
Desktop Weather

Planning a trip to the beach, the mountains, or just a day of work in the yard? Most people want to
know what the weather forecast will hold for the next several days so they can plan their outdoor
activities accordingly. If you are at work, you may simply want to know what the current tempera-
ture is so you can plan that walk at lunchtime. Weather plays an important factor in most everything
we do. How many people in a hurry turn on the evening news just to catch the weather forecast for
the next several days?

The Desktop Weather program provides this information on your computer, where most of us
spend our days working. Want to know what the current temperature is? With the Desktop
Weather program you can simply look down at the temperature icon in the system tray. Want to
know what Mother Nature holds in store for the next several days? Double-click the Desktop
Weather’s temperature icon in the system tray to display the Desktop Weather form showing the
seven-day forecast.

In this chapter you will learn how to customize the Desktop Weather program, which uses a
Web Service to retrieve the weather data for your area. This program uses the Web Service created
by the National Weather Service in the United States to provide weather data for the United States.
However, if you live in another country, you can adapt the Desktop Weather program to use a Web
Service from anyone who provides weather information in your country.

Some of the technologies included in the Desktop Weather program are as follows:

❑ Accessing a Web Service

❑ Accessing a Web site programmatically

❑ Reading XML

❑ Using application and user settings in the app.config file

❑ Using the NotifyIcon class to create an icon in the system tray

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Using the Desktop Weather Program
The Desktop Weather program can be started whenever you want or you can copy the program to your
startup folder and have the program start when you log onto your computer. The section “Configuring
the Application” at the end of this chapter describes how to add the program to your startup folder.

When the Desktop Weather program is started, it places a notification icon in the system tray with a tem-
perature reading of 0º Fahrenheit. The program then checks to see whether a zip code has been saved in
the application’s user configuration file. If a zip code has not been saved in the user configuration file, the
Desktop Weather form is displayed with the default label text and zeroes for the temperature, as shown
in Figure 1-1.

Figure 1-1

Once a zip code has been entered, the program will save it in the application’s user configuration file and
then make a call to the National Weather Service’s Web site to retrieve the current forecast and then to the
National Weather Service’s Web Service to retrieve the seven-day forecast. This information is then updated
on the form and the form’s icon is updated with the current temperature, as shown in Figure 1-2.

Figure 1-2

2

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 2

In addition to updating the form’s icon, the notification icon displayed in the system tray is updated
with the current temperature, as shown in Figure 1-3. When you hover your mouse over the notification
icon in the system tray, a tool tip is displayed with the text Desktop Weather.

To display the Desktop Weather form, you can either double-click the notification icon or right-click the
notification icon to view its context menu, shown in Figure 1-3. Note that clicking the X in the upper
right-hand corner of the Desktop Weather form merely hides the form and does not stop the program.
To stop the program, you must select Exit from the context menu (refer to Figure 1-3).

Figure 1-3

The Desktop Weather program will try to find the closest weather observation station for your zip code.
It shows the source of the weather information in the lower left-hand corner of the Desktop Weather
form shown in Figure 1-2. However, the weather observation station chosen may not be the closest
observation station for your zip code.

Clicking the hyperlinked label on the form opens the Observation Stations dialog box shown in Figure 1-4.
You can scroll through this list and choose the closest observation station for your zip code. After you click
OK, the Desktop Weather program will retrieve the data from the observation station selected and update
the current and seven-day forecast on the Desktop Weather form.

Figure 1-4

That covers the basics of how the Desktop Weather program works from a user’s perspective. The next
few sections describe the design of the Desktop Weather program and then we will dive into the details
of how the code works.

Design of the Desktop Weather Program
The design of the Desktop Weather program is such that all of the heavy lifting of this program is done by
classes that are distinct and separate from the Desktop Weather form that is considered the main program.

3

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 3

All of the classes used in this program have been consolidated into a Weather namespace, making it easier
to use and locate the appropriate classes in the main program and in your own programs.

Additionally, the design allows for customization of the classes without affecting the main program.
Thus, you can choose to use another Web Service to get your weather data and then just customize the
WeatherData class that accesses and uses the Web Service data without affecting the main program.

Figure 1-5 shows the forms and classes used and how they relate to one another. The following sections
go into the details of the main program and these classes.

Figure 1-5

Main Program
The Desktop Weather program is the core of the application. This is the form that displays the weather
data and the program that makes the calls to the WeatherData class to retrieve the current and seven-
day forecast. This program also enables you to display the Observations Stations dialog box so you can
select the weather observation station from which you want weather data. Not every zip code has an
observation station so this form enables you to choose an observation station in a city close to your zip
code. Observation stations report the current weather conditions and send this information to the
National Weather Service.

4

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 4

The main program is also responsible for creating the notification icon in the system tray, creating the
context menu used by the notification icon, and calling the methods in the WeatherData class every half
hour to update the weather data.

The main program is as simple as that. It contains very few procedures, and provides the application
with the basic user interface. All of the real work happens in the WeatherData class.

Classes
There are four classes in this program: WeatherData, CurrentForecast, DailyForecasts,
and DailyForecast. The CurrentForecast class contains the current forecast data, while the
DailyForecast class contains the forecast for a specific day. The DailyForecasts class contains a
collection of DailyForecast classes that make up the seven-day forecast. The majority of the logic in
this application lies in the WeatherData class, as indicated in Figure 1-5.

CurrentForecast Class
The CurrentForecast class merely contains a set of public properties that are set by the WeatherData
class and read by the Desktop Weather form. Thus, the CurrentForecast class is more or less a repository
for data. Table 1-1 details the public properties in this class.

Table 1-1: Public Properties of the CurrentForecast Class

Continued

Property Return Type Description

Conditions String The current weather conditions

DewpointCelsius Integer The current dew point in Celsius

DewpointCelsiusString String The dew point formatted as a string with the
degree sign and the letter C

DewpointFahrenheit Integer The current dew point in Fahrenheit

DewpointFahrenheitString String The dew point formatted as a string with the
degree sign and the letter F

HeatIndexCelsius Integer The current heat index in Celsius

HeatIndexCelsiusString String The heat index formatted as a string with the
degree sign and the letter C

HeatIndexFahrenheit Integer The current heat index in Fahrenheit

HeatIndexFahrenheitString String The heat index formatted as a string with the
degree sign and the letter F

LastUpdateDate Date The date and time that this data was last
updated by the reporting weather station

5

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 5

Table 1-1: Public Properties of the CurrentForecast Class (continued)

DailyForecast Class
The DailyForecast class contains a set of public properties that are set by the WeatherData class and
read by the Desktop Weather form. Like the CurrentForecast class, this class is just a repository for
data. A collection of these classes is added to the DailyForecasts class to represent the seven-day fore-
cast. Therefore, each instance of the DailyForecast class contains the forecast for a given day. Table 1-2
details the public properties in this class.

Table 1-2: Public Properties of the DailyForecast Class

Property Return Type Description

ForecastDate Date The date that this forecast is for

ForecastDay String The day of the month that this forecast is for

Property Return Type Description

Location String The weather station that reported this data

PressureInches Decimal The current pressure in inches

PressureInchesString String The current pressure formatted as a string
with the word inches

PressureMillibars Decimal The current pressure in millibars

PressureMillibarsString String The current pressure formatted as a string
with the word millibars

RelativeHumidity String The current relative humidity formatted with
the percent sign

TemperatureCelsius Integer The current temperature in Celsius

TemperatureCelsiusString String The current temperature formatted as a string
with the degree sign and the letter C

TemperatureFahrenheit Integer The current temperature in Fahrenheit

TemperatureFahrenheitString String The current temperature formatted as a string
with the degree sign and the letter F

Visibility String The current visibility in miles

WeatherSource String The source of the weather information

Wind String The current wind speed and direction

6

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 6

Table 1-2: Public Properties of the DailyForecast Class (continued)

DailyForecasts Class
The DailyForecasts class inherits the CollectionBase class in the .NET Framework and provides a
collection of DailyForecast classes. This class contains the necessary methods to add, remove, and access
DailyForecast classes within the collection. Table 1-3 details the methods and properties in this class.

Table 1-3: Methods and Properties of the DailyForecasts Class

Method/Property Return Type Description

Public Sub Add(ByVal
dailyForecast As
DailyForecast)

N/A Adds a DailyForecast class to the
collection

Public Overloads Sub
RemoveAt(ByVal index As
Integer)

N/A Removes a DailyForecast class from the
collection at the specified index

Public Sub Remove(ByVal
dailyForecast As
DailyForecast)

N/A Removes the currently referenced
DailyForecast class from the collection

Public ReadOnly Property
Item(ByVal index As
Integer) As DailyForecast

DailyForecast Returns the DailyForecast class from the
collection at the specified index

Public ReadOnly Property
Item(ByVal dailyForecast
As DailyForecast) As
DailyForecast

DailyForecast Returns the currently referenced
DailyForecast class from the collection

Property Return Type Description

ForecastDayName String The forecast day name (e.g., Today, Tomorrow,
Monday, Tuesday)

ForecastHighLowTemp String The daytime high and nighttime low tempera-
tures for the date of this forecast, formatted with
degree signs and a forward slash separating the
temperatures

ForecastImagePath String The Web URL of the forecast image

ForecastMonthName String The month that this forecast is for

ForecastPrecipitation String The precipitation that this forecast is for, format-
ted with the percent sign

ForecastSummary String The weather conditions for the forecasted date

7

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 7

WeatherData Class
The WeatherData class is the core of the Desktop Weather application. This class is where all the work
takes place, calling the Web Service to get the current and seven-day forecast, and populating the classes
for these forecasts with data. Table 1-4 details the methods and properties in this class.

The Weather Web Service provided by the National Weather Service uses longitude and latitude coordinates
to retrieve the weather data. The Desktop Weather form merely asks for a zip code to retrieve weather data
for. Therefore, the zip code provided must be translated into longitude and latitude coordinates.

There are two main functions in the WeatherData class: GetCurrentForecast and Get7DayForecast.
As you may have surmised, the GetCurrentForecast function gets the current forecast for your zip
code. This function has logic built into it to look up the zip code provided at the Geocoder Web site to
retrieve the longitude and latitude coordinates.

It will also find the observation station that most closely matches the longitude and latitude coordinates
found for the zip code. The observation stations are provided by the National Weather Service Web site
as a unique URL. Each observation station provides its weather data to the National Weather Service.
The National Weather Service in turn provides a specific RSS (Really Simple Syndication) feed of the
current conditions reported by the observation stations.

This function then takes the data from the RSS feed and populates the CurrentForecast class and
returns that data to the caller — in this case, the Desktop Weather form.

The other main function in this class is the Get7DayForecast function. This function calls the Weather
Web Service to retrieve the seven-day forecast. The Weather Web Service returns a forecast for any num-
ber of days, but a seven-day forecast is typically adequate for most needs. Once the data is returned
from the Weather Web Service, this function instantiates seven instances of the DailyForecast classes
and adds them to the DailyForecasts class. It then populates each class with the appropriate data and
returns the collection of forecasts to the caller.

Table 1-4: Methods and Properties of the WeatherData Class

Continued

Method Return Type Description

Public Sub New() N/A Reads all user settings from the applica-
tion’s user.config file

Protected Overridable Sub
Dispose(ByVal disposing
As Boolean)

N/A Saves the user’s settings in the applica-
tion’s user.config file

Public Sub
FindObservationStation()

N/A This procedure finds the closest observa-
tion station match for the longitude and
latitude for the zip code specified. If no
match can be ascertained, the Observation
Stations form is displayed, which enables
users to select the closest observation sta-
tion for their zip code.

8

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 8

Table 1-4: Methods and Properties of the WeatherData Class (continued)

Method Return Type Description

Public Function
Get7DayForecast(ByVal
zipCode As Integer)

DailyForecasts Calls the Web Service to retrieve
the seven-day forecast, instantiates the
DailyForecasts class, and adds a collec-
tion of DailyForecast classes to it. It
then returns the collection as a
DailyForecasts class.

Public Function
GetCurrentForecast
(ByVal zipCode As
Integer)

CurrentForecast Gets the current forecast XML file from
the National Weather Service’s Web site
via an HTTP request. Instantiates
the CurrentForecast class, sets its
properties, and returns the
CurrentForecast class.

Private Function
Http(ByVal url As String)

String Makes a call to a Web site and returns the
data as a string

Public Function
StreamBitmap(ByVal url As
String)

Stream Retrieves an image from the Web and
returns it as an IO Stream

Public Sub
ZipCodeLookup(ByVal
zipCode As Integer)

N/A Gets the longitude and latitude for a given
zip code as well as the city and state. It
saves this information in local variables
that are saved to the application’s
user.config file.

Public ReadOnly Property
Latitude()

Decimal Returns the latitude for the current
zip code

Public ReadOnly Property
Longitude()

Decimal Returns the longitude for the current
zip code

Public ReadOnly Property
Location()

String Returns the location for the current
zip code

Public ReadOnly Property
State()

String Returns the state abbreviation for the
current zip code

Public ReadOnly Property
RawCurrentForecast()

String Returns the raw XML used to generate the
current forecast

Public ReadOnly Property
Raw7DayForecast()

String Returns the raw XML used to generate the
seven-day forecast

9

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 9

Code and Code Explanation
This section describes the application details and how all the pieces fit together. Because there is not
enough room to explain all of the code, only the major procedures and functions are covered. The bulk
of the work of this application is performed in the WeatherData class, so this is where the majority of
your time will be spent.

Resource Files
The Desktop Weather application displays the current temperature in the system tray, so you must
have icons created for the temperature range in your area. The program currently has icons in the range
of 0 to 110, which represents the temperatures most likely to occur in my local area.

It is highly probable that you may live in an area where temperatures exceed the low or high range
currently provided by the program. If that is the case, you’ll need to create the appropriate temperature
icons and add them to the application. All icons are stored in the resource file for the application that is
compiled in the executable program. After adding new icons to the resource file, you need to recompile
the application.

You can use your favorite icon editor to create new temperature icons or you can create new temperature
icons directly in the Visual Studio IDE. The Visual Studio IDE provides a very basic icon editor but it does
provide a font tool, so creating the basic temperature icons displayed in the system tray is relatively easy.

Settings
This application uses one application setting and seven user settings. The application setting cannot
be changed by any user and contains the URL of the Weather Web Service. The user settings are read
and saved by the application based on what the user enters and does. Table 1-5 lists the various user and
application settings.

Table 1-5: User and Application Settings

Name Type Scope

Latitude Decimal User

Longitude Decimal User

State String User

ZipCode Integer User

CurrentForecastUrl String User

FormLocation System.Drawing.Point User

Location String User

Desktop_Weather_NationalWeatherService
_ndfdXML

Web Service URL Application

10

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 10

The Latitude, Longitude, State, and ZipCode settings are self-explanatory. The CurrentForecastUrl
setting is used to store the URL of the RSS feed for the current forecast. The Location setting is used to
store the city, state, and zip code string displayed at the top of the Desktop Weather form. Finally, the
FormLocation setting is used to store the position on the screen to which the user moves the Desktop
Weather form. This location is then used to position the form the next time the form is displayed or the next
time the program starts.

The Desktop_Weather_NationalWeatherService_ndfdXML setting is generated by Visual Studio
2005. When the Web reference was set, this setting was automatically generated. To change the Weather
Web Service to your preferred Weather Web Service, open the solution in Visual Studio 2005, expand
the Web References folder in the Solution Explorer, and then click NationalWeatherService. In the
Properties window, change the Web Reference property, replacing the URL with the URL of your
Weather Web Service.

DesktopWeather Form
There are three main procedures in the DesktopWeather form: DesktopWeather_Load, btnGo_Click,
and GetWeatherData. The logical place to start is the DesktopWeather_Load procedure.

The DesktopWeather_Load procedure is executed when the application first starts. The first part of this
code sets up the context menu that is used by the NotifyIcon in the system tray. It instantiates the
ContextMenu class and the MenuItem class to create and add the menu items to the context menu.

A Menu and ContextMenu contain a collection of MenuItem classes. A MenuItem is the menu item that
you see. For example, in the Visual Studio IDE, the File menu would be represented by a Menu class, and
the menu items Open and New Project would be represented by the MenuItem class.

In the following code, the objContextMenu object is a context menu that contains two menu items:
objShowWeather and objExit. These two objects are defined as a MenuItem class and one of the con-
structors for the MenuItem class enables you to pass the caption of the menu item as it is displayed to
the user. Here, the objShowWeather object will have a menu item that is displayed as Show Weather,
while the objExit object will have a menu item that is displayed as Exit.

You can also add menu items directly to the Menu or ContextMenu classes if you do not need to handle
any events for the menu item. This is the case with the menu item separator, which is specified as a single
dash. When the context menu is built and displayed, the single dash becomes a solid line separating the
two menu items. Here is the code:

Private Sub DesktopWeather_Load(ByVal sender As Object, _
ByVal e As System.EventArgs) Handles Me.Load

‘Setup the context menu
objContextMenu = New ContextMenu
objShowWeather = New MenuItem(“&Show Weather”)
objContextMenu.MenuItems.Add(objShowWeather)
objContextMenu.MenuItems.Add(“-“)
objExit = New MenuItem(“E&xit”)
objContextMenu.MenuItems.Add(objExit)

11

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 11

The NotifyIcon object is instantiated next and the icon with the number 0 is loaded from the resource
file and set in the objNotifyIcon object. This is the icon that will be displayed in the system tray, and a
zero temperature is an indication to the user that a zip code must be entered.

When you add resources, such as icons and images, to the resource file that begin with a number instead
of a letter, Visual Studio prefixes these names with an underscore. The reason behind this is that Visual
Studio implements read-only properties with the resource name. As you are undoubtedly aware, prop-
erty names cannot begin with a number but can begin with an underscore. Thus, Visual Studio has
implemented the icon name 0.ico as a property named _0.

The tooltip text is set next in the Text property. This is the text that is displayed when you hover your
mouse over the temperature icon in the system tray. The last line of code here sets the context menu to
be associated with the icon:

‘Setup the NotifyIcon object
objNotifyIcon = New NotifyIcon
objNotifyIcon.Icon = My.Resources._0
objNotifyIcon.Text = “Desktop Weather”
objNotifyIcon.Visible = True
objNotifyIcon.ContextMenu = objContextMenu

The necessary event handlers are set up next, identifying the objects and events and the procedures to
be executed by those objects when the specified event occurs. The AddHandler statement accepts two
parameters: the event to handle and the procedure to be executed when the event occurs. To specify the
event, you specify the object name, type a period, and then select the appropriate event associated with
the object as it is displayed in the IntelliSense drop-down menu. To specify the procedure to be executed,
type the AddressOf keyword and then the procedure name that will handle the event. Note that the pro-
cedure you specify must implement the same input parameters that are passed from the event delegate.

‘Setup event handlers
AddHandler objNotifyIcon.DoubleClick, AddressOf NotifyIcon_DoubleClick
AddHandler objShowWeather.Click, AddressOf ShowWeather_Click
AddHandler objExit.Click, AddressOf Exit_Click

Now you set the icons on the form. The first icon is the icon associated with the actual DesktopWeather
form. This is the icon that is displayed in the taskbar in Windows when the form is displayed. The next icon
is the icon that is displayed in the upper-left corner of the DesktopWeather form. The DesktopWeather
form is a borderless form, so it has a PictureBox control in the upper-left corner of the form where the icon
would normally be displayed if the form had a title bar.

The next line of code positions the form in Windows according to the form location stored in the applica-
tion’s user.config file using the user setting FormLocation. The last line of code sets the interval for
the timer. When the timer’s interval has elapsed, it makes a call to the GetWeatherData procedure to
get the current and seven-day forecasts:

‘Setup the icons for the program
Me.Icon = My.Resources._0
imgIcon.Image = My.Resources._0.ToBitmap

‘Position the form
Me.Location = New Point(My.Settings.FormLocation)

12

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 12

‘Setup the timer
objTimer.Interval = 1800000 ‘30 minutes

The last part of code in the DesktopWeather_Load procedure checks whether a zip code has been stored
in the ZipCode user setting in the user.config file. If a zip code has been stored, it is retrieved and a call
is made to the GetWeatherData procedure to get the current and seven-day forecasts and the timer is
started. Then the blnShow variable is set to False, indicating that the form should not be shown.

If no zip code is found, the blnShow variable is set to True and the DesktopWeather form is displayed
and waits for a zip code to be entered:

‘Get weather if location is available
If My.Settings.ZipCode <> 0 Then

GetWeatherData()
objTimer.Start()
blnShow = False

Else
blnShow = True

End If
End Sub

The next procedure that needs to be discussed is the btnGo_Click procedure. This procedure is executed
when the user clicks the Go button on the DesktopWeather form. The code in this procedure is wrapped
in a Try...Catch...Finally block. This provides the necessary error handling for this procedure, as a
call is made to the ZipCodeLookup procedure in the WeatherData class.

The first thing that happens in this procedure is validation of the zip code data. This first section of code
validates that the zip code entered is a numeric value. If it is not, then the appropriate message is displayed
in a MessageBox dialog box.

If you are adapting this program for a country that allows alphanumeric postal codes, then you need to
change the logic in this section to properly validate postal codes in your area. A separate function could
be created that performs the validation and returns a True/False value indicating a whether a valid
postal code was entered.

Private Sub btnGo_Click(ByVal sender As Object, ByVal e As System.EventArgs) _
Handles btnGo.Click

Try
‘Validate the zip code
If Not IsNumeric(txtZipCode.Text) Then

MessageBox.Show(“Zip Code must be a numeric value.”, _
My.Application.Info.Title, MessageBoxButtons.OK, _
MessageBoxIcon.Warning)
txtZipCode.Focus()
Exit Sub

End If

Because looking up the zip code and retrieving the weather data can take some time (5–10 seconds), the
Go button is disabled and the application’s cursor is changed to a wait cursor, indicating the application
is busy doing some work.

13

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 13

Next, the WeatherData class is instantiated in a Using...End Using block and the ZipCodeLookup
procedure is called. This procedure, which you’ll see in detail when the WeatherData class is discussed,
calls the Geocoder Web site and retrieves the longitude, latitude, city, and state for the zip code pro-
vided. It sets this data in local variables in the WeatherData class, which in turn saves these values to
the appropriate user settings in the user.config file:

‘Disable the Go button and make the mouse cursor busy
btnGo.Enabled = False
Me.Cursor = Cursors.WaitCursor

‘Instantiate a new WeatherData object
Using objWeather As New Weather.WeatherData

‘Lookup the zip code provided
objWeather.ZipCodeLookup(CType(txtZipCode.Text, Integer))

End Using

Once the zip code has been processed and the relevant data has been saved to the appropriate user set-
tings in the user.config file, a call is made to the GetWeatherData procedure. This procedure, dis-
cussed next, makes two calls to the WeatherData class to get the current and seven-day forecast. The
next two lines of code reset the text in the zip code text box on the form and select the text. Finally, the
timer is started so that the weather data is updated every half hour:

‘Get the weather forecasts
GetWeatherData()

‘Reset the text
txtZipCode.Text = “Enter Zip Code”
txtZipCode.SelectAll()

‘Turn the timer on
objTimer.Start()

The last section of code in this procedure provides the error handling should an error occur in any of the
calls made to other procedures and functions. Here, you simply display a MessageBox dialog box with
the appropriate error that has been returned.

The Finally block in the following code enables the Go button on the form and sets the application’s
cursor back to the default cursor. The code in the Finally block is always executed, even when an error
occurs. The code shown here is housekeeping code to reset the UI:

Catch ExceptionErr As Exception
MessageBox.Show(“DesktopWeather.btnGo_Click: “ & _

ExceptionErr.Message, My.Application.Info.Title, _
MessageBoxButtons.OK, MessageBoxIcon.Error)

Finally
‘Enable the Go button and make the mouse cursor ready
btnGo.Enabled = True
Me.Cursor = Cursors.Default

End Try
End Sub

14

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 14

The GetWeatherData procedure gets the weather data from the WeatherData class and loads the
details of the forecast in the DesktopWeather form. This procedure starts by declaring a couple of local
variables that are used to enumerate through the collection of DailyForecast classes and to retrieve
and set the current temperature icons.

The code in this procedure is wrapped in a Try...Catch block to handle any errors that might be thrown
in the WeatherData class. Inside the Try statement, you declare and instantiate a new instance of the
WeatherData class in a Using...End Using statement block. Then you declare the objCurrentForecast
object as a CurrentForecast class and call the GetCurrentForecast method on this object to retrieve the
current forecast for your area by passing it the zip code from the user settings in the app.config file:

Private Sub GetWeatherData()
‘Declare local variables
Dim intIndex As Integer = 0
Dim strIconName As String

Try
‘Instantiate a new WeatherData object for the local forecast
Using objWeather As New Weather.WeatherData

‘Get the current forecast
Dim objCurrentForecast As Weather.CurrentForecast
objCurrentForecast = _

objWeather.GetCurrentForecast(My.Settings.ZipCode)

Next, set the Text property of the form and the Text property of the caption label to the TitleText
constant and the location as specified in the Location property of the WeatherData class. You also set
the Text property of the credits label near the top of the form using the WeatherSource property. This
will tell you who provided the weather data.

The icon name is retrieved from the TemperatureFahrenheit property and set in the strIconName
variable. This variable is then used to set the icon in the system tray, the icon for the form, and the icon that
is displayed in the upper left-hand corner of the form. The reason why the icon name was set in the local
strIconName variable is because we only want to read the TemperatureFahrenheit property once,
thereby reducing the amount of code to be executed and increasing the performance of the application.

After the temperature icons have been set, the current conditions image is loaded and then the rest of the
current forecast is loaded into the Text properties of the current forecast labels. The current forecast is
the forecast displayed on the left-hand side of the DesktopWeather form.

‘Set the current forecast labels and images on the form
Me.Text = TitleText & objWeather.Location
lblCaption.Text = TitleText & objWeather.Location
lblCredits.Text = “Weather provided by “ & _

objCurrentForecast.WeatherSource
strIconName = objCurrentForecast.TemperatureFahrenheit
objNotifyIcon.Icon = My.Resources.GetIconByName(strIconName)
Me.Icon = My.Resources.GetIconByName(strIconName)
imgIcon.Image = My.Resources.GetIconByName(strIconName).ToBitmap
imgCurrentConditions.Image = New Bitmap(objWeather.StreamBitmap(_

objCurrentForecast.ForecastImagePath))
lblCurrentConditions.Text = objCurrentForecast.Conditions
lblTemperature.Text = _

15

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 15

objCurrentForecast.TemperatureFahrenheitString
lblHeatIndex.Text = objCurrentForecast.HeatIndexFahrenheitString
lblDewPoint.Text = objCurrentForecast.DewpointFahrenheitString
lblHumidity.Text = objCurrentForecast.RelativeHumidity
lblVisibility.Text = objCurrentForecast.Visibility
lblPressure.Text = objCurrentForecast.PressureInchesString
lblWind.Text = objCurrentForecast.Wind
lblStation.Text = “As reported at “ & _

objCurrentForecast.Location & “ Updated at “ & _
objCurrentForecast.LastUpdateDate.ToString

End Using

Now you want to set up another Using...End Using statement block to declare and instantiate the
WeatherData class. You then declare the objDailyForecasts object as a DailyForecasts class
and then call the Get7DayForecast method in the WeatherData class, again passing the zip code for
your area.

Remember that the DailyForecasts class actually contains a collection of seven DailyForecast
classes. To that end, you set up a For Each...Next loop to process each DailyForecast class in the
objDailyForecasts object. The intIndex variable is used inside this loop to keep track of the current
day number so you can properly access the labels and PictureBox controls on the form:

‘Instantiate a new WeatherData object for the local forecast
Using objWeather As New Weather.WeatherData

‘Get the 7 day forecast
Dim objDailyForecasts As Weather.DailyForecasts
objDailyForecasts = objWeather.Get7DayForecast(My.Settings.ZipCode)

‘Set the 7 day forecast labels and images on the form
For Each objDailyForecast As Weather.DailyForecast _

In objDailyForecasts

‘Increment the index for the days
intIndex += 1

Now you want to loop through the labels on the Panel control, which has been named pnl7DayForecast,
and set their Text properties to the appropriate seven-day forecast. You do this in a For Each...Next
loop accessing the Controls collection of the panel. Inside the loop, you check the type of control that you
have and compare it against the Label control using the TypeOf operator. If the control that you have a ref-
erence to in the objControl object is a Label control, you use a Select...Case statement to query the
Name property of the control. Once you find the correct name of the label, you set the Text property of that
label using the appropriate property from the objDailyForecast object:

‘Loop through the controls on the 7 day forecast panel
For Each objControl As Control In pnl7DayForecast.Controls

‘If the control is a label...
If TypeOf objControl Is Label Then

‘Find the correct label and set its Text property
Select Case objControl.Name

Case “lbl7DayDay” & intIndex.ToString
objControl.Text = _

objDailyForecast.ForecastDayName
Case “lbl7DayDate” & intIndex.ToString

objControl.Text = _

16

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 16

objDailyForecast.ForecastMonthName & _
“ “ & objDailyForecast.ForecastDay

Case “lbl7DayForecastCondition” & intIndex.ToString
objControl.Text = _

objDailyForecast.ForecastSummary
Case “lbl7DayHighLow” & intIndex.ToString

objControl.Text = _
objDailyForecast.ForecastHighLowTemp

Case “lbl7DayPrecipitation” & intIndex.ToString
objControl.Text = _

objDailyForecast.ForecastPrecipitation
End Select

If the control that you have is not a Label control, you check the control against a PictureBox
control in the ElseIf statement that follows. If the control is a PictureBox control, you again use a
Select...Case statement to find the appropriate PictureBox control and set its Image property to
the image of the forecast.

Notice that you are using the StreamBitmap method in the WeatherData class to get the image speci-
fied in the ForecastImagePath and load it in the Image property of the PictureBox control. The
ForecastImagePath property merely contains the URL of the image, not the actual image itself. The
StreamBitmap method will read the image from the URL specified in the ForecastImagePath prop-
erty and return that image as a Stream class. Then you can load the image in the PictureBox control
using the Stream provided by the StreamBitmap method:

‘Else If the control is a picture box...
ElseIf TypeOf objControl Is PictureBox Then

‘Find the correct picture box and
‘set its Image property
Select Case objControl.Name

Case “img7DayCondition” & intIndex.ToString
‘The Object class does not provide an Image
‘property so we must cast the object into the
‘correct class, in this case a PictureBox
DirectCast(objControl, PictureBox).Image = _

New Bitmap(objWeather.StreamBitmap(_
objDailyForecast.ForecastImagePath))

End Select
End If

Next
Next

End Using

The last part of this procedure contains the Catch block, which simply handles any errors that might
have occurred and displays a MessageBox dialog box indicating the error that occurred:

Catch ExceptionErr As Exception
MessageBox.Show(“DesktopWeather.GetWeatherData: “ & _

ExceptionErr.Message, My.Application.Info.Title, _
MessageBoxButtons.OK, MessageBoxIcon.Error)

End Try
End Sub

17

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 17

WeatherData Class
The WeatherData class implements the IDisposable interface and therefore has a constructor called
New and a destructor called Dispose. This enables you to use this class in the Using...End Using
block in the DesktopWeather form. Any class used in the Using...End Using block must implement
the IDisposable interface, as the Using...End Using block calls the New constructor when it instanti-
ates the class, and calls the Dispose destructor when it disposes of the class.

When the Desktop Weather application first starts, the user settings in the user.config file are read
and stored in cache. Because these values can and do change during the execution of the application,
these settings must be reloaded in cache to get the latest changes. The New constructor procedure first
reloads the user settings into cache and then uses these settings to set the values in the local variables
defined in this class:

Public Sub New()
‘Reload the user settings
My.Settings.Reload()

‘Set default local values from user settings
If My.Settings.Latitude <> 0 Then

decLatitude = My.Settings.Latitude
End If
If My.Settings.Longitude <> 0 Then

decLongitude = My.Settings.Longitude
End If
If My.Settings.ZipCode <> 0 Then

intZipCode = My.Settings.ZipCode
End If
If My.Settings.State.Trim.Length > 0 Then

strState = My.Settings.State
End If
If My.Settings.Location.Trim.Length > 0 Then

strLocation = My.Settings.Location
End If
If My.Settings.CurrentForecastUrl.Trim.Length > 0 Then

strCurrentForecastUrl = My.Settings.CurrentForecastUrl
End If

End Sub

The majority of the code in the Dispose procedure is automatically generated when the IDisposable
interface is declared in the class. The code to persist the user settings has been added to this procedure to
save the changes made in this class to the user settings in the user.config file:

Protected Overridable Sub Dispose(ByVal disposing As Boolean)
If Not Me.disposedValue Then

If disposing Then
‘Persist the user settings
My.Settings.Latitude = decLatitude
My.Settings.Longitude = decLongitude
My.Settings.ZipCode = intZipCode
My.Settings.State = strState
My.Settings.Location = strLocation
My.Settings.CurrentForecastUrl = strCurrentForecastUrl

18

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 18

My.Settings.Save()
End If

End If
Me.disposedValue = True

End Sub

Http Function
The next piece of code that you’ll want to take a look at is the Http function. This function is used
throughout the WeatherData class to retrieve RSS data feeds and Web pages. Basically, this function
accepts a URL as input, makes the appropriate Web request, and returns the output of the Web response
as a string to the caller of this procedure. This function has the same effect as if you opened a browser,
entered a URL, and viewed the Web page for the URL entered.

First, this function declares the local variables needed. Then the WebRequest class is used to make a
Web request using a URL. The WebResponse class is used to receive the response from the WebRequest
class when calling the GetResponse method. The other classes listed in the following code are used to
provide the proper encoding, read the response, and return it as a string:

Private Function Http(ByVal url As String) As String
‘Declare variables
Dim objWebRequest As WebRequest
Dim objWebResponse As WebResponse
Dim objResponseStream As Stream
Dim objEncoding As Encoding
Dim objStreamReader As StreamReader
Dim strResponse As String

A Try...Catch...Finally block is used in this function to properly handle any error that may occur.
The first line of code in the Try block creates the objWebRequest object by calling the Create method
of the WebRequest class, passing it the URL provided as input to this function.

Next, you post the request by calling the GetResponse method of the objWebRequest object, and get
the response back in the objWebResponse object. Then you need to read the response, which is done
by calling the GetResponseStream method on the objWebResponse object. You set the results of this
stream to the objResponseStream object.

The Stream class supports reading and writing bytes of data, but you want to read the entire contents of
the stream into a String variable. To that end, you use the objStreamReader object, which is instantiated
from the StreamReader class. Part of the constructor for the StreamReader class is the encoding to be used
when reading the data. Here you specify the objEncoding object, which has been set to a value of utf-8
(Unicode Transformation Format 8), the most common Unicode Transformation Format, supporting most
Unicode characters. Then you read the entire contents of the stream into the strResponse variable:

Try
‘Setup the web request
objWebRequest = WebRequest.Create(url)

‘Post the request and get the response
objWebResponse = objWebRequest.GetResponse()
‘Read the response into a stream object
objResponseStream = objWebResponse.GetResponseStream()

19

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 19

objEncoding = System.Text.Encoding.GetEncoding(“utf-8”)
‘Read the response stream object
objStreamReader = New StreamReader(objResponseStream, objEncoding)
‘Place the response into a string
strResponse = objStreamReader.ReadToEnd()

The Catch block handles any exception thrown from any of the objects used in this function and sets
them in the strReponse variable, which is returned to the caller of this function.

The Finally block closes the objWebResponse object by calling the Close method, which effectively
closes the stream.

The results of the strResponse variable are returned from this function in the last line of code, shown here:

Catch ExceptionErr As Exception
strResponse = ExceptionErr.Message

Finally
If Not IsNothing(objWebResponse) Then

objWebResponse.Close()
End If

End Try

‘Return the response
Return strResponse

End Function

ZipCodeLookUp Procedure
The ZipCodeLookup procedure is used internally in the WeatherData class, and it is also called from
the code in the DesktopWeather form. This procedure uses the Http function just discussed to call the
Geocoder Web site to get the longitude, latitude, city, and state, which is done in the first line of code in
this procedure:

Public Sub ZipCodeLookup(ByVal zipCode As Integer)
‘Get the zip code coordinates
strZipCodeCoordinates = _

Http(“http://geocoder.us/service/csv/geocode?zip=” & _
zipCode.ToString)

Once the data has been retrieved, you check for the error message indicating that the zip code was not
found and throw an exception indicating such, which is returned to the caller.

If the zip code was found, you need to parse out the longitude and latitude, which is what the next two
lines of code do. The variables used to store the longitude and latitude are defined as decimal, so the
values that are parsed out of the string need to be cast as decimal values, which is what the CType func-
tion does. The CType function accepts the expression to be converted followed by the data type to which
it should convert the expression:

If strZipCodeCoordinates.IndexOf(“sorry”) <> -1 Then
Throw New Exception(“Zip Code not found.”)

End If

‘Parse out the latitude and longitude

20

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 20

decLatitude = CType(strZipCodeCoordinates.Substring(_
0, strZipCodeCoordinates.IndexOf(“,”)), Decimal)

decLongitude = CType(strZipCodeCoordinates.Substring(_
strZipCodeCoordinates.IndexOf(“,”) + 2, _
strZipCodeCoordinates.IndexOf(“,”, _
strZipCodeCoordinates.IndexOf(“,”) - _
strZipCodeCoordinates.IndexOf(“,”))), Decimal)

Next, you want to parse out the state abbreviation and save it in the strState variable and then parse
out the full location, which includes city, state, and zip code. This value is stored and displayed at the
top of the DesktopWeather form. Finally, you save the zip code in the intZipCode variable:

‘Parse out the state
strState = strZipCodeCoordinates.Substring(_

strZipCodeCoordinates.LastIndexOf(“,”) - 2, 2)

‘Parse out the full location
strLocation = strZipCodeCoordinates.Substring(_

(strZipCodeCoordinates.IndexOf(“,”, _
strZipCodeCoordinates.IndexOf(“,”) + 2)) + 2)

‘Set the zip code in the local variable so it can be saved
intZipCode = zipCode

End Sub

FindObservationStation Procedure
The FindObservationStation procedure requires a little more logic than the previous two proce-
dures. This procedure will retrieve a list of observation stations from the National Weather Service,
returned in XML format for all 50 states in the U.S. This procedure must filter that data to just the state
you are looking for and then try to find the closest match using the longitude and latitude provided in
the XML to the longitude and latitude returned for the zip code specified.

The FindObservationStation procedure gets a list of observation stations, which is returned in XML
format. Remember that a DataSet in the .NET Framework is nothing more than XML behind the scenes,
so you use a StringReader to read the string and then read the XML into the objDataSet object using
the ReadXML method, passing it to the objStringReader object:

Public Sub FindObservationStation()
‘Get the observation XML and load it into a StringReader
strObservationXML = _

Http(“http://www.weather.gov/data/current_obs/index.xml”)
Dim objStringReader As New StringReader(strObservationXML)

‘Load the XML into a DataSet
objDataSet = New DataSet
objDataSet.ReadXml(objStringReader)

With the XML data now loaded in a DataSet object, you need to filter the information to include the
data for only the state that your zip code is in. This is done by using a DataView object and setting
the RowFilter property to only include the state you want to work with. Next, you sort the data based
on latitude, which is listed in the XML before longitude:

21

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 21

‘Load and filter the data in a DataView
objDataView = New DataView(objDataSet.Tables(“station”))
With objDataView

.RowFilter = “state = ‘“ & strState & “‘“

.Sort = “latitude asc”
End With

Because this procedure is called from other procedures within the WeatherData class and from the
DesktopWeather form, a Boolean variable is set internally within this class when an auto lookup is to
be performed. This next section of code is executed only if this procedure was called from another proce-
dure in this class for which this Boolean variable has been set to True.

The longitude and latitude listed in the XML data is broken into three parts, with each part separated by
a decimal and followed by one character indicating North, South, East, and West. If the longitude and
latitude are not available, the characters NA are displayed.

Given all the complexities of the longitude and latitude lookup, this section of logic will look at only the
first part of the longitude and latitude preceding the first decimal. Therefore, the first order of business is to
extract the first part of the longitude and latitude preceding the decimal from the variables decLatitude
and decLongitude and set them in the string variables strLatitude and strLongitude:

If blnAutoLookup Then
strLatitude = decLatitude.ToString.Substring(_

0, decLatitude.ToString.IndexOf(“.”))
strLongitude = decLongitude.ToString.Substring(_

0, decLongitude.ToString.IndexOf(“.”))

Now you want to loop through the DataView trying to find the closest match for longitude and latitude.
If the latitude does not equal the character string NA, you want to get the latitude from the DataView
and set it in the strLatitudeLookup variable. However, you only want to get the first part of this value
that precedes the decimal. Next, you want to ensure that the value you retrieved can be converted to an
Integer value, so this is what the next line of code does. This is just a safety measure to ensure you
have a valid number:

‘Now loop through the records for the state and find the closest
‘match for latitude and longitude
For intIndex = 0 To objDataView.Count - 1

If objDataView.Item(intIndex).Item(“latitude”) <> “NA” Then
‘Get the whole number part of the latitude
strLatitudeLookup = objDataView.Item(intIndex).Item(_

“latitude”).ToString.Substring(_
0, objDataView.Item(intIndex).Item(_
“latitude”).ToString.IndexOf(“.”))

‘Ensure the latitude number is formated as a proper integer
strLatitudeLookup = _

CType(strLatitudeLookup, Integer).ToString

Now compare the value in the strLatitudeLookup variable to the value in the strLatitude variable.
If these values are equal, then you proceed and try to find a matching longitude value.

Once inside the If...Then statement, perform the extraction as you did for the latitude, only extracting
the value preceding the decimal. You then set that value in the strLongitudeLookup variable and
again ensure that the number can be converted to an Integer data type:

22

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 22

‘Compare the whole number part of the latitudes
If strLatitudeLookup = strLatitude Then

‘Get the longitude
strLongitudeLookup = objDataView.Item(intIndex).Item(_

“longitude”).ToString.Substring(_
0, objDataView.Item(intIndex).Item(_
“longitude”).ToString.IndexOf(“.”))

‘Ensure the longitude number is formated
‘as a proper integer
strLongitudeLookup = “-“ & _

CType(strLongitudeLookup, Integer).ToString

Now you compare the strLongitudeLookup value to the strLongitude value; if they are equal, you
consider this a close match. The DesktopWeather form displays the observation station as a hyperlink
in the lower-left corner of the form and allows users to view and change the observation station if the
match found is not close to their zip code.

You’ll get the current forecast URL from the DataView and save it in the strCurrentForecastUrl
variable, which will be saved and used to retrieve the current weather conditions. Then you exit the
procedure, as you are done:

‘Compare the whole number part of the latitudes
If strLongitudeLookup = strLongitude Then

‘We’ll consider this a close match
strCurrentForecastUrl = _

objDataView.Item(intIndex).Item(“xml_url”)
‘We are all done so exit
Exit Sub

End If
End If

End If
Next

End If

If you made it this far in the code, then a match was not found. In that case, you’ll want to display the
ObservationStations form and allow the user to select the appropriate observation station. Because
the user will be viewing a list of observation stations, it only makes sense to display the list in alphabeti-
cal order by observation station name. This is accomplished by sorting the DataView by station_name.

Next, display the ObservationStations form as a modal dialog using the ShowDialog method of the
ObservationStations form and passing to this method the name of the parent form, DesktopWeather.
If the user clicks the OK button in the ObservationStations form, you set the strCurrentForecastUrl
variable to the station selected. Then you immediately save the current forecast URL in the user.config
file in case this procedure was called from the DesktopWeather form:

‘If we made it this far then no match was found
‘Display a dialog and let the user choose
objDataView.Sort = “station_name asc”
Dim objStations As New ObservationStations(objDataView)
If objStations.ShowDialog(DesktopWeather) = DialogResult.OK Then

23

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 23

strCurrentForecastUrl = objStations.lstStations.SelectedValue
End If
objStations.Dispose()
‘Save the current forecast url
My.Settings.CurrentForecastUrl = strCurrentForecastUrl
My.Settings.Save()

End Sub

GetCurrentForecast Function
The GetCurrentForecast function is fairly straightforward. It is the function that is called to get the
current weather conditions for a specified zip code. This function accepts the zip code as the one and
only input parameter and returns the current forecast as a CurrentForecast class.

The first line of code in this function validates the zip code. If the zip code passed equals 0 or is not
equal to the zip code stored in the user.config file, then a zip code lookup must take place and a call
to the ZipCodeLookup procedure is performed to get the longitude and latitude for the zip code passed.

If the strCurrentForecastUrl variable does not contain any data, then a call to the
FindObservationStation procedure must be made to find the appropriate URL for the current
forecast for the zip code passed. Notice that before this call is made, the blnAutoLookup variable is
set to True so that the FindObservationStation procedure will automatically try to find a matching
observation station.

The next line of code makes a call to the National Weather Service’s Web site to retrieve the current fore-
cast in XML, returning that data in the strRawCurrentForecast variable. There is a property in this
class called RawCurrentForecast that will return the raw XML data set in this variable. This enables
you to customize this class and save this data if so desired:

Public Function GetCurrentForecast(ByVal zipCode As Integer) _
As Weather.CurrentForecast

If intZipCode = 0 Or intZipCode <> zipCode Then
‘Perform the zip code lookup
ZipCodeLookup(zipCode)

End If

‘Find the observation station url
If strCurrentForecastUrl.Trim.Length = 0 Then

blnAutoLookup = True
FindObservationStation()

End If

‘Get the current forecast
strRawCurrentForecast = Http(strCurrentForecastUrl)

Now that you have the current forecast XML data in a string variable, you instantiate an XmlDocument
object and load the XML by calling the LoadXml method, which loads XML data from a string. Then you
instantiate a new instance of the CurrentForecast class using this function’s name, as it returns this
type of data:

‘Instantiate the XMLDocument object and load the XML
objXMLDocument = New XmlDocument

24

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 24

objXMLDocument.LoadXml(strRawCurrentForecast)

‘Instatiate a new instance of the CurrentForecast class
GetCurrentForecast = New Weather.CurrentForecast

Now you can go about setting the properties of the CurrentForecast class using the XML data. The
observation_time_rfc822 element in the XML is specified as a date and time followed by a hyphen
and then the number of hours from GMT (Greenwich Mean Time). In order to correctly set the
LastUpdateDate property in the CurrentForecast class, you must extract just the date and time por-
tion of this text and then cast that value to a Date value.

The remaining properties in the CurrentForecast class are set by reading and converting data as nec-
essary from the XML document:

‘Set the properties of the of the CurrentForecast class
GetCurrentForecast.WeatherSource = _

objXMLDocument.SelectSingleNode(“//credit”).InnerText
GetCurrentForecast.Location = _

objXMLDocument.SelectSingleNode(“//location”).InnerText
strData = _

objXMLDocument.SelectSingleNode(_
“//observation_time_rfc822”).InnerText

GetCurrentForecast.LastUpdateDate = _
CType(strData.Substring(0, strData.IndexOf(“-“) - 1), Date)

GetCurrentForecast.Conditions = _
objXMLDocument.SelectSingleNode(“//weather”).InnerText

GetCurrentForecast.TemperatureFahrenheit = _
CType(objXMLDocument.SelectSingleNode(“//temp_f”).InnerText, _
Integer)

GetCurrentForecast.TemperatureCelsius = _
CType(objXMLDocument.SelectSingleNode(“//temp_c”).InnerText, _
Integer)

GetCurrentForecast.RelativeHumidity = _
objXMLDocument.SelectSingleNode(“//relative_humidity”).InnerText

GetCurrentForecast.Wind = _
objXMLDocument.SelectSingleNode(“//wind_string”).InnerText

GetCurrentForecast.PressureInches = _
CType(objXMLDocument.SelectSingleNode(“//pressure_in”).InnerText, _
Decimal)

The pressure_mb element in the XML could have a value of NA so this must be checked, and then the
PressureMillibars property is set using a value of 0. The same check holds true for the heat_index_f
element as well as the heat_index_c element:

If objXMLDocument.SelectSingleNode(“//pressure_mb”).InnerText = _
“NA” Then
GetCurrentForecast.PressureMillibars = 0

Else
GetCurrentForecast.PressureMillibars = _

CType(objXMLDocument.SelectSingleNode(_
“//pressure_mb”).InnerText, Decimal)

End If
GetCurrentForecast.DewpointFahrenheit = _

CType(objXMLDocument.SelectSingleNode(_

25

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:48 AM Page 25

“//dewpoint_f”).InnerText, Integer)
GetCurrentForecast.DewpointCelsius = _

CType(objXMLDocument.SelectSingleNode(_
“//dewpoint_c”).InnerText, Integer)

If objXMLDocument.SelectSingleNode(“//heat_index_f”).InnerText = _
“NA” Then
GetCurrentForecast.HeatIndexFahrenheit = _

CType(objXMLDocument.SelectSingleNode(_
“//temp_f”).InnerText, Integer)

Else
GetCurrentForecast.HeatIndexFahrenheit = _

CType(objXMLDocument.SelectSingleNode(_
“//heat_index_f”).InnerText, Integer)

End If
If objXMLDocument.SelectSingleNode(“//heat_index_c”).InnerText = _

“NA” Then
GetCurrentForecast.HeatIndexCelsius = _

CType(objXMLDocument.SelectSingleNode(_
“//temp_c”).InnerText, Integer)

Else
GetCurrentForecast.HeatIndexCelsius = _

CType(objXMLDocument.SelectSingleNode(_
“//heat_index_c”).InnerText, Integer)

End If
GetCurrentForecast.Visibility = _

CType(objXMLDocument.SelectSingleNode(_
“//visibility_mi”).InnerText, Integer).ToString

GetCurrentForecast.ForecastImagePath = _
objXMLDocument.SelectSingleNode(“//icon_url_base”).InnerText & _
objXMLDocument.SelectSingleNode(“//icon_url_name”).InnerText

‘Cleanup
objXMLDocument = Nothing

End Function

Get7DayForecast Function
The next function to be discussed is the Get7DayForecast function. This is the function that calls the
Weather Web Service to get the seven-day forecast. Like its predecessor, this function also accepts the zip
code as the one and only input parameter and returns its results in the DailyForecasts class. Remember
that this class contains a collection of DailyForecast classes.

The first thing you do in this function is declare the XmlNodeList objects that will be used to get a
collection of XML nodes:

Public Function Get7DayForecast(ByVal zipCode As Integer) _
As Weather.DailyForecasts

‘Declare local variables
Dim objLayoutKeyList As XmlNodeList
Dim objStartTimeList As XmlNodeList
Dim objTemperatureList As XmlNodeList
Dim objPrecipitationList As XmlNodeList

26

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 26

Dim objForecastSummaryList As XmlNodeList
Dim objImageList As XmlNodeList

The code in this function is wrapped in a Try...Catch block and returns any errors to the caller.
The first thing that you do in the Try...Catch block is declare the objWebService object as the
NationalWeatherService Web Service. If you customize this application to use a Weather Web
Service of your choosing, this is the function that you need to modify to call the methods defined in
your Weather Web Service.

Now you call the NDFDgenByDay method, passing it the required parameters. This method expects the
latitude, the longitude, the date to start reporting from, the number of forecasted days to return, and the
forecast format. The Weather Web Service will return the XML in the strRaw7DayForecast variable.
Then you dispose of the objWebService object and set it to Nothing:

Try
‘Declare and instantiate a new instance of the
‘National Weather Service Web Service
Dim objWebService As New NationalWeatherService.ndfdXML

‘Call the web service
strRaw7DayForecast = objWebService.NDFDgenByDay(_

decLatitude, decLongitude, Date.Today, 7, “12 hourly”)

‘Clean up
objWebService.Dispose()
objWebService = Nothing

The WeatherData class also contains the Raw7DayForecast property, which returns the raw seven-day
forecast XML data as a string. You can use this property to save the forecast data to a file if so desired.

The next step is to instantiate an XmlDocument object and to load the XML from the
strRaw7DayForecast variable using the LoadXml method.

Because this function returns the forecast data as a DailyForecasts class, it instantiates a new instance
of this class. Then it adds seven new instances of the DailyForecast class to its collection. This sets up
the entire collection of classes, enabling you to loop through the collection and set the various properties
of each class:

‘Instantiate the XMLDocument object and load the XML
objXMLDocument = New XmlDocument
objXMLDocument.LoadXml(strRaw7DayForecast)

‘Instantiate a collection of Daily Forecast objects
Get7DayForecast = New DailyForecasts
For intIndex = 0 To 6

Get7DayForecast.Add(New DailyForecast)
Next

Now you want to get a collection of time-layout and start-valid-time nodes from the XML. Once
you have a collection of nodes for each of these, you loop through the collection of DailyForecast
classes and set the ForecastDayName and ForecastDate properties using the InnerText property of
the XML nodes.

27

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 27

This is accomplished by accessing the Item property of the XmlNodeList and specifying the index of
the item. The Item property contains a collection of XmlNode objects:

‘Get a collection of layouts and times
objLayoutKeyList = _

objXMLDocument.SelectNodes(“//time-layout”)
objStartTimeList = _

objLayoutKeyList.Item(0).SelectNodes(“start-valid-time”)

‘Add the day names and dates
For intIndex = 0 To 6

Get7DayForecast.Item(intIndex).ForecastDayName = _
objStartTimeList.Item(intIndex).Attributes(_
“period-name”).Value

Get7DayForecast.Item(intIndex).ForecastDate = _
CType(objStartTimeList.Item(intIndex).InnerText, Date)

Next

You repeat the preceding process by getting a collection of high and low temperatures from the XML
and adding them to an XmlNodeList object. Then you again loop through the collection of
DailyForecast classes and set the ForecastHighLowTemp property:

‘Get a collection of high and low temperatures
objTemperatureList = _

objXMLDocument.SelectNodes(“//parameters/temperature/value”)

‘Add the high and low temperatures
For intIndex = 0 To 6

Get7DayForecast.Item(intIndex).ForecastHighLowTemp = _
objTemperatureList.Item(intIndex).InnerText & “° / “ & _
objTemperatureList.Item(intIndex + 7).InnerText & “°”

Next

The next collection of values that you want to retrieve from the XML data are the precipitation values.
Again, you get this data in an XmlNodeList collection and then loop through the DailyForecast
classes, this time setting the ForecastPrecipitation property:

‘Get a collection of precipitation values
objPrecipitationList = _

objXMLDocument.SelectNodes(_
“//parameters/probability-of-precipitation/value”)

‘Add the precipitation percentages
For intIndex = 0 To 6

If intIndex = 0 Then
Get7DayForecast.Item(intIndex).ForecastPrecipitation = _

objPrecipitationList.Item(intIndex).InnerText & “%“
Else

Get7DayForecast.Item(intIndex).ForecastPrecipitation = _
objPrecipitationList.Item(intIndex + 1).InnerText & “%“

End If
Next

28

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 28

You get a collection of forecast summaries next. This is the text value describing the upcoming forecasts.
Again, you get the data in an XmlNodeList object and set the ForecastSummary property in the
DailyForecast classes:

‘Get a collection of forecast summaries
objForecastSummaryList = _

objXMLDocument.SelectNodes(“//weather/weather-conditions”)

‘Add the forecast summaries
For intIndex = 0 To 6

If intIndex = 0 Then
If Not IsNothing(_

objForecastSummaryList.Item(intIndex).Attributes(_
“weather-summary”)) Then
Get7DayForecast.Item(intIndex).ForecastSummary = _

objForecastSummaryList.Item(intIndex).Attributes(_
“weather-summary”).Value

Else
Get7DayForecast.Item(intIndex).ForecastSummary = _

objForecastSummaryList.Item(_
intIndex + 1).Attributes(_
“weather-summary”).Value

End If
Else

Get7DayForecast.Item(intIndex).ForecastSummary = _
objForecastSummaryList.Item(intIndex + 1).Attributes(_

“weather-summary”).Value
End If

Next

The final collection that you want to retrieve is the collection of image paths. This will be the URL of the
forecast icon images. You set the collection in an XmlNodeList object and then set the
ForecastImagePath property of the DailyForecast classes:

‘Get a collection of image paths
objImageList = _

objXMLDocument.SelectNodes(“//conditions-icon/icon-link”)

‘Add the image paths
For intIndex = 0 To 6

If intIndex = 0 Then
If objImageList.Item(0).InnerText <> String.Empty Then

Get7DayForecast.Item(intIndex).ForecastImagePath = _
objImageList.Item(0).InnerText

Else
Get7DayForecast.Item(intIndex).ForecastImagePath = _

objImageList.Item(1).InnerText
End If

Else
Get7DayForecast.Item(intIndex).ForecastImagePath = _

objImageList.Item(intIndex + 1).InnerText
End If

Next

29

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 29

The final step is to return the data to the caller. The Catch block following the Return statement simply
returns any errors to the caller of this function if any should occur:

Return Get7DayForecast
Catch ExceptionErr As Exception

Throw New Exception(“WeatherData.Get7DayForecast: “ & _
ExceptionErr.Message)

End Try
End Function

StreamBitmap Function
The StreamBitmap function is used to retrieve the images specified in the ForecastImagePath prop-
erty of the DailyForecast class. The image specified in this property is set in the Desktop Weather
form. In order to get the images from the URL specified in the ForecastImagePath property into the
Image property of a PictureBox control in the Desktop Weather form, you make a call to this proce-
dure, passing it the URL of the image to be retrieved.

This function takes that URL and creates a WebRequest object, passing the Create method the URL of the
image to retrieve. The GetResponse method of the objWebRequest object returns the response of the Web
request as a WebResponse class set in the objWebResponse object.

Then you need to get a stream of the image, which can be read by the Image property of the PictureBox
control. This is done by calling the GetResponseStream method on the objWebResponse object, which
is returned from this function.

When the Image property is set on a PictureBox control in the Desktop Weather form, the Image prop-
erty creates the image from the stream provided by this function. Thus, the images displayed on the
Desktop Weather form are never saved on your hard drive but are actually read directly from the URL
specified and set directly in the Image property of the PictureBox control:

Public Function StreamBitmap(ByVal url As String) As Stream
Dim objWebRequest As WebRequest = WebRequest.Create(url)
Dim objWebResponse As WebResponse = objWebRequest.GetResponse()
Return objWebResponse.GetResponseStream()

End Function

Setting Up the Desktop Weather Program
Each chapter in this book provides you with two options for setting up the program discussed: using the
installer to install the program or manual setup, whereby you copy the required files to your computer.
The latter option provides more control over setup and does not register the program in the Add Or
Remove Programs dialog box in the Control Panel.

Using the Installer
This and the rest of the programs in this book use the ClickOnce technology introduced with Visual
Studio 2005. This technology not only enables you to publish programs for deployment over the Web,
it also enables you to publish programs from a file share of removable media such as a CD-ROM.

30

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 30

To install the Desktop Weather Program, locate the Chapter 01 – Desktop Weather\Installer folder
on the CD-ROM that came with this book and double-click the setup.exe program. You will be prompted
with the Application Install dialog, and clicking the Install button will install and launch the application.

Manual Installation
To manually install the Desktop Weather program, first create a folder on your computer where you
want to place the program executable files. Then locate the Chapter 01 – Desktop Weather\Source
folder on the CD-ROM that came with this book and navigate to the bin\Release folder. Copy the fol-
lowing files from the Release folder to the folder that you created on your computer:

❑ Desktop Weather.exe

❑ Desktop Weather.exe.config

❑ Desktop Weather.xml

❑ Desktop Weather.XmlSerializers.dll

To run the Desktop Weather program, double-click the Desktop Weather.exe file.

Configuring the Application
There is no special configuration required for the Desktop Weather program. Once the application has
launched, you are prompted to enter your zip code in order for the program to retrieve the current and
seven-day forecast for your area. See the section “Using the Desktop Weather Program” at the beginning
of this chapter for details about how to use this program.

If you used the installer to install the program, it was installed in your Local Settings\App\2.0 folder
by default. For example, the complete path to my Local Settings\App\2.0 folder is C:\Documents
and Settings\Thearon\Local Settings\Apps\2.0. This is where the actual program was installed.
The shortcut to the program was installed in your personal Start Menu\Programs\Wiley Publishing,
Inc folder. Again, the complete path to my Start Menu\Programs\Wiley Publishing, Inc folder is
C:\Documents and Settings\Thearon\Start Menu\Programs\Wiley Publishing, Inc.

If you want the application to automatically start when you log into your computer, you can copy
the shortcut in the Start Menu\Programs\Wiley Publishing, Inc folder if you installed the
program using the setup program to the Start Menu\Programs\Startup folder. If you performed
a manual installation, create a shortcut in the previously described folder to the Desktop Weather
.exe program.

Summary
This chapter has reviewed several useful technologies provided by the .NET Framework. First, you
learned how to programmatically create a notification icon in the system tray and programmatically cre-
ate a context menu and attach it to the notification icon. You learned how to read and write user data in
the application’s user.config file.

31

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 31

You also learned how to create your own classes and even a collection of classes as provided by the
DailyForecast and DailyForecasts classes. The WeatherData class provided simple code that
enabled you to load and read XML data from a string variable.

However, without a doubt, the most useful topics covered in this chapter were how to programmatically
call a Web Service and how to programmatically make and receive an HTTP request to and from a Web
site. These topics and the included sample code will serve you well in your future endeavors.

The automated installation of the Desktop Weather program was provided using ClickOnce technology.
If you chose this option to install the program on your computer, you saw firsthand how simple it is to
use this technology for deploying applications. This technology is built into every Windows project that
you create, making it an ideal way to distribute your applications.

32

Chapter 1: Desktop Weather

18719c01.qxd:WroxPro 5/13/07 10:49 AM Page 32

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

