Chapter 1: Tuning the Database

In This Chapter

v Analyzing the workload

1~ Contemplating physical design considerations

v+~ Choosing and clustering indexes

v~ Co-clustering two relations

v+ Indexing on multiple attributes

v+~ Tuning indexes, queries, and transactions

+* Query tuning in a high-concurrency environment
» Benchmarking

v~ Separating user interactions from transactions

v+~ Minimizing traffic between application and server

v+ Precompiling frequently used queries

Tle word tuning is generally taken to mean optimizing a system that
exists, but is not operating at top capacity. However, tuning doesn’t do
you much good if your initial design is not at least close to optimal in the
first place. Tuning can only take you so far from your starting point. It is a
lot easier to tune a slightly off-pitch B-string on your guitar to a perfect B
than it is to tune a G-string up to a perfect B. (Also, you're a lot less likely to
break the string.) Tuning for optimal performance should start in the initial
design stage of a database, not at some later time when design decisions
have been cast in concrete.

The performance of a database management system is generally judged by
how fast it executes queries. Two types of operations are important, the
retrieval of data from a database, and the updating of records in a database.
The speed with which records can be accessed is key to both because you
must locate a record before you can either retrieve or update the data in it.
The users’ data model upon which you will base your database design is
almost certainly structured in a way that is not the best from a performance
standpoint. The users are primarily concerned with functionality and may
have little or no idea of how the design of a database affects how well it per-
forms. You must take the users’ data model and transform it into a concep-
tual schema that you actualize in the form of an E-R diagram.

55 4 Analyzing the Workload

Analyzing the Workload

Optimal design of a database depends largely on how the database will be
used. What kinds of queries will it be subjected to? How often will updates
be made, compared to how often queries are posed? These kinds of ques-
tions try to get at what the workload will be. The answers to such questions
have a great bearing on how the database should be structured. In effect, the
design of the database is tuned based on how it will typically be used.

To give you a sound foundation for designing your database to best handle
the workload to which it will be subjected, draft a workload description. The
workload description should include the following elements:

4+ Alist of all the queries you expect will be run against the database,
along with an estimate of the expected frequency of each, compared to
the frequencies of all the other queries and update operations.

4+ Alist of all the update operations you expect to perform, along with an
estimate of the expected frequency of each, compared to the frequen-
cies of all the other updates and queries.

4+ Your goal for the performance of each of the types of queries and
updates.

Queries can vary tremendously in complexity, so it is important to deter-
mine in advance how complex each is, and how that complexity will affect
the overall workload. You can determine query complexity by answering a
few questions:

4+ How many relations (tables) are accessed by this query?

4+ Which attributes (columns) are selected?

4+ Which attributes appear in the WHERE clause, and how selective are the

WHERE clause conditions likely to be?

Just as queries can vary a great deal, so can update operations. Questions
regarding updates should include

4+ Which attributes appear in the WHERE clause, and how selective are the
WHERE clause conditions likely to be?
4+ What type of update is it, an INSERT, DELETE, or UPDATE?

4 In UPDATE statements, which fields will be modified?

Considering the Physical Design 555

Considering the Physical Design

Among the factors that have a major impact on performance, few if any have
a greater effect than indexes. On the plus side, indexes point directly to the
desired record in a table, thereby bypassing the need to scan down through
the table until you come upon the record you want. This can be a tremen-
dous timesaver for a query. On the minus side, every time an insertion
update or a deletion update is made to a table, the indexes on that table
must be updated too, costing time. When chosen properly, indexes can be

a great help. When chosen poorly, indexes can waste resources and slow
processing substantially.

Regarding indexes, several questions need to be answered:

4 Which tables should have indexes and which should not?

4 For the tables that should have indexes, which columns should be
indexed?

4 For each index, should it be clustered or unclustered?
[address these questions in this chapter.

After you arrive at a conceptual schema and have determined that you need
to make changes in order to improve performance, what kinds of modifica-
tions can you make?

4+ Often there is more than one way to normalize a schema, and one such
way may deliver better performance than others. You may wish to change
the way tables are defined in order to take advantage of a schema that
gives you better performance than your current schema does.

4+ Although this may sound somewhat heretical, sometimes it pays to
denormalize your schema, and accept a risk of modification anomalies,
in exchange for a significant performance boost.

4+ Contrary to the preceding point, sometimes it makes sense to take nor-
malization a step further than you otherwise would, in effect to overnor-
malize. This can improve the performance of queries that involve only a
few attributes. By giving those attributes a table of their own, retrievals
can sometimes be speeded up.

Queries and updates that are run frequently should be examined carefully to
see if rewriting them might enable them to execute faster. There is probably
not much advantage to applying such scrutiny to queries that are rarely run,
but after you have some history and notice the ones that are being run con-
tinually, it may pay to give them an extra look to see if they can be improved.

aseqejeq ay) buiung

556 Choosing the Right Indexes

Choosing the Right Indexes

A\

Indexes can dramatically improve the performance of database retrievals.
There are several reasons why this is true. One reason is that an index tends
to be small compared to the size of the table that it is indexing. This means
that the index is likely to be in the cache, which is accessible at semiconduc-
tor memory speed rather than on disk. There is a million-to-one performance
advantage right there. Other reasons depend on the type of query being per-
formed and on whether the index is clustered. I discuss clustering in the
next section.

Avoiding unnecessary indexes

Because there is an overhead cost in maintaining indexes, you do not want
to create any indexes that won’t improve the performance of any of your
retrieval or update queries. To decide which database tables should not be
indexed, consult the workload description you created as the first step in
the design process. It contains a list of queries and their frequencies.

Here’s a no-brainer: If a table has only a small number of rows, there is no
point in indexing it. A sequential scan through relatively few rows executes
quickly.

For larger tables, the best candidates for indexes are columns that appear in
the query’s WHERE clause. The WHERE clause determines which table rows
are to be selected.

It’s likely, particularly in a system where a large number of different queries
are run, that some queries are more important than others. Either they are
run more often, or they are run against more and larger tables, or getting
results quickly is critical for some reason. Whatever the case, prioritize your
queries, with the most important first. Create indexes that give the best per-
formance for the most important query. Then move down the line, adding
indexes that help the progressively less important queries. Your database
management system’s query optimizer chooses the best execution plan
available to it, based on the indexes that are present.

There are different kinds of indexes, each with its own structure. Whereas
one kind of index is better for some retrievals, another kind is better for
others. The most common index types are B+ tree, hash, and ISAM.
Theoretically, for any given query, the query optimizer chooses the best
index type available. Most of the time, practice follows theory.

Choosing the Right Indexes 557

Choosing a column to index

Any column appearing in a query’s WHERE clause is a candidate for indexing.
If the WHERE clause contains an exact match selection, such as EMPLOYEE.
DepartmentID = DEPARTMENT.DepartmentID, a hash index on EMPLOYEE.
DepartmentID usually performs best. The number of rows in the EMPLOYEE
table is sure to be larger than the number of rows in the DEPARTMENT
table, so the index is of more use if applied to EMPLOYEE than if applied to
DEPARTMENT.

If the WHERE clause contains a range selection, such as EMPLOYEE.Age
BETWEEN 55 AND 65, a B+ tree index on EMPLOYEE.Age is probably be the
best performer. If the table is rarely updated, an ISAM index may be competi-
tive with the B+ tree index.

Multi-column indexes

If a WHERE clause imposes conditions on more than one attribute, such as
EMPLOYEE.Age BETWEEN 55 AND 65 AND EMPLOYEE.DeptName =
Shipping, a multi-column index should be considered. If the index includes
all the columns that the query retrieves (an index-only query), the query
could be completed without touching the data table at all. This could dra-
matically speed the query, and may be sufficient motivation to include a
column in the index that you otherwise would not include.

Clustering indexes

A clustered index is one that determines the sort order of the table that it is
indexing.

Suppose there are several queries of the EMPLOYEE table that have a WHERE
clause similar to WHERE EMPLOYEE.LastName = 'Smith'.In such a case,
it would be beneficial to have a clustered index on EMPLOYEE.LastName. All
the employees named Smith would be clustered together in the index, and
they would be retrieved very quickly. Quick retrieval is possible because
after you've found the index to the first Smith, you have found them all.
Access to the desired records is almost instantaneous. For any given table,
there can be only one clustered index. All other indexes on that table must
be unclustered. Unclustered indexes can be helpful, but not as helpful as a
clustered index. For that reason, if you are going to choose one index to be
the clustered index for a table, choose the one that will be used by the most
important queries in the list of queries in the workload description.

Consider the following example:
SELECT DeptNo

FROM EMPLOYEE
WHERE EMPLOYEE.Age > 29 ;

aseqejeq ay) buiung

558 Choosing the Right Indexes

Figure 1-1:
The cost of
retrievals,
with and
without an
index.

You can use a B+ tree index on Age to retrieve only the rows where employee
age is greater than 29. Whether this is worthwhile depends on the age distribu-
tion of the employees. If most employees are 30 or older, the indexed retrieval
won’t do much better than a sequential scan. Suppose only 10% of the employ-
ees are more than 29 years old. If the index on Age is clustered, it will give a
substantial improvement over a sequential scan. If it is unclustered, however,
as it is likely to be, it could require a buffer page swap for every qualifying
employee and will likely be more expensive than a sequential scan. I say that
an index on Age is likely to be unclustered based on the assumption that there
is probably at least one column in the EMPLOYEE table that would be more
deserving of a clustered index than the Age column.

You can see from this example that choosing whether to create an index for
a table column is not a simple matter. Doing an effective job of choosing
requires detailed knowledge of the data as well as of the queries that are run
on it. Figure 1-1 compares the costs of using a clustered index, an unclus-
tered index, and a sequential scan to retrieve rows from a table.

Unclustered index

Cost

Sequential scan

Clustered index

0 100
Percentage of rows retrieved

Figure 1-1 reveals a few things about the cost of indexes.

4+ A clustered index always performs better than an unclustered index.

4+ A clustered index performs better than a sequential scan unless practi-
cally all of the rows are retrieved.

Choosing the Right Indexes 559

4+ When one or very few records are being retrieved, a clustered index per-
forms much better than a sequential scan.

4+ When one or a very few records are being retrieved, an unclustered
index performs better than a sequential scan.

4 When more than about 10% of the records in a table are retrieved, a
sequential scan performs better than an unclustered index.

That last point disproves the myth that indexing a retrieval key always
improves performance over the performance of a sequential scan.

Choosing index type

In most cases, a B+ tree index is preferred because it does a good job on
range queries as well as equality queries. Hash indexes are slightly better
than B+ tree indexes in equality queries, but not nearly as good in range
queries, so overall, B+ tree indexes are preferred. However, in a couple of
cases, a hash join will do better. One is in a nested loop join where the inner
table is the indexed table and the index includes the join columns. Because
an equality selection is generated for each row in the outer table, the advan-
tage of the hash index over the B+ tree index is multiplied. Another case
where the hash join comes out ahead is when there is an important equality
query and there are no range queries on a table. You don’t need to lose a lot
of sleep over choosing an index type. Most database engines make the
choice for you, and it will usually be the best choice.

Weighing the cost of index maintenance

Indexes slow update operations because every time a table is updated with
either an insertion or a deletion, all its indexes must be updated too. Balance
this against the speedup gained by being able to access table rows more
quickly than would be possible using a sequential table scan. Even updates
are potentially speeded up because a row must first be located before it can
be updated. You may find that the net benefit of some indexes does not jus-
tify their inclusion in the database. You are better off dropping them.

Composite indexes

Composite indexes are indexes on more than one column. They can give
superior performance to queries that have more than one condition in the
WHERE clause. Here’s an example:

SELECT EmployeeID
FROM EMPLOYEES
WHERE Age BETWEEN 55 AND 65
AND Salary BETWEEN 4000 and 7000 ;

aseqejeq ay) buiung

560 Tuning Indexes

Both conditions in the WHERE clause are range conditions. An index based
on <Age, Salary> performs about as well as an index based on <Salary,
Age>. Either one performs better than an index based only on Age or only on
Salary.

Now consider the following example:

SELECT EmployeelID
FROM EMPLOYEES
WHERE Age = 57
AND Salary BETWEEN 4000 and 7000 ;

In this case, an index based on <Age, Salary> performs better than an
index based on <Salary, Age> because the equality condition on Age
means that all the records that have Age = 57 are clustered together by
the time the salary evaluation is done.

Tuning Indexes

After the database you have designed has been in operation for a while,

you should re-evaluate the decisions you made about indexing. When you
created the system, you chose indexes based on what you expected usage
to be. Now, after several weeks or months of operation, you have actual
usage statistics. Perhaps some of the queries that you thought would be
important are not run very often after all. Perhaps you made assumptions
about what indexes would be used by the query optimizer, but now you find
that limitations of the optimizer prevent it from using them, to the detriment
of performance.

Based on the actual performance data that you now have, you can tune
your indexes. This may entail dropping indexes that are doing you no good
and merely consuming resources. It may mean adding new indexes that
speed queries that have turned out to be more important than they at first
appeared to be.

For best results, tuning indexes must be an ongoing activity. As time goes on,
the nature of the workload is bound to evolve. As it does, the best indexes to
support the current workload need to evolve too. The DBA must keep track
of performance and respond when it starts to trend downward.

Another problem, which appears after a database has been in operation for
an extended period of time, might be called the tired index. A tired index is
one that is no longer delivering the performance advantage that it did when

Tuning Queries 5 o1

it was first applied to the database. When an index is fresh and new, whether
it is a B+ tree index, an ISAM index, or some other kind, it has an optimal
structure. As time goes on, insertions, deletions, and updates are made to
the table that the index is associated with. The index must adjust to these
changes. In the process of making those adjustments, the structure of the
index changes and moves away from optimality. Eventually, performance is
affected enough to be noticeable. The best solution to this problem is to
drop the index and then rebuild it. The rebuilt index once again has an opti-
mal structure. The only downside to this solution is that the database table
must be out of service while its index is being rebuilt. The amount of time it
takes to rebuild an index depends on several things, including the speed of
the processor and the size of the table being indexed. For some databases,
you may not even experience any downside. The database engine will
rebuild indexes automatically when needed.

Tuning Queries

After your system has been running a while, you may find that a query is
running slower than you expect. There are several possible causes for this,
and several possible things you can do to fix it. Because there are generally
several different ways to code a query, which all give the same result, per-
haps you could recode it, along with an appropriate change of indexes.

Sometimes a query doesn’t run as you expect because the query optimizer
is not executing the plan that you expect it to. You can check on this with
most database management systems by having it display the plan it has gen-
erated. It is quite possible that the optimizer is not finding the best plan.
Here are some possible causes:

4+ Some query optimizers do not handle NULL values well. If the table you
are querying contains NULL values in a field that appears in the WHERE
clause, this could be the problem.

4+ Some query optimizers do not handle expressions well, either arithmetic
or string. If one of these appears in the WHERE clause, the optimizer may
not handle it correctly.

<+

An OR connective in the WHERE clause could cause a problem.

4+ If you are expecting the optimizer to select a fast, but sophisticated,
plan, you could be disappointed. Sometimes the best plan is beyond the
capability of even high-end optimizers to find.

Some database management systems give you some help in overcoming
optimizer deficiencies. They give you the power to force the optimizer to use
an index that you know will be helpful, or to join tables in an order that you

aseqejeq ay) buiung

5 62 Tuning Transactions

Tuning

know is the best. For the best results, a thorough knowledge of the capabili-
ties and the deficiencies of your DBMS is essential, as is a good grasp of opti-
mization principles.

Two possible culprits in performance problems are nested queries and cor-
related queries. Many optimizers do not handle these well. If a query that is
either a nested query or a correlated query is not performing up to expecta-
tions, recoding it without nesting or correlation is a good thing to try.

Transactions

In an environment where many users are using a database concurrently,
contention for a popular resource can slow performance for everyone. The
problem arises because a user locks a resource before using it and releases
the lock when she is finished with it. As long as the resource is locked, no
one else can access it. Here are several things you can do to minimize the
performance impact of locking:

4 Minimize the amount of time that you hold a lock. If you are perform-
ing a series of operations with a transaction, obtain your locks as late as
possible and release them as soon as possible.

4+ Put indexes on a different disk from the one that holds the data files.
This prevents accesses to one from interfering with accesses to the
other.

4+ Switch to a hash or ISAM index. If a table is updated frequently, B+ tree
indexes on its columns lose much of their advantage because the root of
the tree and the pages just below it must be traversed by every update.
They become hot spots, meaning they are locked frequently, becoming a
bottleneck. Making the switch might help.

Separating User Interactions from Transactions

Because computer instructions operate in the nanosecond realm and
humans operate in the second or even minute realm, one thing that can
really slow down a database transaction is any interaction with a human. If
that transaction happens to hold a lock on a critical resource, the applica-
tion the user is interacting with is not the only one to suffer a delay. Every
other application that needs that resource is brought to a screeching halt,
for an interval of time that could be billions of times longer than necessary.
The obvious solution is to separate user interactions from transactions.
Never hold a lock on anything while waiting for a human to do something.

Precompiling Frequently Used Queries 5 63

Minimizing Traffic between Application and Server

If you have a lot of applications, running on a lot of client machines, all
depending on data residing on a server, overall performance is limited by
the server’s capacity to send and receive messages. The fewer the messages
that need to travel between client and server, the better. The smaller the
messages that need to travel between client and server, the better. One
approach to this problem is to use stored procedures. Stored procedures are
precompiled application modules that run on the server rather than the
client. Their primary purpose is to filter result sets so that only the needed
data is transmitted to the client, rather than sending a whole big chunk of
the database. This can reduce traffic between the server and client machine
dramatically.

Precompiling Frequently Used Queries

If you execute the same query repeatedly, say daily, or even hourly, you can
save time by compiling it in advance. At runtime, executing the query is the
only thing that needs to be done. The compilation is done only once and
never needs to be repeated. The timesaving due to this forethought adds up
and becomes significant over the course of weeks and months.

aseqejeq ay) buiung

5 64 Book VII: Database Tuning Overview

