One

Risk

Risk is about events that we can't foresee. Is there nevertheless some underlying connection between the frequency of past events and the frequency of future events? Between the magnitude of past risks and the magnitude of future risks? Can connections between past and future risks be quantified in some useful way that is not itself risky?

Paradoxically, the risks that are hardest to quantify are the risks of least concern to the institutional investor. The key is the tendency for certain kinds of risks to occur together—i.e., the degree of correlation between the risks. Although uncorrelated risks are the easiest for an institutional investor to diversify, so-called "market" risks, which can't be diversified away, are the easiest to quantify.

J.L.T.

JWPR040-01

JWPR040-Treynor

September 3, 2007

Char Count= 0

6:54

4

CHAPTER ⁻

Using Portfolio Composition to Estimate Risk

n recent years a number of financial scholars have commented on the marked degree of co-movement in the prices of securities. Statistical techniques have been applied to measuring the character and degree of co-movement by Donald Farrar, Hester and Feeney, and Benjamin King. Perhaps the best known model of stock prices that recognizes and incorporates the co-movement phenomenon is that of William Sharpe. In Sharpe's model fluctuations in the price of a particular common stock have two causes: (1) fluctuations in the general market level and (2) fluctuations unique to the stock in question. More complicated models than Sharpe's have been proposed and the Sharpe model has occasionally been criticized as being too simple to fit reality (see for example Benjamin King's discussion¹). Nevertheless, its simplicity gives it great appeal.²

We are not the first to apply simple financial models to practical problems involving risk measurement. Marshall Blume tested the applicability of the Sharpe model to the problems of predicting the risk character of simulated rather than actual portfolios.³ James Fanning, now of Rockefeller Brothers, and Marc Steglitz of Bankers Trust have measured risk in actual common stocks defined in terms of a related, but different, model and applied the results to estimating the risk character of actual portfolios containing these stocks. Although the present paper has benefited substantially from the work of Fanning and Steglitz, in terms of model and approach, we are much closer to Blume than Fanning and Steglitz.

Sometimes it is possible to identify stock price changes with particular news events. Even though the events that cause price changes sometimes seem to be unique, it is nevertheless useful to think of the events that affect prices as drawn at random from a large population, some of which can cause large price changes and some small, many of which have a high degree of uniqueness or individuality, but that, taken as an entire population, have a character that demonstrates some continuity

Copyright © CFA Institute. Reprinted from the *Financial Analysts Journal* with permission. September–October 1968.

This chapter was coauthored with William W. Priest, Jr., Lawrence Fisher, and Catherine A. Higgins.

We are grateful to Marvin Lipson for programming the computer runs, the results of which are reported here. The data for the study were taken from "Price Relative" tapes supplied to us by the Center for Research in Security Prices, the Graduate School of Business, the University of Chicago.

JWPR040-01

RISK

over time. Labor unions will continue to strike; countries will continue to declare war or to make undeclared war; the Fed will continue by turns to tighten up and loosen the money supply; and soforth. Some of these events are felt throughout the economy and have their impact to a greater or lesser degree on the prices of most common stocks. The impact of other events is specific to at most a few companies or industries.

The Sharpe model specifies that price fluctuations in a particular common stock will be the sum of fluctuations due to fluctuations in the market index and fluctuations unique to the stock in question.⁴ The risk character of the stock is completely specified under the assumptions of the Sharpe model by specifying two parameters: The first is sensitivity of the stock to market fluctuations. It is common knowledge, however, that price fluctuations in individual common stocks are not completely explained by a market index. We call the portion of price changes left unexplained by a market index the *residual* price changes. The second risk parameter in the Sharpe model is a number that expresses the average magnitude of the residual fluctuations. In Sharpe's model, residual fluctuations are assumed to be independent from one security to another.

Some companies are more sensitive to the impact of events affecting the market index than others. Rapidly growing companies, companies that manufacture capital goods, companies with high fixed costs, and highly levered companies all tend to be more sensitive than companies for which these factors are absent. Companies for which several of these factors are present simultaneously are likely to be particularly sensitive.

The second parameter in the model—the measure of the magnitude of residual fluctuations—tends to be larger for companies in which technological changes in products or processes are taking place very rapidly. It also tends to be larger for oneproduct companies, companies for which style is an important factor and for companies whose fortunes depend on a single executive. Widely diversified companies and companies with a balanced management team will tend to demonstrate less residual variability than others. A high level of fixed costs or a highly levered capital structure will, of course, amplify specific risk in the same way that it amplifies market risk.

Exhibit 1.1 demonstrates the meaning of the risk parameters for individual stocks in graphical terms. The horizontal axis measures the change in a market index (Fisher's Combination Investment Performance Index⁵). The vertical axis measures the change in the value of the security in question. Both are measured as the ratio of value at the end of a month (including intervening dividends) to value at the beginning. A straight line has been fitted to the data points in Exhibit 1.1. The slope of the line is a measure of the sensitivity of the value of the security to fluctuations in the market index. The spread of data points around the line of best fit is a measure of residual variability.

The important distinction between market variability and residual variability in the individual security is that they affect portfolio returns in different ways. Sensitivity of a portfolio to variations in the market index is the average of the sensitivities of the individual securities held, weighted by the amounts. Residual variability in individual securities, on the other hand, tends to combine in such a way that it looms relatively less important in a portfolio (in comparison with market variability) than in the securities which comprise it. The spread is measured in terms of a number statisticians call the *residual variance*, which in terms of the present application is

6

an average of the squares of the (residual) fluctuations over the time period covered by the sample. Under the assumptions of the Sharpe model, there is a very simple rule for determining how specific risk in individual securities combines to determine specific risk in the portfolio: The residual variance for the portfolio can be expressed in terms of residual variance σ_i^2 for the individual stocks. Letting x_i equal the number of shares of the ith stock held in the portfolio and assuming that the relevant measures are expressed on a per-share basis, we have

Residual variance =
$$\Sigma x \sigma_i^2$$
 (1.1)

8

RISK

In like fashion we can define *market variance* as the average over time of (squared) fluctuations in portfolio value due to market fluctuations. Letting regression-slope coefficients B_i measure sensitivity of prices of individual stocks to fluctuations in the general market, and a variance σ_m^2 describe the variability of the general market, we have

Market variance =
$$[\Sigma x_i B_i]^2 \sigma_m^2$$
 (1.2)

Finally, expressions (1) and (2) can be combined to estimate total portfolio variance σ^2 . We have

$$\sigma^2 = [\Sigma x_i B_i]^2 \sigma_m^2 + \Sigma x_i^2 \sigma_i^2$$
(1.3)

Equation 1.3 will hold only approximately since the residual variances for individual stocks are not strictly independent. As previously noted, a number of writers have challenged the Sharpe model on the assumptions underlying the way specific risks in individual securities combine in a portfolio. Nevertheless Equation 1.3 is probably

EXHIBIT 1.2 Exponentially-Smoothed Estimates of Market Volatility (*B*) and Residual Variance (σ^2)

Holiday Inns of America, Inc.				
Month	В	σ^2		
3/64	0.663	0.00643		
4/64	4.604	0.01051		
5/64	4.307	0.00880		
6/64	4.300	0.00754		
7/64	4.314	0.00656		
8/64	3.797	0.00604		
9/64	3.132	0.00571		
10/64	2.725	0.00528		
11/64	3.025	0.00670		
12/64	2.812	0.00635		
1/65	2.923	0.00589		
2/65	3.073	0.00548		
3/65	2.961	0.00520		
4/65	2.938	0.00489		
5/65	3.006	0.00461		
6/65	2.943	0.00436		
7/65	1.742	0.00505		
8/65	1.746	0.00479		
9/65	2.036	0.00535		
10/65	2.194	0.00581		
11/65	2.356	0.00579		
12/65	2.423	0.00572		
1/66	2.391	0.00551		
2/66	2.410	0.00529		
3/66	2.427	0.00527		

Ranked by <i>B</i> _i		49.	Sunstrand	1.303	
	• -		50.	Delta Airlines	1.302
1.	Holiday Inns	2.427	51.	I T & T	1.296
2.	Warner & Swasey	2.088	52.	Carter Products	1.291
3.	Admiral	2.025	53.	General Precision	1.290
4.	Collins Radio	1.954	54.	Sperry-Rand	1.290
5.	General Instru.	1.898	55.	Western Airlines	1.277
6.	Vornado	1.817	56.	Hewlett Packard	1.262
7.	Piper Aircraft	1.798	57.	ACF Inds.	1.242
8.	Beckman Instru.	1.763	58.	Great Northern Paper	1.233
9.	Fairchild Camera	1.717	59.	Owens Corning	1.207
10.	Northwest Airlines	1.687	60.	Kayser Roth	1.205
11.	Commonwealth Oil	1.679	61.	Grace	1.194
12.	Max Factor	1.624	62.	Kaiser Alum.	1.191
13.	Phila & Reading	1.609	63.	Frito Lay	1.17
14.	Ravtheon	1.595	64.	Air Prd. & Chem.	1.157
15.	Bell & Howell	1.595	65.	Allis Chalmers	1.157
16.	Avon	1.589	66.	Whirlpool	1.156
17.	Texas Instru	1.575	67.	Pfizer Chas.	1.133
18.	TWA	1.524	68.	Corning Glass Works	1.123
19.	Pan Am World Airways	1.517	69.	General Dynamics	1.120
20.	Financial Federation	1.506	70.	Bigelow Sanford	1.115
21	Ampex	1 505	71.	Texas Oil & Gas	1.114
21.	First Charter Financial	1.505	72.	Wetson & Co.	1.105
23	Control Data	1.501	73.	Pennzoil	1.098
23.	Crowell Collier	1 498	74.	National Can	1.093
25	Foxboro	1 496	75.	Schering	1.092
26	Universal Oil Prod	1.120	76.	Union Bag Camp Paper	1.078
20.	FI Korvette	1.172	77.	Burroughs	1.072
28	William H Rorer	1 446	78.	Mueller Brass	1.059
20.	Magnavoy	1 4 3 8	79.	Allied Supermarkets	1.054
30	Polaroid	1.130	80.	MGM	1.048
31	Fastern Airlines	1.423	81.	Bethlehem Steel	1.045
32	Cerro	1 398	82.	Fibreboard Paper Prds.	1.039
32.	Revnolds Metal	1 394	83.	Olin Mathieson	1.035
34	National Airlines	1.378	84.	Harbison Walker	1.030
35	Perkin Elmer	1.378	85.	Chesebrough Ponds	1.022
36	Zenith Radio	1.378	86.	Southern Co.	1.019
37	Cons. Electronics Inde	1.335	87.	Aluminum Co Amer.	1.011
38	Ravonier	1.373	88.	W. Virginia Pulp & Paper	1.000
20	Celapese	1.357	89.	Caterpillar Tractor	0.985
<i>39</i> .	Verex	1.337	90.	Beaunit	0.982
40.	Actox Devers Copper & Brass	1.332	91	Crown Cork & Seal	0.978
41.	Motorolo	1.330	92	Tidewater	0.978
42.	Litton Inde	1.344	93	Chrysler	0.966
43.	Down DD	1.337	94	Montgomery Ward	0.953
44.	Cinn & Co	1.332	95	Texas Gulf Sulphur	0.945
43. 46	Ginn & CO.	1.320	96	Cons Cigar	0.936
40.	Lougias Aircraft	1.308	97	Ev-Cell-O	0.936
4/.	Indian Head Mills	1.30/	98	Westinghouse Electric	0.930
48.	Mallory	1.306	90.	Unichn	0.932
			<i>))</i> .	opjoini	0.720

EXHIBIT 1.3 How Market Risk Varies: Examples from the U.S. Market

-1	0	
	•	

EXHIRI	11.3	(Continued)	
100	Uolt I	Sinchart & Winston	0.01/

100.	Holt Rinehart & Winston	0.914	117.	Marathon	0.752
101.	Wesco Financial	0.911	118.	Allied Chemical	0.738
102.	Grumman	0.904	119.	Gulf Oil	0.727
103.	Halliburton	0.893	120.	McDonnell Aircraft	0.721
104.	Florida Pwr. & Light.	0.888	121.	Socony Mobil Oil	0.665
105.	Cone Mills	0.887	122.	Texaco	0.661
106.	Colgate Palmolive	0.851	123.	Monsanto	0.649
107.	Union Oil Cal.	0.850	124.	Sunbeam	0.639
108.	Merck	0.850	125.	S. Carolina Elec. & Gas	0.610
109.	Columbia Brdestg.	0.837	126.	Central Southwest	0.607
110.	Bobbie Brooks	0.825	127.	Abbott Labs	0.593
111.	Gillette	0.819	128.	Standard Oil Cal.	0.587
112.	Lockheed	0.805	129.	Petrolane Gas Service	0.576
113.	United Fruit	0.782	130.	Beneficial Finance	0.565
114.	Coastal States Gas Prod.	0.774	131.	Gulf States Utilities	0.549
115.	United Carr	0.764	132.	Southwestern Public Sve.	0.451
116.	IBM	0.757	133.	AT&T	0.403

the simplest model which has any reasonable hope of predicting the risk character of a diversified portfolio.

The values for the regression coefficients and residual variances are obtained by regressing price change histories for individual common stocks against a suitable market average. From these values and composition data, a model of the risk character of the portfolio is constructed. Predictions of a change in the value of the portfolio (given the change in market level) are compared with the actual change in order to test this model.

Our basic idea (in which we were anticipated by the work of Fanning and Steglitz, and also by that of Marshall Blume) is that if we knew the risk parameters for individual common stocks then we could estimate the risk character of a portfolio instantaneously—even though the composition was continuously changing. In order to test this idea we have studied all the common stocks held in an actual mutualfund portfolio during a period of more than two years. The price history of each common stock was traced back as far as conveniently possible—in some cases, up to 40 years. From the price and dividend histories for the common stocks, we made running estimates of the risk parameters for each common stock held. Then, once a month for each month during the test period, we made an instantaneous estimate of the risk character of the mutual fund portfolio, based on its composition at the end of that month. Our estimate of *market* risk for the portfolio enabled us to predict how rapidly the value of the fund would change as the market level fluctuated. Our estimate of *residual* risk for the fund gives an estimate of the amount by which the true market value of the fund will differ from our predictions. For each month of the test period we estimated both risk parameters for the fund and observed the actual change in market level and the actual change in the value of the fund. How well we succeeded in predicting the observed changes in the value of the fund, given the actual changes in market level, is discussed at the end of this paper.

1 1	EXHIBIT 1.4	How Specific Risk	Varies: Examples fro	om the U.S. Market
-----	-------------	-------------------	----------------------	--------------------

Ranked by Residual Variance			49	Ginn & Co	0.00628
1	Control Data Corp	0.02116	50.	Kaiser Alum. & Chem.	0.00622
2	Fairchild Camera & Instru	0.02110	51.	Pennzoil Co.	0.00619
2.	Teyas Gulf Sulphur	0.02071	52.	Beaunit Corp.	0.00613
3. 4	Texas Guil Sulphul Texas Instru	0.01370	53.	Kayser Roth Corp.	0.00603
5	Admiral Corp	0.01133	54.	Lockheed Aircraft	0.00603
6	FL Korvette	0.01344	55.	Litton Inds.	0.00590
7	Collins Radio	0.01376	56.	Grumman Aircraft	0.00582
8	Wesco Financial Corp	0.01320	57.	Western Airlines	0.00578
9	Xerox Corp	0.01217	58.	Bobbie Brooks	0.00576
10	Financial Federation	0.01217	59.	Sunstrand Corp.	0.00573
11	General Instru Corp	0.01200	60.	Motorola Inc.	0.00571
12	First Charter Finan Corp.	0.01115	61.	United Fruit	0.00565
12.	Ampey Corp	0.01043	62.	Great Northern Paper Co.	0.00564
14	Cons. Electronics Inds	0.00946	63.	Schering Corp.	0.00558
15	Beckman Instru	0.00939	64.	Sperry-Rand Corp.	0.00540
16	Commonwealth Oil	0.00900	65.	Wetson & Co.	0.00540
10.	Refining	0.00200	66.	Cerro Corp.	0.00539
17	Raytheon Co	0.00893	67.	Southern Co.	0.00537
18	Vornado Inc	0.00892	68.	Chrysler Corp.	0.00532
19.	Max Factor & Co	0.00878	69.	Cons. Cigar Corp.	0.00529
20	Polaroid Corp	0.00874	70.	Holiday Inns of Amer.	0.00527
20.	Magnavox Co	0.00861	71.	Tidewater Oil Co.	0.00515
21.	Crowell-Collier	0.00820	72.	Bigelow-Sanford Inc.	0.00504
22.	William H Rorer	0.00812	73.	Air Prod. & Chem.	0.00501
23.	Douglas Aircraft Co	0.00780	74.	Indian Head Mills	0.00498
25	Zenith Radio Corp	0.00765	75.	Burroughs Corp.	0.00493
26	Texas Oil & Gas	0.00762	76.	Warner & Swasey Co.	0.00489
27.	General Dynamics	0.00752	77.	Holt Rinehart & Winston	0.00488
28.	McDonnell Aircraft Corp.	0.00730	78.	Revere Copper & Brass	0.00482
29	TWA Inc	0.00725	79.	MGM	0.00480
30	Bell & Howell Co	0.00717	80.	Whirlpool Corp.	0.00476
31	Hewlett Packard Co	0.00711	81.	Celanese Corp Amer.	0.00475
32.	Crown Cork & Seal	0.00705	82.	Owens Corning Fiberglass	0.00465
33.	Piper Aircraft Corp.	0.00697	83.	Corning Glass Works	0.00449
34	Universal Oil Prds	0.00694	84.	Sunbeam Corp.	0.00447
35.	Northwest Airlines	0.00692	85.	Rayonier Inc.	0.00439
36.	Perkin Elmer Corp.	0.00691	86.	Alum. Co. Amer.	0.00433
37.	Carter Prod. Inc.	0.00688	87.	Petrolane Gas Srv. Inc.	0.00429
38.	Mueller Brass Co.	0.00686	88.	Intern. T & T	0.00428
39.	Eastern Airlines	0.00685	89.	Gillette Co.	0.00406
40.	Revnolds Metals	0.00679	90.	ACF Inds.	0.00404
41.	National Can Corp.	0.00668	91.	Penn. RR	0.00404
42.	Foxboro Co.	0.00666	92.	Columbia Brdestg.	0.00402
43.	Pan Am Wld Airways	0.00666	93.	W. Virginia Pulp & Paper	0.00402
44.	Phil. & Reading Corp.	0.00660	94.	Avon Prod.	0.00401
45.	National Airlines	0.006.59	95.	Frito Lay	0.00396
46.	Allied Supermarkets	0.00648	96.	Fibreboard Paper Prds.	0.00394
47.	Delta Air Lines Inc.	0.00645	97.	Merck & Co.	0.00387
48.	General Precision	0.00636	98.	Mallory Pr. & Co	0.00373

JWPR040-01

6:54

•
-

EXHIBIT 1.4 (Continued)

99.	Caterpillar Tractor	0.00363	117.	Olin Mathieson Chem.	0.00274
100.	United Carr Inc.	0.00359	118.	Gulf Oil	0.00267
101.	Bethlehem Steel	0.00356	119.	Westinghouse Electric	0.00267
102.	Abbott Lab	0.00354	120.	Grace WR & Co.	0.00255
103.	Upjohn Co.	0.00353	121.	Union Oil of Cal.	0.00245
104.	Coastal States Gas Prd. Co.	0.00352	122.	IBM	0.00242
105.	Chesebrough Ponds Inc.	0.00341	123.	Florida Pwr. & Light	0.00234
106.	Ex-Cell-O	0.00340	124.	Beneficial Finance	0.00232
107.	Cone Mills	0.00336	125.	Socony Mobil Oil	0.00225
108.	Colgate Palmolive	0.00330	126.	Texaco	0.00217
109.	Halliburton Co.	0.00331	127.	Gulf States Utilities	0.00216
110.	Monsanto Co.	0.00329	128.	S. Carolina Electric	0.00203
111.	Allis Chalmers Mfg.	0.00327		& Gas	
112.	Marathon Oil Co.	0.00323	129.	Central S. West	0.00200
113.	Union Bag Camp Paper	0.00318	130.	Allied Chem. Corp.	0.00185
114.	Montgomery Ward	0.00309	131.	Southwestern Public	0.00181
115.	Pfizer Chas	0.00294		Svc.	
116.	Harbison Walker	0.00291	132.	Standard Oil of Cal.	0.00174
	Refractories		133.	AT&T	0.00091
			1		

Although the risk character of a fund may change quickly if the composition of the fund changes, our scheme assumes that risk parameters for individual common stocks change relatively slowly. In most cases the assumption seems valid to us, since they change through the gradual evolution of products, manufacturing processes, and markets. The risk character of a company's common stock may change quickly, however, if the company enters into a wide-ranging diversification program or undergoes a profound change in capital structure. The essence of the measurement problem is that they are measured subject to random fluctuations in the data and that reliable estimates can be obtained only with samples large enough to "average out" these random fluctuations to some degree. Unfortunately, over time, the underlying parameters that we are attempting to measure are themselves changing. Thus we are confronted with an inescapable dilemma: If we confine our samples to very recent data, possible error due to random fluctuations in sample data may be excessively large. If, on the other hand, we include in our sample a longer time span, we may be including data that are no longer relevant because of changes over time in the risk character of the common stock in question. In principle, there are ways of weighting more and less recent data that are optimal in the sense of minimizing the combined effects of both problems. We are currently experimenting with techniques that select optimum weights automatically. For this study, however, we used exponential smoothing techniques with arbitrary weights (see Appendix 1.1).

Using exponential smoothing we obtained running (that is, continually changing) estimates of the risk character of a large group of common stocks covering as much as 40 years. Exhibit 1.2 shows how estimates of the risk parameters for a single common stock have behaved over time.

Perhaps the most striking thing about our estimates of risk parameters for individual common stocks is the range of values encountered in our modest sample. Exhibit

RISK

EXHIBIT 1.5 Fund Return versus Market Return

1.3 shows current estimates for market risk of stocks in the sample. A regressionslope coefficient B_i equal to 1 implies that the stock in question has an average degree of market risk, and that if the market rises or falls 10 percent other things equal the stock in question will rise or fall respectively 10 percent. Values B_i in Exhibit 1.3 range from less than $\frac{1}{2}$ to more than $2\frac{1}{2}$. In other words some stocks in Exhibit 1.3 have more than 5 times as much market risk as some others. Clearly the degree of market risk in a portfolio is determined, not only by the proportions devoted to common stock and fixed income securities respectively, but also by the kind of common stocks held.

Exhibit 1.4 shows current estimates of σ_i^2 , the spread in residual risk for the common stocks studied. Here too the range is impressive. As one might expect there is some tendency for stocks that rank high in Exhibit 1.3 to rank high in Exhibit 1.4.

EXHIBIT 1.6 Fund Return versus Predictions Based on Risk Character of Stocks Listed

Ultimately our interest in the risk character of common stocks derives entirely from their possible impact on the risk character of a portfolio. The risk character of the mutual fund portfolio considered in this study⁶ is displayed in Exhibit 1.5. The rate of return for an appropriate market index (the same Fisher Index referred to above) is measured along the horizontal axis and a rate of return for the fund is measured on the vertical axis. (The scatter diagram in Exhibit 1.5 covers 27 consecutive months of investment results for the fund.) The slope of the regression line fitted to these points (the Characteristic Line) is a measure of the average level of market risk in the fund over this period. If the actual level of market risk in the fund had been maintained constant over the period, then the dispersion of month-to-month results around the line of best fit would be a measure of the degree of specific risk in the fund. If on the other hand, the actual degree of market risk in the fund was changing from month to month, then the dispersion of the data around the line of best fit overstates the degree of specific risk in the fund. It is obviously necessary to accumulate data over a substantial period of time in order to measure market risk in a fund using the Characteristic Line technique.

Exhibit 1.6 compares actual month-to-month results for the fund with results predicted, using the technique described in this paper. A comparison of Exhibit 1.5

and 1.6 shows that our forecast of investment results for the fund is improved by using risk estimates for the individual common stocks held. In fact, roughly half the variance left unexplained by the Characteristic Line is accounted for by allowing for changes in the composition of the fund (hence changes in the risk character of the fund) over the sample period. We conclude that our risk-measuring technique is producing numbers that are both meaningful and useful—not only for estimating portfolio risk after the fact but also for estimating the impact on fund risk of making contemplated changes in the composition of the fund.

APPENDIX 1.1

The following formulas indicate schematically how we used Exponential Smoothing to get continuously-updated estimates of risk parameters for individual common stocks. Let $x_i(t)$ be the rate of return for the ith stock in period t and define $\overline{x}_i(t)$ implicitly as our estimate of the current expected value around which x(t) is fluctuating. Let $\mu(t)$ be the rate of return for an appropriate market index and define $\overline{\mu}(t)$ analogously to $\overline{x}(t)$. Then define the covariance matrix σ_i^2 by

$$\sigma_i^2 = \begin{pmatrix} \sigma_{ii}^2 & \sigma_{i\mu}^2 \\ \sigma_{i\mu}^2 & \sigma_{\mu\mu}^2 \end{pmatrix} = \begin{pmatrix} (x_i - \bar{x}_i)^2 & (x_i - \bar{x}_i)(\mu - \bar{\mu}_i) \\ (x_i - \bar{x}_i)(\mu - \bar{\mu}) & (\mu - \bar{\mu})^2 \end{pmatrix}$$
(1.4)

and define $\sigma_i^2(t)$ implicitly by the relation

$$\sigma^2(t) = \alpha \sigma^2(t) + (1 - \alpha)\bar{\sigma}^2(t - 1)$$

where α is the same smoothing constant as before. Then our estimates of the regression parameters $\beta_i(t)$ and $\sigma_i^2(t)$ are given by

$$\beta_i(t) = \frac{\sigma_{i\mu}^2(t)}{\sigma_{\mu\mu}^2(t)} \tag{1.5}$$

$$\sigma_i^2(t) = \sigma_{ii}^2(t) - \beta_i^2(t)\sigma_{\mu\mu}^2(t)$$
(1.6)

It can be seen from these formulas that, when the true values of β_i and σ_i^2 are changing along a steady trend, our estimates will tend to lag somewhat behind the true values.

Notes

- 1. "Market and Industry Factors in Stock Price Behavior," *Journal of Business*, Volume 39, Number 1, Part II ("Supplement," January, 1966), pp. 139–190.
- It should be noted that in conversation with one of us (Fisher) in 1964 or 1965, Harry Markowitz expressed the opinion that the degree of clustering of fluctuations found by

RISK

King would not cause portfolios to show riskiness substantially different from that estimated using the Sharpe model.

3. Unpublished monograph *The Empirical Adequacy of Portfolio Theory*, submitted to *Journal of Business*, July, 1968.

4. Sharpe's model was nearly anticipated by M. F. M. Osborne in his celebrated paper "Brownian Motion in the Stock Market," (*Operations Research*, Vol. 7, March–April, 1959). Osborne considered an "ensemble consisting of 1,000 pennies and one gold piece." The outcome of the toss of the gold piece affected the prices of 1,000 stocks; the effect of the outcome of tossing each of the 1,000 pennies was unique to a single stock.

- 5. Described in "Some New Stock Market Indexes," *Journal of Business, loc. cit.*, pp. 191–225.
- 6. The "fund" studied was the portion of Diversified Growth Stock Fund that was invested in common stocks listed on the New York Stock Exchange. These stocks comprised over 90 per cent of the net assets of the fund throughout the period studied (December 31, 1964 to March 31, 1966).

16