which in turn
degrades generalization and prediction ability.

It is well known that data overfitting may happen in two situations: one is
when the feature dimension is reasonable but too few training data are available;
the other is when the feature dimension is too high even though there is a
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reasonable amount of training data. What matters most is the ratio between the
feature dimension and the size of the training data set. In short, classification/
generalization depends on the sample–feature ratio.

Unfortunately, for many genomic applications, the feature dimension can be
as high or much higher than the size of the training data set. For these
applications, overtraining could significantly harm generalization and feature
reduction is an effective way to alleviate the overtraining problem.

. Suboptimal Search. Practically, the computational resources available for most
researchers are deemed to be inadequate, given the astronomical amounts of
genomic data to be processed. High dimensionality in feature spaces increases

Information
amount

Number of features
(a)

Relative
suboptimality
(%)

Number of features

100%

(b)

Actual
achievable
performance

Number of features

(c)

Figure 1.1 (a) Monotonic increasing property of the total information available. (b) Relative

performance versus the feature size taking into consideration data overfitting and limited compu-

tational resources. (c) Nonmonotonic increasing property of the actual classification performance

achievable. The best performance is often achieved by selecting an optimal size instead of the full

set of available features.
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uncertainty in the numerical behaviors. As a result, a computational process
often converges to a solution far inferior to the true optimum, which may
compromise the prediction accuracy.

In conclusion, when the feature size is too large, the degree of suboptimality must
reflect the performance degradation caused by data overfitting and limiting computa-
tional resource (see Fig. 1.1b). This implies a nonmonotonic property on achievable
performance w.r.t. feature size, as shown in Fig. 1.1c. Accordingly, but not surpris-
ingly, thebest performance is often achievedby selecting anoptimal subset of features.
The use of any oversized feature subsets will be harmful to the performance. Such a
nonmonotonic performance curve, together with the concern on the processing speed
and cost, prompts the search for an optimal feature selection and dimension reduction.

Before we proceed, let us use a subcellular localization example to highlight the
importance of feature selection.

Example 1 (Subcellular localization). Profile alignment support vector machines
(SVMs) [2] are applied to predict the subcellular location of proteins in an eukaryotic
protein data set provided by Reinhardt andHubbard [3]. The data set comprises 2427
annotated sequences extracted from SWISSPROT 33.0, which amounts to 684 cyto-
plasm, 325 extracellular, 321 mitochondrial, and 1097 nuclear proteins. Fivefold
cross-validation was used to obtain the prediction accuracy. The accuracy and testing
time for different number of features selected by a Fisher-based method [4] are shown
inFig. 1.2. This exampleoffersan evidenceof thenonmonotonic performanceproperty
based on real genomic data. &

Figure 1.2 Real data supporting themonotonic increasing property.Upper curve: performance

reaches a peak by selecting an optimal size instead of the full set of the features available. Lower

curve: the computational time goes up (more than linear rate) as the number of features

increases.
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1.1.3 How Many Features to Select or Eliminate?

The question now is howmany features should be retained, or equivalently howmany
should be eliminated? There are two ways to determine this number.

1. Predetermined Feature Size. A common practice is to have a user-defined
threshold, but it is hard to determine the most appropriate threshold. For some
applications, we occasionally may have a good empirical knowledge of the
desirable size of the subset. For example, how many genes should be selected
from, say, the 7129 genes in the leukemia data set [5]? Some plausible feature
dimensions are as follows:

(a) From classification/generalization performance perspective, a sufficient
sample–feature ratio would be very desirable. For this case, empirically, an
order of 100 genes seems to be a good compromise.

(b) If the study concerns a regulation network, then a few extremely selective
genes would allow the tracking and interpretation of cause–effect between
them. For such an application, 10 genes would be the right order of
magnitude.

(c) For visualization, two to three genes are often selected for simultaneous
display.

2. Prespecified Performance Threshold. For most applications, one usually does
not know a priori the right size of the subset. Thus, it is useful to have a
preliminary indication (formulated in a simple and closed-form mathematical
criterion) on the final performance corresponding to a given size. Thereafter, it
takes a straightforward practice to select/eliminate the features whose corre-
sponding criterion functions are above/below a predefined threshold.

1.1.4 Unsupervised and Supervised Selection Criteria

The features selected serve very different objectives for unsupervised versus super-
vised learning scenarios (see Fig 1.3). Therefore, each scenario induces its own type of
criterion functions.

1.1.4.1 Feature Selection Criteria for Unsupervised Cases In terms of
unsupervised cases, there are two very different ways of designing the selection
criteria. They depend closely on the performancemetric, which can be either fidelity-
driven or classification-driven.

1. Fidelity-Driven Criterion. The fidelity-driven criterion is motivated by how
much of the original information is retained (or lost) when the feature
dimension is reduced. The extent of the pattern spread associated with that
feature is evidently reflected in the second-order moment for each feature xi,
i¼ 1, . . .,M. The larger the second-ordermoment, thewider the spread, thus the
more likely the feature xi contains useful information.

6 FEATURE SELECTION FOR GENOMIC AND PROTEOMIC DATA MINING



There are two major types of fidelity-driven metrics:

. A performance metric could be based on the so-called mutual information:
I(x|y).

. An alternative measure could be one which minimizes the reconstruction
error:

EðxjyÞ � min
y2Rm

jjx� x̂yjj;

where x̂y denotes the estimate of x based on y.
2. Classification-Driven Criterion. From the classification perspective, separa-

bility of data subclusters plays an important role. Thus, the corresponding
criterion depends on how well can the selected features reveal the subcluster
structure. The higher-order statistics, known as independent component ana-
lysis (ICA), has been adopted as a popular metric. For more discussion on this
subject, see Ref. [6].

Figure 1.3 Difference between (a) supervised and (b) unsupervised feature selection.
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1.1.4.2 Feature Selection Criteria for Supervised Cases The ultimate
objective for supervised cases lies in a high classification/predition accuracy. Ideally
speaking, if the classification information is known, denoted by C, the simplest
criterion will be I(C|y). However, the comparison between I(Cjx) and I(Cjy) often
provides a more useful metric. For example, it is desirable to have

IðCjyÞ!IðCjxÞ;

while keeping the feature dimension m as small as possible. However, the above
formulation is numerically difficult to achieve. The only practical solution known to
exist is the onemaking the full use of the feedback from the actual classification result,
which is computationally very demanding. (The feedback-based method is related to
the wrapper approach to be discussed in Section 1.4.5.)

To overcome this problem, an SNR-type criterion based on the Fisher discriminant
analysis is very appealing. (Note that the Fisher discriminant offers a convenientmetric
tomeasure the interclassseparabilityembeddedineachfeature.)Sucha featureselection
approach entails computing Fisher’s discriminant denoted as FDi, i¼ 1, . . .,M, which
represents the ratio of intercluster distance to intracluster variance for each individual
feature. (This related to the filter approach to be discussed in Section 1.4.1.)

1.1.5 Chapter Organization

The organization of the chapter is as follows. Section 1.2 provides a systematic way
to quantify the information/redundancy of/among features, which is followed by
discussions on the approaches to ranking the relevant features and eliminating the
irrelevant ones in Section 1.3. Then, in Section 1.4, two supervised feature selection
methods, namely filter and warper, are introduced. For the former, the features are
selected without explicit information on classifiers nor classification results, whereas
for the latter, the select requires such information explicitly. Section 1.5 introduces a
new scenario called self-supervised learning in which prior known group labels are
assigned to the features, instead of the vectors. A novel SVM-based feature selection
method calledVector-Index-AdaptiveSVM, or simplyVIA-SVM, is proposed for this
new scenario. The chapter finishes with experimental procedures showing how self-
supervised learning and VIA-SVM can be applied to (protein-sequence-based)
subcellular localization analysis.

1.2 QUANTIFYING INFORMATION/REDUNDANCY OF/AMONG
FEATURES

Quantification of information and redundancy depends on how the information is
represented. A representative feature is the one that can represent a group of similar
features. Denote S as a feature subset, that is, S� {yi}, i¼ 1, . . ., m. In addition to the
general case, what ofmost interest is either a single individual featurem¼ 1 or a pair of
featuresm¼ 2. A generic term I(S) will be used temporarily to denote the information
pertaining to S, as the exact form of it has to depend on the application scenarios.
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Recall that there are often a large number of features in genomic data sets. To
effectively hold down the cost of computing, we have to limit the number of features
simultaneously considered in dealingwith the interfeature relationship.More exactly,
such computational consideration restricts us to three types of quantitative measure-
ments of the feature information:

1. Individual Information: The quantification cost is in the order of O(M).

2. Pairwise Information: The quantification cost becomes now O(M2).

3. Groupwise Information: (with three or more features).

The details can be found in the following text.

1.2.1 Individual Feature Information

Given a single feature xi, its information is denoted as I(xi). Such ameasure is often the
most effective when the features are statistically independent. This leads to the
individual ranking scheme inwhich only the information and/or discriminative ability
of individual features are considered. This scheme is the most straightforward, since
each individual feature is independently (and simultaneously) evaluated. Let us use a
hypothetical example to illustrate the individual ranking scheme.

Example2 (Three-party problem—without interfeature redundancy). The individual
ranking method works the best when the redundancy plays no or minimal role in
affecting the final ranking. In this example, eacharea inFig. 1.4 represents one feature.
The size of the area indicates the information or discriminativeness pertaining to a
feature. In the figure, no “overlapping” between elements symbolizes the fact that
there exists no mutual redundancy between the features. In this case, the combined
information of any two features is simply the sum of two individual amounts. For
example, I(A[B)¼ I(A)þ I(B)¼ 35þ 30¼ 65.

When all the features are statistically independent, it corresponds to the fact that
there is no overlap pictorially. All methods lead to the same and correct result. It is,
however, a totally different story with the statistically dependent cases. &

Unfortunately, the downside of considering the feature individually is that it does
not fully account for the redundancy among the features. For example, it is very
possible that twohighest-rank individual features share a great degree of similarity.As
a result, the inclusion of both featureswould amount to awaste of resource. In fact, one
needs to take the interfeature relationship (such asmutual similarity/redundancy) into
account. This problem can be alleviated by adopting either pairwise or groupwise
information to be discussed next.

1.2.2 Pairwise Feature Information

Given a pair of features xi and xj, its information is denoted as I(xi[ xj). The main
advantage of studying the pairwise relationship is to provide a means to identify the
similariy/redundancy of the pair. A fundamental and popular criterion is based on
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correlation. For example, the Pearson correlation coefficient is defined as

rxixj ¼
E½xixj�

varðxiÞvarðxjÞ ¼ E xixj
� �

:

Without loss of generality, here we shall simply assume that both the features xi and xj
are zero mean with unit variance var(xi)var(xj)¼ 1.

From the practical decision perspective, there are again two pairwise criteria: (1)
mutual predictability and (2) mutual information.

1. Mutual Predictability. The mutual predictability represents the ability of
estimating one feature from another feature. Such a metric is also closely tied
with the (Pearson) correlation coefficients, that is,

x̂j ¼ E½xjjxi� ¼ rxixj xi: ð1:4Þ
When there is no correlation, that is, rxixj ¼ 0, then x̂j ¼ 0 regardless ofwhatever
thevalueof xi is. Inotherwords, the information of xioffers no information about
xj. In general, the predictability is a function of rxixj ; the higher the correlation,
the more predictable is xj given xi.

2. Mutual Information. Suppose that there exists pairwise redundancy, then I
(xi[ xj)� I(xi)þ I(xj). The mutual information I(xi, xj) is also a function of rxixj ,
the higher the correlation, the greater the mutual information.

A(35)

B(30)C(25)

I(B)I(A)I(A,B)

(a) Three-party problem

(b) Forward selection (c) Backward elimination

(d)

r

s

e

s

Figure 1.4 (a) Three-party problem without redundancy. No ‘‘overlapping’’ between elements

symbolizes the fact that nomutual redundancy exists between the features. (b) Consecutive result

of the step-by-step forward selection. (c) Consecutive result of the step-by-step backward

elimination. (d) Table illustrating search results of different strategies.
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Individual information and the pairwise information complement each other very
well. In fact,

. Individual information reveals the separability of subclusters (termed as SNR in
supervised case, see Section 1.4.1), while the pairwise information does not.

. Conversely, pairwise information reveals the redundancy between features,
while the individual information does not.

1.2.3 Groupwise Information (with Three or More Features)

In order to optimally evaluate total information contained in a subset of multiple
features, the most prudent approach is to have the entire group’s information content,
I(y), evaluated collectively as an undivided entity.

Sometimes, it ismoremeaningful or direct to evaluate the information loss in terms
of the difference between I(x) and I(y) due to the features missing from the subset. A
common objective is to drop asmany irrelevant features as possible but suffering from
a minimum loss.

The importance of groupwise information is evident:

. When compared with individual ranking, the group evaluation has a clear
advantage in harnessing information about interfeature redundancy. When
compared with pairwise information, it can reveal the SNR as well as a fuller
picture of interfeature redundancy.

. When comparedwith the consecutive ranking (to be discussed next), it delivers a
relatively fair solution, because no feature has a better or poorer chance of being
selected/eliminated just because it is being evaluated earlier than others.

The downside of group ranking is that it is computationally demanding to find the best
combination of features, since it involves exhaustive search to find such an optimal
subset of features. If every possible combination has to be considered, it would involve
2M� 1 possible combinations.1 This represents a very formidable computation cost,
rendering the group evaluation approach impractical.

1.3 CONSECUTIVE RANKING OF FEATURES

Based on the different types of information discussed previously, this sectionwill look
into computationally effective selection strategies.

In seeking a reasonable compromise between accuracy and cost, consecutive
search approach arises as a very viable option. The consecutive ranking evaluates
features on a one-by-one basis. Because of the interfeature redundancy, the order of

1Even if only those subsets of size m or lower are searched, it still amounts to CM
m � 2m � 1 possible

combinations. The search space can be substantially reduced to only CM
m groups, if the size of subsets is

predetermined to be exactly m.
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feature selection can significantly affect the outcome of the selection. There are two
ways to conduct a consecutive search:

1. Forward Selection (Augmenting). Search usually begins at an empty feature set.

2. Backward Elimination. Search can start at either the full set (i.e., backward
elimination) or, more generally, any subset. This can be considered as a special
case of the overselect-then-prune strategy.

1.3.1 Forward Search: Most Innovative First Admitted

Forward search is a recursive search scheme, which begins at an empty feature set. It
adopts a most innovative first admitted (MIFA) strategy. In this scheme, one feature is
added to the existing chosen subset at each step. (Once a feature is admitted, it will not
be dropped anymore, except in an iterative procedure.) The importance of the
candidate features is not judged by its individual merit but rather by how much extra
value it can add to the existing subset. In other words, the usefulness of a feature
dependsonhowwell does it complement the current subset. The search continues until
either a preset number of features is reachedor a prespecified performance is achieved.

Example 3 (Three-Party problem—with interfeature redundancy. The scenario is
illustrated in Fig. 1.5. If only one feature is to be selected, the optimal and correct
solution is A. This is because

IðAÞ4 IðBÞ4 IðCÞ:

Figure 1.5 (a) Three-party problem with redundancy, where A(35), B(30), and C(25) exhibit a

peculiar overlapping pattern. ‘‘Overlapping’’ between elements symbolizes the fact that mutual

redundancy exists between the features. (b) Consecutive result of the step-by-step forward

selection. (c) Consecutive result of the step-by-step backward elimination. (d) Table illustrating

search results of different strategies.
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If more than one feature are to be selected, then the redundancy among the features
selected plays a role. For example, it is often the case that a gene A is very
discriminative on its own, and so is gene B. But the information revealed by gene
A overlaps significantly with that of gene B. The interfeature redundancy implies that

IðA [ BÞ � IðAÞþ IðBÞ: ð1:5Þ
In Fig. 1.5, such interfeature redundancy is pictorially displayed as “overlapping” of
two corresponding elliptic areas. The size of overlap indicates the amount of
“information discount” in Equation 1.5.

In this example, there is a large overlap between A and B, which is, visually
speaking, about half of the size of B(�30/2¼ 15). Therefore,

IðA [ BÞ � 50 � 55 ¼ IðAÞþ IðBÞ:
In contrast, there is virtually no overlap between B and C.

IðB [ CÞ � 55 ¼ IðAÞþ IðBÞ:

Therefore, I(A[B)� I(B[C). If a two-feature subset is to be selected, the optimal and
correct solution is B and C. Note that the individual ranking would select A and B,
because they have the two highest scores, which is an incorrect selection.

In the forward ranking, A will be chosen in the first round. In the second round of
selection, B will be a better choice to be teamed up with A. So the best two features
would be A and B, again an incorrect selection. See Fig. 1.5b. &

1.3.2 Backward Elimination: Least Useful First Eliminated

This is a recursive search scheme, usually starting at the full set. In this scheme, at each
step, one feature is removed from the current subset based on strategy in which the
feature with least useful (or indispensable) is first eliminated.2 The impact of the
candidate features is not judged by its individual merit but rather by howmuch loss of
information is caused by its removal from the current subset. The one that incurs the
least damage is deemed tohave the least importance (or impact),which is also a natural
candidate for elimination at that step. In this sense, the elimination rule is that the
feature causing least loss gets first eliminated.

To minimize the incurred loss of information, we compute

Loss ¼ IðSÞ� IðS� Þ;
where S denotes the current subset and S� denoted the subset after the elimination.

Example 4 (Backward elimination: three-party problem). Letus continue the example
illustrated in Fig. 1.5. In backward elimination, A will be eliminated in the first round.
This is a surprising result, because A would be considered to be the “most important”

2Once a feature is eliminated, it will not be reselected anymore.
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according to independent ranking.However, according to thebackward elimination rule,
A is considered to be the “least important” because its elimination will incur least loss.
Therefore, A is eliminated and the best two-feature subset is B andC (see Fig. 1.5c). This
matches with the correct answerderived via thegroup evaluation approach. In this case,
only the backward elimination reaches the correct solution; cf. Fig. 1.5d.

Unfortunately, this also means that the backward approach would result in an
incorrect selection if only one feature is to be selected, because the correct solution,
that is, feature A, would be eliminated in the very first round, since it is regarded as
having the least impact (and thus most dispensable) in the first iteration of the
backward elimination. Among the remaining two features, feature B would beat
featureC in the second roundandget selected if only one feature iswanted, as shown in
Fig. 1.5d. &

1.4 SUPERVISED FEATURE SELECTION AND EXTRACTION

For supervised selection, there are two types of selection criteria: closed-loop type and
open-loop type.

. Filter (Open-Loop) Approach. In order to facilitate a quick search of candidate
features (they may or may not be the final choice), some simple open-loop
criterion functions may be desirable for guiding or conducting an efficient
preliminary search. In this case, the selection method/criterion is self-
determined, that is, it is independent of the classifier.

. Wrapper (Closed-Loop) Approach. The classification method is predetermined
and it has substantial influence on the choice of the feature subset. For supervised
learning cases, the ultimate goal is to yield the highest possible classification
accuracywhile using only a subset of features within the given size constraint. In
order to estimate the exact accuracy, the only known approach is via a closed-
loop solution, that is, it involves the complete training and testing phase of the
adaptive classification. This unfortunately demands an enormous computational
burden, which may prove too costly.

While the filter method is simple to compute, it fails to consider the critical inter-
feature redundancy. The wrapper approach, however, can fully rectify this problem,
although its closed-loop process is very computational demanding. It is natural to
combine or consider both methods in order to reach an optimal strategy.

1.4.1 Filter Method—An Open-Loop Approach

In the filtermethod, feature selection and classifier design are separated in that a subset
of features is first selected and then classifiers are trained based on the selected
features. From the structural dependence perspective, while the classifier has to
depend on the selection strategy, the features are selected with no regard of what
classifier will be adopted.
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All the filter approaches are open-loop approaches, that is, no information on the
postprocessing classifier is needed. In addition, they are all based an individual
ranking scheme,mostly using an SNR-type criterion. AnSNR-type criterion,which is
intuitively a normalized distance, is defined as follows:

SNR ¼ signal

noise
¼ distance

variance
;

where the signal is the numerator representing the distance (separation) between the
two centroids (one for positive class and the other negative class) and the noise is the
denominator representing the variance of each class of data.3

Example 5. Golub’s SNR:

SNRð jÞ ¼ signed-FDRð jÞ ¼ mþj � m�j
sþj þ s�j

; ð1:6Þ

where mþ
j , m�

j , sþ
j , and s�

j represent the class-conditional means and standard
derivations of the jth feature, respectively. Note that this criterion follows the idea of
Fisher discriminant, and therefore, will be referred to as signed Fisher discriminant
ratio (signed-FDR) in the sequel. &

If our goal is to identify a single feature, then the best choice can be obtained as

argmax
j

SNRðjÞ: ð1:7Þ

Such formulation canbe easily extended tomultiple-feature selection,wherewe retain
the m features with the highest scores.

In filter approaches, because feature selection acts as a preprocessor and the
classifier does not play any role in the selection process, the feature selector can be
considered as a “master” governing the final set of feature to be used and the classifier
can be considered as a “slave” that uses whatever features provided by the feature
selector.

Several SNR-type ranking criteria have been proposed in the literature. They are
summarized in Table 1.1.

1.4.1.1 First Order SNR-Type Criteria

. Signed-FDR. The discriminative power of features is evaluated independently
according to [5]

signed� FDRð jÞ ¼ mþj � m�j
sþj þ s�j

; ð1:8Þ

3Here, we assume that the positive and negative classes have the same variance. When the variances are
different, then the average of the two variances will be adopted instead.
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where mþ
j ; m�

j ; sþ
j , and s�

j represent the class-conditional means and standard
derivations of the jth feature, respectively. Furey et al. [9] proposed to use the
absolute value of signed-FDR( j) as ranking criterion. Features with high signed-
FDR( j) or |signed-FDR( j)| are selected for classification. The method is intui-
tively appealing because high signed-FDR( j) or |signed-FDR( j)| means that the
corresponding features produce maximum separation between the positive and
negative classes.

. T-Statistics. A similar ranking criterion is based on the t-statistics [7]:

zj ¼
mþ
j � m�

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþj Þ2
N þ þ ðs�j Þ2

N �

q ; ð1:9Þ

where

ðsþj Þ2 ¼
P

k2Cþ ðxkj � mþ
j Þ2

N þ � 1
and ðs�j Þ2 ¼

P
k2C� ðxkj �m�

j Þ2
N � � 1

; ð1:10Þ

whereNþandN�are thenumbers of training samples in thepositiveclassCþ and
negative class C� , respectively.

1.4.1.2 Second Order SNR-Type Criteria

. FisherDiscriminant Ratio (FDR). A slight variant of signed-SNR is the FDR [8]:

FDRð jÞ ¼ ðmþ
j � m�

j Þ2
ðsþ

j Þ2 þðs�
j Þ2 : ð1:11Þ

As an illustrative example, Fig. 1.6 shows the FDR of 7129 genes in an acute
leukemia data set [5] that contains two types of acute leukemia: ALL and AML.

Table1.1 SNR-based filter methods

Name Order Criterion Reference

Signed-FDR First
mþ
j � m�

j

sþ
j þ s�

j

[5]

t-Statistics First
mþ
j � m�

jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsþj Þ2
N þ þ ðs�j Þ2

N �

q [7]

FDR Second
ðmþ

j � m�
j Þ2

ðsþ
j Þ2 þðs�

j Þ2 [8]

SD Second
1

2

ðsþ
j Þ2

ðs�
j Þ2 þ ðs�

j Þ2
ðsþ

j Þ2
 !

� 1þ 1

2

ðmþ
j � m�

j Þ2
ðsþ

j Þ2 þðs�
j Þ2

 !
[4]

FDR: Fisher discriminant ratio; SD: symmetric divergence. “þ” and “�” represent positive and negative
classes, respectively. Refer to Equation 1.10 for sþj and s�j .
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Evidently, only a small number of genes have large FDR,meaning that only a few
genes are useful for differentiating the two types of acute leukemia. Table 1.2
shows the numbers of selected genes at different cutoff points.

. Symmetric Divergence (SD). By assuming the distributions of the positive and
negative classes as Gaussians, Mak and Kung [4] proposed ranking the features
according to the symmetric divergence between the positive and negative class
distributions:

Dðpðxþ
j Þjjpðx�

j ÞÞ ¼ E log
pðxþ

j Þ
pðx�

j Þ

�����Cþ

8<
:

9=
;þE log

pðx�
j Þ

pðxþ
j Þ

�����C�

8<
:

9=
;

¼ 1

2

ðsþ
j Þ2

ðs�
j Þ2 þ ðs�

j Þ2
ðsþ

j Þ2

0
@

1
A� 1þ 1

2

ðmþ
j � m�

j Þ2
ðsþ

j Þ2 þðs�
j Þ2

0
@

1
A;

ð1:12Þ

where pðxþ
j Þ and pðx�

j Þ represent the density functions of the positive and
negative classes, respectively. Figure 1.7 illustrates the procedure of computing
the symmetric divergence of feature j and Fig. 1.8 shows the histograms of the
symmetric divergences. Apparently, only a small fraction of the features have

Figure 1.6 TheFisher discriminant ratio of 7192 genes in the acute leukemia data set 5. TheFDR

cutoff point (threshold) and the corresponding number of remaining genes are shown in Table 1.2.

Table1.2 TheFDRcutoff point (threshold) and thecorrespondingnumberof remaining
genes

Threshold 0.01 0.02 0.04 0.06
No. of remaining genes 596 142 19 8
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Figure 1.7 Computation of symmetric divergence (Eq. 1.12) in a subcellular localization task.
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Figure 1.8 Histograms of symmetric divergences in a subcellular localization task.
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large symmetric divergences,whichmeans that only a few feature dimensions are
relevant for classification. This hypothesis is confirmed by our experimental
results below.

1.4.1.3 Comparing Different Filters The ranking methods based on signed-
FDR, t-statistics, FDR, and symmetric divergence share a common property: Features
with small variances but large difference in classmeanswill be ranked high. However,
there are also important differences. For example,Equations 1.11 and1.12 differ in the
additional term that depends only on the ratio of variances. Therefore, features with
high variance ratio between positive andnegative classeswill be ranked high under the
symmetric divergence criterion. t-Statistic is used to assess the statistical significance
of the difference between the sample means of two normal distributed population
when the sample size is small. However, Kullback–Leibler divergence (from which
symmetric divergence is derived) is a distance measure between two probability
distributions. In most cases, one distribution represents the observations and the other
represents a model that attempts to approximate the former one.

To compare the capability of different filter methods, we applied signed-FDR (Eq.
1.6), absolute value of signed-FDR, FDR (Eq. 1.11), and symmetric divergence
(Eq. 1.12) to select features for classifying subcellular location of proteins. The data
set [3] that we used contains 2427 annotated amino acid sequences (684 cytoplasm,
325 extracellular, 321 mitochondrial, and 1097 nuclear proteins) extracted from
SWISSPROT 33.0.We applied pairwise profile alignment to create a score matrix for
classification by RBF-SVMs [2].

Figure 1.9 shows the accuracy of subcellular localization when the number of
selected features is progressively increased from 1 to the full size. Evidently, the
accuracy increases rapidly at small feature size and becomes saturated at around 200
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Figure 1.9 Accuracy based on features selected by signed-FDR, absolute value of signed-FDR

(|Signed-FDR|), FDR, and symmetric divergence.
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(the accuracy even drops slightly because of the curse of dimensionality), suggesting
only one-tenth of the features are useful for classification. The results show that the
performance of signed-FDR is better than that of |signed-FDR| and FDR, suggesting
that the sign is important for feature selection.

1.4.1.4 Limitations of Filter Methods Selecting features based on the filter
methods suffers from several serious drawbacks. First, these methods require users to
set a cutoff point in the ranking scores underwhich features are deemed to be irrelevant
for classification. However, the optimal number of features (i.e., the best cutoff point)
is usually unknown. Second, the features selected may be highly correlated because
the feature set may contain many highly discriminative features but with almost
identical characteristics. This means that some of these redundant features can be
removed without affecting the classification accuracy. Third, the ranking criteria do
not take the combined effect of features into account. For example, a low-ranked
feature may become very useful for classification when combined with another low-
ranked feature. To overcome these limitations, researchers have proposed using the
performance of classifiers to guide the feature selection progress, which is to be
discussed in Sections 1.4.3 and 1.4.5.

1.4.1.5 Cope with Redundancy To develop a more appropriate open-loop
criterion, one wants not only to maximize the discriminativeness of individual
features, but also to minimize the redundancy between the features selected.
Because features may be mutually redundant, that is, two highly ranked features
may carry similar discriminative information to the target class, redundancy
removal can be done by (1) forward selection based on the “most innovative first
admitted” approach; and (2) backward elimination based on the “least useful first
eliminated” approach. To illustrate the idea, let us consider the first strategy in the
following example.

Example 6 (Forward selection of two out of three—with versuswithout dependence).
Without loss of generality, assume that we have a total of three features: x1, x2, and x3,
and that x1 is preselected a priori. The question is which of x2 and x3 could be the
preferred choice to team up with x1. The answer hinges upon which one can best
complement x1 rather than which is more discriminative by itself. Mathematically, let
us denote

x̂2 ¼ x2=x1;

x̂3 ¼ x3=x1;

where xi/x1 denotes the innovation component of xiw.r.t. x1. There is no unique way to
define the innovation component for the supervised cases. One approach is to
(1) identify the mutually dependent subspace and (2) perform coordinate transfor-
mation so that the innovative component is represented by its own axis, which is
perpendicular to the dependent subspace. For example, the features x1 and x2 are
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mutually dependent as shown in Fig. 1.10a . Following the above-mentioned proce-
dure, let us use a coordinate transformation:

1 0

� 1 1

� �
:

After the transformation, the vertical axis would represent the innovative component
x̂2. Thus, the (innovative) discriminative power is represented by the normalized
distance (FD) of x̂2. In contrast, the features x1 and x3 are mutually independent as
shown in Fig. 1.10b.Therefore, one can say, given that we already have the knowledge
on x1, the innovative component of x3 is greater than that of x2.

Apply the sameprocedures to all the features. In this example, features x2and x3 can
be transformed to x̂2 and x̂3 via a three-dimensional coordinate transformation:

1 0 0

� 1 1 0

0 0 1

2
64

3
75:

After the transformation, the best choice (to team up with x1) can then be identified as

argmax
i„1

FDðx̂iÞ:

The interfeature dependence ismostly due to themutual information or redundancy
between two features. If two features have too much redundancy (i.e., they share very
similarcommon information), then selectionof one featurewould immediately obviate
the selection of the other, and vice versa.

In this example, features x1and x2have by themselves high discriminative power (in
FD sense), but the two features have a great statistical similarity. Therefore, selection
of x1would naturally obviate any chance for x2. In this case, the second best candidate
is x3. In conclusion, the best feature pair is x1 and x3. &

This formulation can be easily extended to the backward elimination strategy.

Figure 1.10 Selecting two out of three features in supervised feature selection. x1 and x2 are

mutually dependent. x1 and x3 are independent. x3 is independent of both x1 and x2.
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1.4.2 Weighted Voting and Linear Combination of Features

After the features are selected, say, by a filtermethod, thenext task is classification. For
this, a popular approachwasproposedbyGolub et al. [5]. In thismethod, anSNRfilter-
based selection is combined with a weighted voting scheme. Each selected feature
independently contributes a vote for a class. More exactly,

. The vote from the jth feature is represented by vj(xj)¼ xj� bj. Here the decision
threshold bj is set halfway between the class means, that is,

bj ¼
mþ
j þ m�

j

2
:

Each feature j casts a vote to one of the two classes. A positive value is for the
positive class and negative value for the negative class.

. Furthermore, every vote will be given a different weighting wj. The weighting
factor wj is introduced to reflect how trustworthy is the feature—it depends on
how well the feature is correlated with the class distinction. In Ref. [5], the
weighting factor wj is based on the SNR of the individual feature:

wi ¼ mþ
i � m�

i

sþ
i þ s�

i

;

that is, it is a function of the mean and standard deviation of the feature values.
. This leads to

weighted total score ¼
X
j

wjvjðxjÞ:

If the weighted total score is positive, then the sample is identified, otherwise it is
rejected.

To illustrate the role ofweighting, let us take a look at the data distribution shown in
Fig. 1.12b. It is obvious that ahigherweightingmust beplacedonx2. Sucha conclusion
may also be reached either via the weighted voting approach (due to the higher SNR
associated with x2) or by almost any optimal linear classifier, such as LSE, Bayesian
classifier, or linear SVM.

1.4.3 Linear Feature Representation

Note that

weighted total score ¼
X
j

wjvjðxjÞ ¼
X
j

wjðxj � bjÞ ¼ wTx� b;
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where b¼Pj wjbj. This shows that aweighted voting is basically equivalent to the use
of a linear decision boundary. Then, it is natural and appealing to pursue amore direct
solution for optimal linear decision boundary.This is in fact equivalent to the pursuit of
an optimal linear representation of the features:

y ¼
X
j

wjxj

and an associated threshold b for optimal linear classification.
The linear feature representation is formulated as follows.Given a set of (sayN)M-

dimensional vectors, X¼ {x(1), x(2), . . ., x(N)}, each of which is known to belong to
either the positive class or the negative class, find an optimal linear combination of
features that best separates two classes of data samples. More exactly, we are to find
{w1,w2, . . .,wM} tobest classify the test vectors into twoclasses, dependingon the sign
of the discriminant function:

f ðxÞ ¼ wTx� b:

For M-dimensional training vectors, the decision boundary represents an (M� 1)-
dimensional hyperplane.

In fact, linear classifiers via supervised training have a long history.

1. Rosenblatt’s perceptron [10] was the first neural classifier proposed in 1958.

2. Least squares or MMSE formulation is to best approximate the teacher values.

3. Fisher’s discriminant [11] laid the groundwork for statistical pattern recogni-
tion in 1936.

4. SVM developed by Vapnik [12] in 1995 and by Boser et al. [13] in 1992.

Onewould be naturally concerned that the restriction to linear classification could
render the proposedmethods in this chapter to have very limited application domains.
Indeed, in general, the best prediction result can only be achieved via using a more
sophisticated nonlinear decision boundary.

Fortunately, linear classifiers often work well for most genomic data because they
usually posses a very low sample-to-feature ratio. For example, the sample-to-feature
ratio for gene expression data is around 1:100 and that for vectorized data produced by
pairwise sequence (e.g., protein or DNA sequences) comparison is 1:1. It is well
known that linear classifiersworkwell under such situations. Therefore, it should be of
no surprise that the two inherently linear schemes, that is, the weighted voting and
wrapper approach,workwell forgenomic data. For example,Golub et al. [5] show that
the weighted votes of a set of informative genes yield a good prediction of a new
sample. More exactly, a 50-gene predictor derived in cross-validation tests correctly
assigned 36 of the 38 samples as either AML or ALL, while the remaining two were
labeled as uncertain (PS¼ 0.3).
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1.4.4 Comparison of Weighted Voting and Linear Classification

The advantage of weighted voting is that it is numerically stable; thus, it is preferable
especially when the number of samples is too small for conducting a robust statistical
estimation. The disadvantage of weighted voting, however, is that it fails to consider
redundancy among the features. Consequently, it could lead to a highly undesirable
scenario in which two highly redundant features get to vote twice (one vote from each
feature). This is very different from the optimal weighting strategy according to the
Bayesian classification. This can be best explained in Example 7.

Example 7. Without loss of generality, assume that we have two classes of data
represented by three features: x1, x2, and x3, and that x1 is preselected a priori. The
centroids for the positive and negative classes are [þ1, þ1, þ1] and [�1, �1, �1],
respectively. Assume that the two classes have the same intraclass covariance matrix:

1 0 0

0 1 E

0 E 1

2
64

3
75:

When E! 0, then all the features are statistically independent (in intraclass sense);
therefore, the optimal weighting will be one with the uniform weighting, w1¼ 1,
w2¼ 1, and w3¼ 1, a result derivable via either the weighted voting or the optimal
Bayesian classification. However, when E! 1, then the features x2 and x3 are highly
correlated or they have a high mutual redundancy. Notwithstanding, the weighted
voting approach would still reach a uniform weighting result, w1¼ 1, w2¼ 1, and
w3¼ 1, because it fails to take such redundancy into account. This can be effectively
handled by wrapper approaches based on linear classifier.

For example, features x2 and x3 are mutually dependent as shown in Fig. 1.11a . It
can be derived (omitted here) that the optimal Bayesian classification is [1 1 0] or
[1 0 1]. &

x2

x3

x2

x3

(b)(a)

Figure 1.11 (a) Equal weights are placed on x2 and x3. (b) When E! 1, x2 and x3 are highly

correlated or they have a highmutual redundancy. Theweighted voting approachwould fail to take

such redundancy into account. This can be effectively handled by wrapper approach based on

linear classifier, as discussed in Example 7.
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This example highlights the fact that theweakness of theweighted voting scheme lies
in its failure to consider the important role of redundancy. There are two possible
solutions:

1. Direct Solution. As shown in the above example, the weighted voting is very
effectivewhen the features are relatively independent. So, it would bewise that
weweed out those highly redundant features during feature selection, using for
example the notion of the innovation components. See Example 6.

2. Use a Wrapper Approach. In this case, an optimal linear classifier would have
taken into account the underlying redundancy. See Fig. 1.12.

1.4.5 SVM-Based Wrapper Methods—A Closed-Loop Approach

All of the linear classifiers mentioned earlier can be considered as candidates in the
wrapper approach. Nevertheless, the literature in genomic applications, especially
microarray data, seem to strongly favor the SVM approach.

It is nearly impossible to have an open-loop solution (in a closed form) to faithfully
reflect the exact optimal classification. Let us highlight this point via an example.
Suppose we haveM individual FDs, each representing the discriminative power of a
feature. A closed-form criterion would mean that there exists a function of the FDs:
f(FD1, FD2, . . ., FDM), for example,

P
i FDi, which can be used as a bona fidemeasure

of the classification performance. Unfortunately, it is a naive and impractical goal. In
practice, there exists no such function f(FD1, FD2, . . ., FDM)meeting the full spectrum
of applications. Even with the benefit of the statistically independent assumption, the
pessimistic assessment will remain true.

Feature selection Classification
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Figure 1.12 (a) The architecture of wrappers. The classifier acts as amaster guiding the feature

selection process. (b) Linear separable case in which x2 will be chosen over x1.

SUPERVISED FEATURE SELECTION AND EXTRACTION 25



The fact that therewill be no easy-to-apply open-loop criterion necessitates the use
of closed-loop solution. This would incur an enormous amount of computation costs,
because classification performance is used as critical feedbacks to assess whether the
final feature subset can truly deliver an optimal performance (see Fig. 1.12). This
feedback strategy is adopted by most wrapper approaches to be discussed in this
subsection. Briefly, assuming that the full set (FS) of features delivers the best
accuracy, our goal is to find a subset (SS) of features such that

jAðFSÞ�AðSSÞj
is minimal, where A(�) stands for accuracy.

Because the ultimate goal of feature selection is to increase classification accuracy,
it is intuitive to choose a particular classification method and use its parameters or its
performance on training data to guide the feature selection process (see Fig. 1.12a).
Typically, this is done by selecting a subset of features and evaluating its performance
on the chosen classifier, and the process is repeated until the best performing subset is
obtained.Methods based on this approach are known aswrappers in the literature [14].

From the structural dependence perspective, this approach is very much unlike the
filter approach, the feature selection strategydepends on the classifier adopted. In fact,
the classifiers in wrappers act as the master guiding the feature selection process.

A number of wrapper approaches have been proposed for bioinformatics data
mining:

. SVM Approach. This kind of approach includes the recursive feature elimina-
tion (RFE) [15] and recursive SVM [16, 17].

. Nearest Neighbor Approach. A typical example of this approach is the ReliefF
[18].

This subsection will focus on the SVM-RFE approach.

SVM-RFE. Guyon et al. [15] proposed a backward elimination algorithm, namely,
SVM-RFE, that ranks features based on the weights of a linear SVM. The algorithm
begins with using the full-feature training vectors xi 2 RD0 to train a linear SVM.
Features are then ranked by sorting the square of the SVM’s weights fw2

j gD0

j¼1
in

descending order, where the weight vector is given by

w ¼
X

i2SVaiyixi; w 2 RD0 : ð1:13Þ

Asubset of features corresponding to the endof the sorted list (i.e., thosewith smallw2
j )

is then removed.4 The remaining features are used to construct a new set of training
vectors xi 2 RD1 , where D1<D0. These vectors are then used to train another linear
SVM and the process is repeated until all features have been eliminated. At the end of

4Intuitively, a small weight wj means that the jth axis in the feature space is irrelevant to classification and
can be removed without affecting performances.
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the iterative process, a ranked list of features is produced. Figure 1.13 compares the
performance of SVM-RFE, FDR, and the fusion of SVM-RFE and FDR.

1.5 FEATURE SELECTION VIA VECTOR-INDEX-ADAPTIVE SVM
FOR FAST SUBCELLULAR LOCALIZATION

The comparison of two temporal sequences is often hampered by the fact that two
sequences often have different lengths whether or not they belong to the same family.
To overcome this problem, pairwise comparison between a sequence and a set of
known sequences has been a popular scheme for creating fixed-size feature vectors
fromvariable-length sequences [2, 19, 20]. This process is referred to as vectorization.
Suppose that we haveM sequences, then each sequence is converted into a (column)
vector of dimensionM with entries representing the pairwise similarity between that
sequence and all of the M sequences. In total, there will be M such M-dimensional
(column) vectors. For example, in Fig. 1.14, three sequences S(1), S(2), and S(3) are
converted to three three-dimensional column vectors. Together these vectors form an
M�M matrix, named the kernel matrix.

In the previous sections, we have constantly used an axis to represent a feature, and
therefore, feature selection/elimination means axis selection/elimination. Note that
under the pairwise kernel representation, we have as many features as vectors. Then,
does a feature correspond to an axis or a data point? The somewhat surprising answer
is: both, because the symmetrical kernel matrix exhibits a useful reflexive property,
which is best illustrated by an example shown in Fig. 1.15. It can be advantageous to
harness such a symmetry property, which motivates the discussion of this section.
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Figure 1.13 Performance of FDR, SVM-RFE, R-SVM, and the fusion of FDR and SVM-RFE in

the subcellular localization task.
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The downside of using such symmetry property is that the feature dimension is the
same as the number of training patterns. In fact, for the applications addressed in this
chapter, they are in the range of several thousands. Therefore, such curse of
dimensionality could hurt both training and recognition speed. Because a large
number of sequences are being added to sequence databases on a daily basis, it is
imperative to design feature selectionmethods that canweed out irrelevant features to
reduce training and recognition time.

In this section, we propose a method that makes use of the symmetric property of
pairwise scoring matrices to select relevant features. The method considers
the columns of a pairwise scoring matrix as high-dimensional vectors and uses
the column vectors to train a linear SVM. Because of the symmetric property of the
score matrix, the row vectors with row indexes equal to the support vector indexes are
identical to the support vectors. Also, because the support vectors define the decision
boundary and margins of the SVM, they are critical for classification performance.
Therefore, the support vector indexes are good candidates for selecting features for the
columnvectors, that is, only the rowscorresponding to the support vectors are retained.
The column vectors with reduced dimensions are then used to train another SVM for
classification. Because the indexes of support vectors are used for selecting features,
we referred this method to as vector-index-adaptive SVM, or simply VIA-SVM [26].
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Figure 1.14 Vectorizing sequences. Because strings are composed of alphabets and have

different lengths, they need to be converted to vectors of the same dimension for classification via

kernel methods.

Figure1.15 Symmetry (reflexive)propertyof pairwisedata. (a)Table showing the feature/sample

data. (b) Features are displayed as axes and samples as data vectors. (c) Features are displayed

as data vectors and samples as axes.
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Later in the section,we shall compare theVIA-SVMwithGuyon et al.’s SVM-RFE
[15] in a subcellular localization benchmark and show that the VIA-SVM not only
avoids setting a cutoff point but also is insensitive to thepenalty factor inSVMtraining.

1.5.1 Pairwise Scoring Kernels

Denote D ¼ fSð1Þ; . . . ; SðTÞg as a training set containing T protein sequences. Let us
further denote the operation of PSI-BLAST5 search given the query sequence S(i) as

fðiÞ � fðSðiÞÞ : SðiÞ!fPðiÞ;QðiÞg;

where P(i) and Q(i) are the PSSM and PSFM of S(i), respectively.6 Because these
matrices are based on the information of a large number of sequences that are similar to
the query sequence, they contain rich information about the remote homolog of the
query sequence, which may help improve the prediction of subcellular locations and
protein functions. Given the profiles of two sequences S(i) and S(j), we can apply the
Smith–Waterman algorithm [23] and its affine gap extension [24] to align P(i), Q(i),
P(j), and Q(j) to obtain the normalized profile alignment score z(f(i), f(j)).7

The scores fzðfðiÞ;fðjÞÞgTi; j¼1 constitute a symmetric matrixZwhose columns can
be considered as T-dimensional vectors:

zðjÞ ¼ ½zðfð1Þ;fðjÞÞ � � � zðfðTÞ;fðjÞÞ�T; j ¼ 1; . . . ; T : ð1:14Þ

An M-class protein prediction problem can now be solved by M one-versus-rest
SVMs:

fmðSÞ ¼
X

j2Smym; jam; jKðfðSÞÞ; fðS
ð jÞÞÞþ bm; ð1:15Þ

where S is an unknown sequence, m¼ 1, . . ., M, ym, j2 {þ1, �1}, Sm contains the
indexes of support vectors, am, j are Lagrange multipliers, and

KðfðSÞÞ;fðSðjÞÞ ¼ gðz; zðjÞÞ

is a kernel function.
Nowwemay consider the columnsof a pairwise scoringmatrix as high-dimensional

vectors. Thismeans that there areT featurevectorswith dimension equal to the training

5To efficiently produce the profile of a protein sequence (called query sequence), the sequence is used as a
seed to search and align homologous sequences from protein databases such as SWISSPROT [21] using the
PSI-BLAST program [22].
6The homolog information pertaining to the aligned sequences is represented by two matrices (profiles):
position-specific scoring matrix (PSSM) and position-specific frequency matrix (PSFM). Both PSSM and
PSFM have 20 rows and L columns, where L is the number of amino acids in the query sequence.
7See http://www.eie.polyu.edu.hk/�mwmak/BSIG/PairProSVM.htm.
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set size. The T T-dimensional columnvectors can be used to trainM SVMs. Because of
the high dimensionality, linear SVM is a preferred choice, that is, gðz; zðjÞÞ ¼ hz; zðjÞi.
The class of S can then be obtained by yðSÞ ¼ arg maxMm¼1 fmðSÞ, where M is the
number of classes.

1.5.2 VIA-SVM Approach to Pairwise Scoring Kernels

The pairwise approach always results in feature vectors with extremely high dimen-
sions. This creates a problem known as the curse of dimensionality. An obvious
solution is to reduce the feature size and yet retaining the most important information
critical for classification. The challenge thus lies in how to effectively determine those
relevant features. The approaches mentioned in Section 1.4 do not make use of the
symmetric property of the pairwise scoring matrices in the selection process (the
symmetric property is illustrated in Fig. 1.16), because they are designed for general
cases. In fact, they are primarily designed for gene selections inmicroarray datawhere
expression matrices are neither square nor symmetric. However, it can be advanta-
geous to adopt a feature selection method that is tailor designed for the pairwise
scoring vectors.

To design a feature selection algorithm for pairwise scoring vectors, we need to
exploit the reflexive property of pairwise scoring matrices. The idea is based on the
notion that support vectors are important for classification and pairwise scoring
matrices are symmetric. (Namely, the elements of the ith column of Z are identical to
those in the ith row.) This suggests a possible hypothesis:

Figure1.16 Profile alignment scorematrixZ ¼ fzðfðiÞ;fðjÞÞgTi ; j¼1. The trainingvectorshavebeen

prearrangedsuch that thevectorsbelonging to thesameclassareall grouped together, that is , they

are consecutively indexed. The three vertical lines were artificially added to divide the column

vectors into four classes.
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Hypothesis.. The support vector indexes are good candidates for selecting features for
thecolumnvectors, that is, only the rows corresponding to the support vectorsare retained.

Heuristically, due to the symmetry property, if the jth vector is a critical (support-
ing) vector for the decision boundary, then the jth feature would also be a critical
feature and therefore should be selected. We refer to this selection scheme as vector-
index-adaptiveSVM,or simplyVIA-SAM. In fact, our simulation results also strongly
support this hypothesis.

1.5.2.1 Why Consider Only Support Vectors? In VIA-SVM, the support
vector indexes are reused as feature selection indexes. The use of support vectors to
select relevant features is intuitively appealing because they are “critical” for estab-
lishing thedecisionboundaryofSVMclassifiers.Becauseof the symmetrical property
of kernel matrices, the elements of the ith column of Z are identical to those in the ith
row. If the ith column of Z happens to be a support vector, the corresponding feature
dimension (the ith row of Z) will also be critical for classification. However,
nonsupport vectors are irrelevant for classification, so are their corresponding feature
dimensions.

The diagonal dominance implies that a large value of ai in Equation 1.34 is likely to
lead to a large value of wi. By the same token, the nonsupport vectors are those that
correspond to ai¼ 0, and therefore their corresponding weight values wi are more
likely to be smaller. Therefore, only those features corresponding to ai4 0 are
considered for selection. Those corresponding to ai¼ 0 will be eliminated automati-
cally. This concept is further elaborated in Fig. 1.17.
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Figure1.17 Diagram illustratinghowVIA-SVMuses thevaluesof Lagrangemultipliers aj to select
features. The vertical bars represent support vectors z( j) and the weight vector w, and the

magnitude of the vector components are proportional to the thickness along the bars. It is assumed

that the matrix Z has been normalized such that all diagonal elements are equal to 1.
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The above interpretation of VIA-SVM is consistent with how SVM-RFE selects
features in that, in both methods, indexes with large weight will be chosen first.
Moreover, they both prune the vectors/features corresponding to zero ai. However,
there is also an important difference, which lies in the treatment of thevectors/features
corresponding to nonzero ai. More exactly, in VIA-SVM, different types of support
vectors receive different levels of preferences.

1.5.2.2 Differential Treatments of Support Vectors Because the SVM-
RFE takes the overall weight vector w into account, it only considers the Lagrange
multipliersaibut not the slack variables xi. In contrast, theVIA-SVMconsiders bothai
(related to SV) and xi (indicates safety margin or, sometimes, outlier). In this sense,
the VIA-SVM offers a more comprehensive coverage of all the critical factors
made available by the SVM classifier.

It is important to recognize the fact that not all SVs are created equal. Therefore, in
the VIA-SVM, support vectors are differentially treated. In fact, they are divided into
four levels of preferences as specified by the four regions in Fig. 1.18:

Level 1 Most-Preferred. The SV is on the margin, that is, 0< ai<C and xi¼ 0,
where C is the penalty factor in SVM training.

Level 2 Preferred. The SV is in the fuzzy region and on the correct side of the
decision boundary, that is, ai¼C and 0< xi< 1.

Level 3 Marginally Preferred. The SV is in the fuzzy region but on the wrong side
of the decision boundary, that is, ai¼C and 1� xi< 2.

Level 4 Nonpreferred. The SV is regarded as an outlier, that is, ai¼C and xi	 2.

The reasonof ruling out the outlier SVs is self-explanatory. The decision to have the
marginal support vectors assigned the highest preference level can be justified on the
basis that they offer relatively higher confidence than the fuzzy SVs.
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Figure 1.18 The four levels of preferences for the support vectors in VIA-SVM. Regions 1–4

correspond to preference levels 1–4, respectively.
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Although it appears that two parameters (ai and xi) are required to define the
preferences, xi alone can already provide sufficient information to determine the
preference level of an SV.8 In fact, the preference decreases with increasing xi. More
exactly, xi¼ 0, 0< xi< 1, 1�xi< 2, and 2� xi<¥ define Level 1 to Level 4,
respectively (cf. Fig. 1.18).

1.5.3 The VIA-SVM Algorithm

Feature selection in VIA-SVM is divided into two steps:

Step 1 The scorematrixZ ¼ fzðfðiÞ;fðjÞÞg is used to trainM SVMs (Eq. 1.15) from
whichM sets of support vector indexes Sm are determined. This results in a set
of support vectors zðjÞ ¼ ½zðfð1Þ;fðjÞÞ . . . zðfðTÞ;fðjÞÞ�T for each class, where
j2 Sm.

Step 2 For themth class, the indexes in Sm are used to select the feature dimensions
(rows of Z) of the column vectors to obtain vectors x0( j) of reduced
dimensions, where j¼ 1, . . ., T. These vectors are then used to train another
SVM for classification. This process is repeated for all classes.

These two steps are iterated N times (five times in this work). Specifically, the
features selected at the nth iteration are used to train a new SVM in the (nþ 1)th
iteration, whose support vectors are subsequently used for determining the feature set
in the (nþ 2)th iteration, and so on. The classification accuracy of the training data at
each iteration is recorded. At the end of the Nth iteration, the support vectors of the
SVMwith the highest training accuracy are used for selecting the final set of features.
The column vectors with reduced dimensions are then used to train another SVM for
classification. Figure 1.19 shows the pseudocode of VIA-SVM.

1.5.3.1 Level-Dependent VIA-SVM Selection Strategies For the actual
implementation, it is worth noting that not all SVs are created equal. Here, we propose
four level-dependent VIA-SVM selection strategies:

Strategy 1 (Level 1 only) Select the most-preferred SVs, that is, select only the
“pure” marginal SVs (ai<C) while excluding those fuzzy and outlier
SVs (ai¼C).

Strategy 2 (Levels 1 and 2) Select the correctly classified SVs only, that is, select the
“pure” marginal SVs (ai<C) and the correctly classified SVs that are
falling on the fuzzy region (ai¼C and 0< xi< 1).

Strategy 3 (Levels 1–3) Remove the nonpreferred outlier SVs, that is, only keep
those SVs with xi< 2.

8Under some rare situations in which extremely small numbers of features are desirable, we may use ai to
further divide Level 1 into sublevels. However, this subdivision is unlikely to be useful in bioinformatic
applications.
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Strategy 4 (Levels 1–4) Select ALL SVs, that is, select all marginal and fuzzy SVs
with 0< ai�C.

Experiments on subcellular localization support that Strategies 2 and 3 appear to
produce the best performance.

1.5.3.2 Comparing VIA-SVMand SVM-RFE Although both VIA-SVM and
SVM-RFE are based on SVMs, they do have an important difference in terms of
information used. Figure 1.20 illustrates the information used by VIA-SVM and
SVM-RFE in selecting and ranking features. Clearly, SVM-RFE uses the weight

Quadratic
programming
optimization

Decision
boundary

computation

VIA-SVM SVM-RFE

},{ ii
}{w

Training
data

Figure 1.20 Algorithmic difference between VIA-SVM and SVM-RFE. The former uses the

Lagrange multipliers ai and slack variables xi, whereas the latter uses the weight vector w.

Algorithm VIA-SVM

Input:

Initialization: X’ = X;

for k = 1 to N
do

// Train an SVM to obtain the indexes to the support vectors in i
[ , b, i] = SVM_train(X’, y, C);

// Find the support vector indexes j such that
// where 

j{k} = find_sv_index(X’, y, C, , b, i);

// Select a feature subset based on the selected support vector indexes
X’ = X(j{k}, :);

// Train another SVM based on the selected features
[ , b, i] = SVM_train(X’, y, C);

// Computing classification accuracy on training data
a(k) = SVM_test(X’, y, , b, i);

end
Output:
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Figure 1.19 Pseudocode of VIA-SVM.
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vectorw, whereas VIA-SVMuses the Lagrangemultipliers ai and slack variables xi.
In terms of the usefulness of the respective parameters, there are key similarity and
difference:

. Similarity. Because of the symmetric property and diagonal dominance of the
scoring matrix Z, a large ai will lead to a large wi, as exemplified in Fig. 1.17.
Therefore, when all training samples are linearly separable, that is, xi¼ 0 8i,
VIA-SVM and SVM-RFE share a similar feature selection strategy. Such a
similarity will play a role when ai have different values (cf. Region 1 in
Fig. 1.18). However, such situation can only occur in the ideal, linearly separable
case.

. Difference. In reality, most training samples are not linearly separable even in
the kernel space. In such cases, many support vectors satisfy ai¼C and xi40,
that is, they belong to Regions 2–4 in Fig. 1.18. The problem is that SVM-RFE
offers no means to directly differentiate the three regions; particularly, it cannot
discriminate whether the support vectors are outliers or not, because they all
share the same constant ai¼C. In contrast, VIA-SVM is sensitive to the value of
xi4 0. In particular, the VIA scheme uses xi to divide support vectors into three
levels of preferences (Levels 2–4 in Fig. 1.18) when ai¼C. The uses of xi to
select support vectors (features) is intuitive appealing becausewhen xi4 0, ai—
which is a constant—can no longer provide information regarding the degree of
relevance of a feature. This additional information provided by xi plays an
important role in selecting more vital and “relevant” features and disregarding
the “misleading” (i.e., outlier) ones.

1.5.4 Combined with Other Selection Schemes

1.5.4.1 Redundance Removal for VIA-SVM A common weakness of both
VIA andRFE approaches is that they do not explicitly consider the redundancy factor.
This will result in wasteful selection because some of the selected features can be
either repetition of each other or highly redundant. To minimize feature redundancy,
we propose two pruning methods for VIA-SVM.

1. Euclidean Distance. For those support vectors in Region 2 or 3, their pairwise
Euclidean distances (eDist) in the reduced kernel space (defined by the selected
feature dimensions) are examined. If two features (with similar xi) are close to
each other, one of them may be removed without affecting the decision
boundary. The degree of closeness can be defined by multiplying the average
distance of all support vectors by a user-defined constant h. More specifically,
we remove feature j if dðzðiÞr ; zðjÞr Þ < h�d; where �d represents the average
distance and the subscript r signifies that the distance is evaluated in the
reduced kernel space.

2. K-Means. Support vectors that have similar xi in Region 2 or 3 are clustered by
K-means in the reduced kernel space. The SVs closest to the centers are retained
and all remaining SVs in Regions 2 and 3 are removed.
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If the allowable number of features is very small, the redundance-reduced feature set
can be further pruned by a filter method such as symmetric divergence. Results of
cascading VIA-SVM, redundance removal, and feature pruning will be shown in
Section 1.5.5.

Note that while SVM-RFE can also apply a postprocessing redundancy removal
selection process (such as applyingK-means or double checking the similarity score in
the kernel matrix), it does not enjoy the numeric information provided by xi.

1.5.4.2 Fusion of Selection Criteria It is natural to combine/consider both
the filter and wrapper methods in order to reach an optimal strategy. Specifically, the
features and/or criterion functionsobtained from the filter andwrappermethods canbe
combined via a cascaded fusion scheme shown in Fig. 1.21.

It is desirable to seek an optimal compromise between accuracy and cost. A
possibility is via a comprehensive selection procedure comprising two consecutive
phases. Here, we refer to these procedures as overselect-and-prune strategy. The
strategy has two steps.

Step 1 OverselectionPhase. This is a stage inwhich only those obviously irrelevant
features are quickly weeded out. Preferably, it involves a quick and coarse
(suboptimal) evaluation, for example, individual ranking. The goal is to have
most unwanted features filtered out while guarantee a retention rate of
the eligible features. This phase can be implemented via Criterion 1 of a
cascade architecture shown in Fig. 1.21.

Step 2 Pruning Phase. The second stage may serve as a fine-tuning process. The
goal is to remove redundant features with minimum information loss. If
major redundancy exists betweenA andB, then one of the twomay be pruned
without incurring much loss of information.9

1.5.5 Experiments on Subcellular Localization

Two data sets were used for evaluating the performance of VIA-SVM and for
comparing it against other feature selection algorithms. The first data set is provided
byReinhardt andHubbard [3]. It comprises 2427amino acid sequences extracted from

Criterion 1 Criterion 2

Figure 1.21 In the cascade fusion architecture, Criterion 1 is meant for coarse and fast over-

selectionandCriterion2 represents pruning. The threshold forCriterion1 canbemore relaxed (i.e.,

its valuedoesnot have tobevery close to theoptimal numberof features) to includemorecandidate

features for the second stage.

9The second stage may also serve as a second opinion. This can be implemented by a cascaded architecture
(Fig. 1.21) with two complementary criteria applied in series.More precisely, a feature can be retained only
if it has good scores in both criteria.
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SWISSPROT 3.3, with each protein annotated with one of the four subcellular
locations: cytoplasm, extracellular, mitochondrial, and nuclear. The second data set
was provided byHuang and Li [25]. It was created by selecting all eukaryotic proteins
with annotated subcellular locations from SWISSPROT 41.0 and by setting the
identity cutoff to 50%. The data set comprises 3572 proteins (622 cytoplasm, 1188
nuclear, 424 mitochondrial, 915 extracellular, 26 golgi apparatus, 225 chloroplast, 45
endoplasmic reticulum, 7 cytoskeleton, 29 vacuole, 47 peroxisome, and 44 lysosome).
Weused fivefoldcross-validation for performanceevaluation so that every sequence in
the data sets will be tested.

1.5.5.1 Performance of VIA-SVM Now let us discuss the case study results
based on the four selection strategiesmentioned in Section 1.5.3.1. Because Strategy 1
includes only very few SVs, the features are extremely underselected. In contrast,
because Strategy 4 includes all SVs regardless of their types, it is likely to cause
overselection, particularlywhen the penalty factorC is small. In Strategy 2, all the SVs
that are incorrectly misclassified will be excluded. However, this may lead to
underselection as there are some useful SVs falling on the fuzzy regions. Strategy
3 is a compromise between the overselection in Strategy 2 and the underselection in
Strategy 4. More exactly, Strategy 3 excludes all the outlier SVs. (The SVs lying
beyond the margin of the opposite class are deemed to be outliers.) In this strategy
misclassified SVs that liewithin themargin of separationwill still be selected, leading
to overselection, especially when the penalty factor C is very small.

Figure 1.22 shows the performance of Strategies 1–4 when the penalty factor C
varies from 0.004 to 4096. Note that the number of selected features (feature
dimension) is automatically determined by the SVMs. For each strategy, a smaller
penalty factorCwill generally lead to a larger number of features, and vice versa for
a largerC. Therefore, markers on the right region of the figure correspond mainly to
small C’s. The results show that the optimal number of features found by Strategy 4
is considerably higher than those found by the other strategies. Notwithstanding the
larger number of features, the maximum accuracy attained by Strategy 4 is still
lower than those achieved by the other strategies. This confirms our earlier
hypothesis that including all SVs will lead to overselection. Results also show
that Strategy 1 will lead to underselection when the penalty factor C becomes large.
These case studies suggest that Strategies 2 and 3, which exclude either the
nonpreferred SVs or both the marginally preferred and nonpreferred SVs
(cf. Fig. 1.18), seem to be the least sensitive to the penalty factor, because they
can keep the number of features within a small range and maintain the accuracy at a
constant level for a wide range of C.

1.5.5.2 Comparison Between VIA-SVM and SVM-RFE We compared the
proposed VIA-SVM (Strategy 2) with SVM-RFE [15] in the subcellular localization
benchmarks mentioned earlier.10 Note that SVM-RFE does not make use of the

10Because the performances of SVM-RFE, R-SVM, and symmetric divergence are comparable in the two
benchmarks, we only report the results of SVM-RFE for clarity of presentation.
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Figure 1.22 Prediction performance of different strategies of VIA-SVM on (a) Reinhardt and

Hubbard’s data set and (b) Huang and Li’s data set when the penalty factorC varies from 0.004 to

4096. See Section 1.5.5 for details of the strategies.
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symmetric property of the pairwise scoring matrices in the selection process, because
it is primarily designed for gene selections in microarray data where expression
matrices are neither square nor symmetric.

Figures 1.23 and 1.24 show the performance of SVM-RFE (–&– and VIA-SVM
(*). Evidently, VIA-SVM is superior to SVM-RFE in two aspects: (1) It outperforms
SVM-RFE at almost all feature dimensions, particularly at low feature dimensions,
and (2) it automatically bounds the number of selected features within a small range.
A drawback of SVM-RFE is that it requires a cutoff point for stopping the selection.
However, VIA-SVM is insensitive to the penalty factor in SVM training and can avoid
the need to set a cutoff point for stopping the feature selection process.

1.5.5.3 FusionofVIA-SVMandSD Givenaparticularaxis,whichcorresponds
to one feature, two factors can be considered: VIA-SVM parameters (C and xi) and
symmetric divergence of feature i (SDi). We adopt the overselect-and-prune cascaded
fusion architecture, as proposed in Section 1.5.4.2, to combine VIA-SVM and SD.
Based on this cascade fusion strategy, the selection process is divided into two stages.
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Figure 1.23 Prediction performance of SVM-RFE, VIA-SVM, and VIA-SVM cascaded with

various pruning methods on Reinhardt and Hubbard’s data set. (a) The VIA-SVM uses Strategy

2 for feature selection. (b) Strategy 3 was used. (c) The means and standard derivations (in

parentheses) of the classification accuracies and feature dimensions for 21 penalty factors ranging

from0.004 to 4096; forSVM-RFE in (c), themeansand standardderivationsarebasedon11 points

in (a) and (b)whose feature dimensions range from95 to 591. Pruningwas applied according to the

order indicated in the legend; for example, ‘‘VIA-SVMþeDistþSD’’ means that the features

selected by VIA-SVM were pruned by eDis-based method followed by the symmetric divergence-

based method.
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DimensionFeature(%)Accuracy

3Strategy2Strategy3Strategy2StrategyMethod

(183.18)370(125.20)299(0.28)97.90(0.42)97.96VIA-SVM

(128.18)259(87.60)210(0.28)97.96(0.32)97.84VIA-SVM + SD

(71.00)261(56.02)230(0.19)98.03(0.32)98.05VIA-SVM + eDist

(28.81)166(23.47)161(0.34)97.68(0.58)97.65VIA-SVM + Kmean

(49.69)183(39.16)161(0.35)97.92(0.24)97.82VIA-SVM + eDist+SD

116(16.49)112(0.48)97.19(0.55)97.30VIA-SVM + Kmean + SD (20.24)

(163.23)279(1.04)96.81SVM-RFE

dimensionfeatureandAccuracy(c)
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Figure 1.23 (Continued ).

40 FEATURE SELECTION FOR GENOMIC AND PROTEOMIC DATA MINING



100 150 200 250 300 350 400 450 500 550 600
70

70.5

71

71.5

72

72.5

73

73.5

74

74.5

75

Feature dimension

O
ve

ra
ll 

ac
cu

ra
cy

 (
%

)

SVM−RFE
VIA−SVM
VIA−SVM + SD
VIA−SVM + eDist
VIA−SVM + K mean
VIA−SVM + eDist + SD
VIA−SVM + K mean + SD

(a) Strategy2

100 150 200 250 300 350 400 450 500 550 600
70

70.5

71

71.5

72

72.5

73

73.5

74

74.5

75

Feature dimension

O
ve

ra
ll 

ac
cu

ra
cy

 (
%

)

SVM−RFE
VIA−SVM
VIA−SVM + SD
VIA−SVM + eDist
VIA−SVM + K mean
VIA−SVM + eDist + SD
VIA−SVM + K mean + SD

(b) Strategy3

Figure 1.24 Same as Fig. 1.23 but based on Huang and Li’s data set. For SVM-RFE in (c), the

means and standard derivations are based on nine points in (a) and (b) whose feature dimensions

range from 114 to 492.
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Stage 1 Use VIA-SVM (Strategy 2 or 3) to select all-but-outlier SVs, that is, only
keep those with xi< 2.

Stage 2 Use SD to sort the features found in Stage 1 and keep the most relevant x%.

In this work, we set x to 70. Figures 1.23 and 1.24 show the fusion results (�), which
suggest that fusion can produce more compact feature subsets without significant
reduction in prediction accuracy. We also note that although VIA-SVM is inferior to
SVM-RFE for large feature-set size, the combination of SD and VIA-SVM performs
better at small feature-set size.

1.5.5.4 Redundance Removal The eDist- and K-means-based methods
mentioned in Section 1.5.4.1 were applied to reduce the redundance among the
features selected by VIA-SVM. For the former, the constant h was set to 0.3; for the
latter, the number of centers in K-means was set to 100 for Reinhardt and Hubbard’s
data set and 300 for Huang and Li’s data set. The setting of these values was based on
the observation from Fig. 1.22 that the accuracy drops rapidly when the number of
features is smaller than these values. The results (þ and 
) shown in Figs 1.23 and 1.24
suggest that both methods can reduce the feature size without scarifying accuracy.
This once again demonstrates the merit of using the slack variables xi in selecting
features.

To further reduce the feature size, we applied SD to prune the features after
redundance removal. Figures 1.23 and 1.24 (! andK) show that the resulting feature
sets achieve a significantly higher accuracy when compared with SVM-RFE.

DimensionFeature(%)Accuracy

3Strategy2Strategy3Strategy2StrategyMethod

(55.77)445(17.22)348(0.27)73.48(0.38)73.23VIA-SVM

(39.01)312(12.07)244(0.41)73.12(0.51)72.66VIA-SVM + SD

(22.69)408(27.77)332(0.29)73.56(0.42)73.23VIA-SVM + eDist

(61.84)327(65.29)296(0.48)73.26(0.47)73.09VIA-SVM + Kmean

(15.83)286(19.35)232(0.27)73.63(0.47)73.11VIA-SVM + eDis + SD

229(45.76)207(0.71)72.93(0.78)72.73VIA-SVM + Kmean + SD (43.39)

(129.10)264(1.45)71.90SVM-RFE

Accuracy and feature dimension(c)

Figure 1.24 (Continued ).

.
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The tables in Figs 1.23c and 1.24c compare Strategy 2 and Strategy 3 in terms of the
mean accuracy and mean feature dimension obtained by VIA-SVM and VIA-SVM
cascaded with various pruning methods. Three observations can be obtained from
these tables:

1. For each pruning method, there is no significant difference between the
accuracy obtained by Strategies 2 and 3.

2. Strategy 2 generally leads to a smaller number of features than Strategy 3 with
almost the same performance statistically.

3. SVM-RFE not only gives lower average accuracies but also leads to a larger
variation in both accuracy and feature dimension.

These observations suggest that Strategy 2 is a winner because it can keep the number
of features to aminimumwithout scarifying accuracy. Strategy 2 is also a better choice
for applications where feature dimension (and hence recognition time) should be kept
to a minimum. However, for applications where accuracy is of primary importance,
Strategy 3 is a better option.

1.5.5.5 RangeofDesirableFeatureDimension Inmost pattern recognition
problems, a smaller feature size can result in faster recognition speed, but at the
expense of lower classification accuracy. The opposite situation occurs for large (but
not excessively large) feature size. We advocate that there is a range of desirable
feature dimension for a particular problem and that whether the lower or upper limit of
the range should be used depends on the applications. For example, in biometric
applicationswhere real-time recognition is essential, wemay opt forminimum feature
size that produces the best compromise between recognition speed and accuracy.
However, in bioinformatic applications where accuracy is far more important than
speed, wemay prefer using the upper limit that gives high accuracy but not to the point
that causes the curse of dimensionality. This notion of desirable range of feature
dimension is highlighted by the dashed rectangles in Figs 1.23 and 1.24. Evidently, the
redundance removal and the cascade fusion of VIA-SVM and SD enable us to find the
feature sizes falling on the desirable range. In particular, when recognition speed is a
concern, we can overselect features by using VIA-SVM (Strategy 2 or 3) and then
remove feature redundance by using K-means, and finally, we can further prune the
features by using SD (“VIA-SVMþKmeanþ SD”). On the other hand, if accuracy is
more important, we may skip the final pruning stage, that is, using “VIA-SVMþ
Kmean”, or do not use pruning at all.

1.6 CONCLUSION

This chapter discusses the feature selection methods from many different aspects,
including selection criteria, the order of feature selection, and open-loop (filter-type)
and closed-loop (wrapper-type) approaches.
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A special method (VIA-SVM) designed exclusively for pairwise scoring kernels is
introduced. This is the first method that fully utilizes the reflexive property uniquely
available in this scenario. Based on several subcellular localization experiments, the
VIA-SVM when combined with some filter-type metrics appears to reach a signifi-
cantly dimension reduction (one-order of magnitude) while conceding minimum
sacrifice of accuracy.

It is well known that fusion of complementary criteria or methods can substan-
tially enhance classification performance. While this chapter has offered several
exemplar cases of successful fusion, there are still more variants of fusion tech-
niques that need to be pursued. This appears to be a promising direction worth
further investigation.
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