
Part I: XNA Framework Basics

Chapter 1: Introducing XNA

Chapter 2: Creating Your First Game: Pong

Chapter 3: Helper Classes

Chapter 4: Game Componentss

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 2

Introducing XNA

Welcome to the world of XNA. As a game programmer you probably know about DirectX and
maybe even the basics of the XNA Framework. This chapter explains how to install XNA Game
Studio Express and how to use it in a productive way. It also contains quite a lot of tips that might
even be useful for anyone who already knows the basics.

In the next few chapters you will directly start developing some cool smaller games. This section
contains the basic foundation and helper classes you will use later in this book to develop a full-
blown graphics engine for more advanced game projects. To keep things simple you start with 2D
programming in Part I and then advance to 3D in Part II.

Let’s get started.

Introduction to the XNA Framework
XNA is developed by Microsoft and was started a few years ago, but kept very secret. At the GDC
(annually biggest Game Developers Conference) in 2004 Microsoft announced XNA for the first
time. XNA is not just a framework like DirectX; it also contains a lot of tools and even a custom
IDE derived from Visual Studio to make the game programmer’s life easier. Because no tools or
bits were released until 2006, DirectX developers only noticed the “XNA” logo in the upper-right
corner of the DirectX SDK documentation from 2004 to 2006 (see Figure 1-1). (XNA just means
“XNAs Not Acronymed.”)

Figure 1-1

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 3

Part I: XNA Framework Basics

4

This means Microsoft was working on the XNA Framework for quite a while, but the developers did not
really know what to expect. It could be a successor of the DirectX Framework, but when Direct3D 10
Beta for Windows Vista was released in the end of 2005, it seemed that DirectX was still the preferred
graphics framework even for this new operating system. Then early in 2006 at the GDC the Microsoft
XNA Build March 2006 CTP was released. XNA Build is a tool that allows you to manage complex build
processes, similar to Msbuild and tools like Ants, but more complex and powerful. Because Microsoft’s
MechCommander 2 was also released as a Shared Source Release, a lot of people downloaded it and
tried to rebuild the MechCommander 2 game. But after a while not much happened, and especially
small to mid-sized teams don’t really need a complex build management tool.

Then it was quiet for a while and only Microsoft personnel and DirectX MVPs (luckily I am one) got to
know about the upcoming XNA Framework and XNA Game Studio releases. The rest of the world
found out about that at the Gamefest conference in August (a new game developer conference by
Microsoft), where Microsoft announced the XNA Game Studio Express beta 1 release on August 30,
2006. The first beta only contained one starter kit, “Space Wars,” and XNA did not include much 3D
functionality. Many developers and hobbyists tried out XNA and wrote many small 2D games with the
help of the Sprite classes in XNA. Although you could quickly create your Pong clone or some simple
shoot-’em-up game, it was very hard to write your own 3D model importer and render code.

XNA Game Studio Express was initially targeted at beginners, hobbyists, and students to allow them to
quickly develop their own games for the Windows and Xbox 360 platform. But this does not mean pro-
fessional game studios cannot use XNA yet. A special XNA Game Studio Professional version targeted to
professional game studios will be released in the summer of 2007, but if you want to start developing in
Visual Studio 2005 Professional, follow the tricks I describe later in this chapter on how to work with VS
and XNA productively.

Gladly, Microsoft released another beta a few months later in November 2006 before the final release of
XNA Game Studio Express happened in December 2006, which includes the content pipeline and many
new features you will learn about in Chapters 2 and 3.

XNA is completely free and allows developers to create games for both the Windows platform and for
the Xbox 360 platform simultaneously for the first time. But if you want to run your XNA game on the
Xbox 360 console you have to join the “Creators Club” for an annual fee of $99.

XNA Game Studio Express
Figure 1-2 shows you XNA Game Studio Express. You learn how to install it in a second.

The screen does not only look similar to Visual C# 2005 Express, it actually is just that. There are only
some minor changes to your project settings if you create an XNA project. There is also an extra option
in Tools ➪ Options, which allows you to select your Xbox 360 device and enter the encryption key.
Additionally, there are some new features inside the IDE; for example, the content pipeline that allows
you to import textures, models, and shaders very quickly into your project. More about all that in a
little bit.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 4

Chapter 1: Introducing XNA

5

Figure 1-2

XNA Game Studio Express is currently the only available IDE for developing games with the XNA
Framework, but Microsoft will ship XNA Game Studio Pro sometime in 2007 (summer or later). XNA
Game Studio Professional will be based on the Visual Studio 2005 Professional Edition and allows you to
use all Visual Studio plugins and features. If you own Visual Studio 2005 and try to create an XNA proj-
ect, there will be no templates in it. Even worse: If you try to open a .csproj file you created with XNA
Game Studio Express, Visual Studio cannot open the project. It is not supported. Read on for a few tips
on how to get XNA working with Visual Studio 2005 in the section “What about Visual Studio 2005
Professional?”

Microsoft also mentions another version of the XNA IDE called just XNA Studio, which is based on the
Visual Studio Team System version and is targeted to large AAA studios. Read more about the XNA
Framework at http://msdn.microsoft.com/directx/xna/faq.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 5

Part I: XNA Framework Basics

6

Application Model
The XNA Framework is divided into three essential parts (see Figure 1-3):

❑ XNA Graphic Engine in the Microsoft.Xna.Framework.dll

❑ XNA Game Application Model in the Microsoft.Xna.Framework.Game.dll

❑ XNA Content Pipeline in the Microsoft.Xna.Framework.Content.Pipeline.dlls

Figure 1-3

All of these dlls are written in C# and are completely managed dlls. This means you can open them
up with a tool like Reflection (get it from http://www.aisto.com/roeder/dotnet/) and see directly
how they work (see Figure 1-4). Most internal functionality just calls to the DirectX dlls and simplifies
things a little bit. The content pipeline is discussed in a little bit.

Figure 1-4

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 6

Chapter 1: Introducing XNA

7

Take a look at the Application Model. Each XNA project uses a Game class, which contains all the impor-
tant game components, the graphic device, the window settings, and the content manager. You can also
add the input and sound handling here. Basically everything that your game does on a very high level
somehow roots in the game class or at least is in some component that can be accessed from the game class.

The following are the three most important methods in the game class (see Figure 1-5). For the final
release Microsoft also added the LoadGraphicsContent and UnloadGraphicsContent helper meth-
ods by default to the Game1.cs class, which is created automatically for you when you create a new
XNA project, but these methods will never be used in this book because it is much simpler to have all
initialization and loading code at one place in the Initialize function.

❑ Initialize ()

❑ Update (GameTime time)

❑ Draw (GameTime time)

Figure 1-5

You can probably already guess what all these do. Initialize loads all your game content, sets all your
startup settings, and initializes everything you need. If you want to follow the design patterns Microsoft
provides for XNA you would do all the loading in the LoadGraphicsContent method. Update is called
before each frame is drawn to update your game time, input, sound, and everything else that is not visi-
ble on the screen. If your game is GPU limited it can very well happen that Update is called more often
than Draw, but your update code should run separate from the drawing code anyway and none of the
samples in this book will need special care for the number of times Update and Draw are called. And
finally, Draw is called each frame to draw everything to the screen. The separation of Update and Draw
might not always be important and can almost always be ignored for unit tests, but for the final game it
is quite important to make sure the game logic runs independent of the draw code. For example, on the
Windows platform the user could press Alt and Tab or minimize the game, in which case Draw does not
need to be called anymore, but maybe you want the game to continue to run in the background. This is
especially important for network games to make sure the player is still synchronized.

Additionally, you can add GameComponent classes to your game class, which again have an Update and
a Draw method. Both these methods are automatically called from your game Update and Draw methods.
The initialization can happen directly in the constructor there. Initially Microsoft wanted the developers
to create and add game components with the designer of Visual Studio, which can be seen in the first
beta of XNA Game Studio Express (30 August, 2006). The designer feature was later removed because it
did not work well, was not supported for the Xbox 360 platform, and not many developers used it anyway.

The idea with the game components is to reuse parts of your code and make it very easy to just plug
them into your games. Examples would be a frame counter or maybe a sky cube mapping renderer for
the 3D background. In my opinion there are two major drawbacks: No standard game components are
shipped with XNA, and it is not really hard to code such an application model yourself and even

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 7

Part I: XNA Framework Basics

8

extend it. I will not use many GameComponent classes in this book, but feel free to plug them in on
your own. Read Chapter 4 for more details of the GameComponent class and learn about its advantages
and disadvantages. Because the game class has a Components property, it is very easy to add more
components.

Don’t get me wrong, the basic idea of game components is really great; there was a small webcast from
Mitch Walker, the Program Manager of the XNA Framework at Microsoft, at the time the first XNA
beta was released about the game components and how to combine them. At first I was not very sure
what to think of the content pipeline and the game components idea; it looked cool in the webcasts,
but when I started coding my first game projects in XNA I did not find it very useful to work with the
designer that was presented in the first beta. In the second beta and the final release, most of the initial
game component code was removed as well as the graphical designer component in XNA Game
Studio. This happened because Microsoft was not able to find a way to implement the designer and
game components idea in a useful way for the Xbox 360 console (it only worked on the Windows plat-
form before). This just confirmed my first feeling that the game component idea is not very useful and
may even limit you in certain respects, like having to worry about the drawing yourself (see Chapter 4
for more details).

This is similar to the fact that every game implements its own UI and menu logic, which is quite a has-
sle. But if you think about it, just some standard menu system like Windows uses for every app is very
boring and it is always a nice experience to see a new way in which menus are created in every game.
You can still extract code very easily and create your own game components if you want to create a new
game, and then you can just reuse the code (for example, the SkyCubeMapping class). Some game com-
ponents like the camera and screenshot capturer classes from Chapter 4 are good examples for compo-
nents that can be reused in many other games, but almost everything else in the games from this book is
implemented without using game components.

One of the hopes Microsoft has with this application model is that the community of game developers
can create and share their game components quite easily and improve the community aspect of XNA.
For more information you can check out the eXperience project on www.codeplex.com.

Content Pipeline
The content pipeline is used to import, compile, and load game assets like textures, 3D models, shaders,
and sound files to your game project (see Figure 1-6). It greatly reduces the amount of custom code you
have to do to get graphics, 3D data, and shaders into your game. For example, if you drop a model file
into your project and it uses two textures and a specific shader, the content pipeline will process your
model file and automatically find and add the required textures and shaders. You don’t have to do this
for yourself; the content importer “compiles” the data into a binary format and in the process it picks up
everything you need.

Say the shader you added through the model you dropped into your project contains an error. In the
past you would have to start your game project, and then get an exception telling you that the shader
could not be compiled and the game would crash. Now the shader is compiled in the build process
and you don’t have to start your game to see that it does not work yet. You can quickly fix the error
through the line and error message from the build output in XNA Game Studio Express and then
rebuild.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 8

Chapter 1: Introducing XNA

9

Figure 1-6

The content pipeline does not just consist of one dll; there are five different dlls:

❑ Microsoft.Xna.Framework.Content.Pipeline.dll contains the basic functions for the content
pipeline.

❑ Microsoft.Xna.Framework.Content.Pipeline.EffectImporter.dll is used to compile and import
shaders.

❑ Microsoft.Xna.Framework.Content.Pipeline.FBXImporter.dll is the biggest of all dlls and con-
tains a lot of code to import .fbx 3D model files and supports many features, for example skin-
ning and bones.

❑ Microsoft.Xna.Framework.Content.Pipeline.TextureImporter.dll is used to import texture files
to your game. These files can be dds files already in the DirectX format (which is the best format
for textures and supports hardware compression), but .png, .jpg, .bmp, and .tga files are also
supported. 2D sprites are just textures too and usually use the uncompressed 32-bit format.

❑ Microsoft.Xna.Framework.Content.Pipeline.XImporter.dll allows you to import .x 3D model
files, a format that was used by many DirectX applications and samples.

Your game itself will never require any of these dlls; they are just used to build and compile the content
into .xnb (XNA Binary) files in your build process. This makes the distribution easier because you don’t
have to worry about the game content files anymore; it is easier to make sure all the content files are
there when you start your game. Don’t modify the .xnb files, they are just the output format like .exe
files and should not be modified directly. The data can also not be converted back to textures, models, or
shaders (well it might be possible, but there are no tools for that). The .xnb files are also very different on
the Windows platform and the Xbox 360 platform, whereas the game source code and the content files
might be exactly the same.

Additionally you can create your own custom content processors, which allow you to compile any other
game asset you have (for example, another model format) into .xnb files. You explore that in Part II
when you have to make sure all your 3D models have tangent data for the normal mapping shaders.

Ok, that’s all the basics you need for now. It is time to get going and code your first game.

Custom

?
(e.g., XML)

3D Models

Textures

Sound Shaders

XNA Content Pipeline

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 9

Part I: XNA Framework Basics

10

Get the Free XNA Game Studio Express
To start coding right away you have to make sure that you have the correct tools installed, the IDE is an
especially important tool to get started quickly. If you already have XNA Game Studio Express installed and
configured you can skip this chapter. This part was written just in case anyone needs additional tips
and tricks. For example, how to get XNA running in Visual Studio 2005 Professional is covered here,
which is not supported out of the box, but quite useful if you use Visual Studio plugins or tools like
SourceSafe (to work better in a team, for example).

Requirements
XNA Game Studio Express targets just Windows XP SP2 (SP means Service Pack) at the time of this writ-
ing. SP2 is important because of the requirements of the .NET 2.0 Framework. Other platforms like
Windows 2003 or Windows Vista run .NET 2.0 too, but are not supported. XNA is also only tested on 32-
bit platforms, but I tested it on Windows XP x64 and Windows Vista too and it runs fine, even as a devel-
opment platform.

Because XNA Game Studio Express is based on Visual C# Express it has the same basic requirements.
You basically need a computer, nothing fancy. But for game development you have much higher basic
requirements anyway, which I talk about in a second. Visual C# Express runs on Windows 2000 SP4,
Windows XP SP2, Windows 2003 SP1, Windows XP x64, and Windows Vista. As you can see the older
the operating system is, the more service packs you need.

And finally you also need the most current DirectX runtimes, and if you are serious about game devel-
opment, better get the full DirectX SDK. The DirectX SDK is not required by XNA Game Studio Express
because the dlls just call the underlying DirectX dlls, but it is always useful to have some more documen-
tation on your system and DirectX contains many samples and tutorials, which are useful if you run into
trouble. For example, the DirectX SDK contains tools to help you generate DDS texture files, which are
optimized for the best graphic card texture formats that are available today.

Because XNA does not support the fixed function pipeline anymore like DirectX or Managed DirectX
do, it is important that you have a graphic card that supports at least Shader Model 1.1 or even better,
Shader Model 2.0. The first graphic cards with shader support were shipped back in 2001 (GeForce 3 and
ATI 7000); the next generation with Shader Model 2.0 (GeForce 5x, ATI 9x00 Series) was introduced in
2003 and made popular by the many games in 2004 that made good use of shaders (Far Cry, Doom 3,
Half-Life 2). Shader Model 3.0 (GeForce 6x, ATI x1000 Series) is the standard today and new cards with
Shader Model 4.0 (GeForce 8x) will be shipped late 2006/early 2007. The Xbox 360 uses an extended ver-
sion of Shader Model 3.0.

So this is what you need at minimum before attempting to install XNA Game Studio Express:

❑ Windows XP SP2 or Windows Vista

❑ 512 MB Ram, but better to have more — 1 or 2 GB

❑ 1 GHz CPU, the faster the better, compiling gets faster

❑ Shader Model 1.1 graphic card (Nvidia GeForce 3 or 4, ATI Radeon 7x) or better Shader
Model 2.0

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 10

Chapter 1: Introducing XNA

11

Installing
Get the latest version of XNA Game Studio Express for free at http://msdn.microsoft.com/
directx/xna/.

The beta versions still require that you install Visual C# Express and the latest version of DirectX 9.0c
first; this will most likely still be the fact when the final version is shipped. All of these downloads are
completely free and it is really a nice thing to have all these tools available without any costs involved.
This enables many more people, especially students, hobbyists, and normal players, to check out the
development environment and maybe get even more excited about game development than they
already are.

If you want a step-by-step introduction to the install process and see which steps I took you can also
watch the video tutorials I made for my the official XNA Starter Kit Racing Game on http://www
.xnaracinggame.com.

Start with installing XNA Game Studio Express (see Figure 1-7). There are no special options you have to
select; the installer will do everything for you (for example, adding firewall rules for Xbox 360 testing).
The installer also adds the XNA help, the starter kits, and the project templates to get you started.

Figure 1-7

You will not really need the DirectX SDK, but as suggested before it is recommended to install it any-
way. You will have additional documentation available and a great repertoire of tutorials and samples in
case you need more information about common techniques for your graphic engine.

You can download DirectX from the Microsoft DirectX Developer Center page on http://msdn.microsoft
.com/directx/.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 11

Part I: XNA Framework Basics

12

When installing it you should select installing the Redistributable in the custom setup step too. You will
need it if you want to install your game on other computers. When DirectX is installed you can check out
the newest features by taking a look at the samples with the DirectX Sample Browser. If you haven’t
worked much with Managed DirectX before and are interested, check out the documentation and tutorials.

If you want to use an Xbox 360 controller on your Windows machine (which works just fine thanks to
the fact that the controller uses USB) you can just plug it into your PC and it should work fine on
Windows XP and Vista after it automatically installs all required drivers. If that does not work automati-
cally for you can also download the drivers yourself and follow the instructions from the official hard-
ware site of Microsoft products at http://www.microsoft.com/hardware/gaming/download.mspx.

Last but not least, you will do a lot of unit testing in this book, and for that I usually recommend NUnit
and TestDriven.NET, but because NUnit is an external dll and TestDriven.NET is not supported in the
Express Editions anymore, you will implement your own kind of unit testing with a special class later on.

If you use Visual Studio 2005 I suggest using TestDriven.NET, and if you are using Visual Studio 2005
Team System you can also use the Unit Testing features implemented directly in VS there. Alternatively
there are also other Unit Testing Frameworks around (for example, MbUnit, csUnit, and so on). Most of
the samples in this book try to keep things simple and only use very basic features of unit testing and
make it look like many little test programs.

You can certainly do all your work inside the XNA Game Studio Express IDE, and Microsoft encourages
you to do so. All samples in this book work fine with the Express editions and I did not use any external
dlls (which was also one of the requirements for the XNA Starter Kits). However, some people already
have Visual Studio 2005 and may feel more comfortable doing their coding over there. Read on for a
couple of tricks on how to get XNA working with Visual Studio 2005 Professional.

What about Visual Studio 2005 Professional?
XNA Game Studio Express is fine and a nice environment to work in. However, if you are used to tools
like SourceSafe or any other CMS (Content Management System) or plugins like CodeRush,
TestDriven.NET, and other productivity tools, you will run into a bunch of problems. As I said earlier it
is not even possible to open your XNA projects from Visual Studio 2005.

The XNA Framework uses the .NET 2.0 Framework and DirectX 9.0c. This means to run games on any
Windows PC, it needs the .NET 2.0 Framework, DirectX 9.0c, and the XNA dlls. If you are a game devel-
oper you will have the latest DirectX SDK anyway and if you have Visual Studio 2005, you will have the
.NET 2.0 Framework too, so the only thing you need for running and even compiling XNA applications
are the two XNA dlls:

❑ Microsoft.Xna.Framework.dll

❑ Microsoft.Xna.Framework.Game.dll

These dlls are referenced in all XNA projects, so if you just add them to a project in Visual Studio 2005,
you can directly start coding. To get started just copy over the Game1.cs and Program.cs files from an
empty XNA project you created with XNA Game Studio Express.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 12

Chapter 1: Introducing XNA

13

Another problem could arise if you work on a 64-bit operating system like Windows XP x64 or Windows
Vista x64. Though DirectX 9.0c has had 64-bit dlls for some time now and the .NET Framework runs fine
on 64 bit too, the problem lies in the XNA Framework, which is only available in a 32-bit version (called
x86, by the way). People using the 64-bit operating systems of Windows had the same problem in the
past with Managed DirectX, which is only available for 32 bit too. Using a 64-bit operating system does
not mean you cannot use 32-bit applications anymore; quite the contrary. Almost all applications that
exist today are written for 32-bit operating systems, but they run fine in the 32-bit mode of Windows XP
x64 or Windows Vista x64.

Why do I even bring this up if you can run 32-bit and 64-bit applications on 64-bit operating systems?
Well, you cannot use 64-bit assemblies (dlls) from 32-bit applications or vice versa. The reason for that is
that a Windows process has to be run either in 64 bit or 32 bit; emulating 32 bit from 64 bit would be too
slow and is not even supported. Now how do you get XNA working in 64-bit mode? You don’t, it is just
not supported. Instead you have to make sure that the .NET Framework and your application run in 32-
bit mode, then Windows will start the whole process in 32-bit mode and you can load the XNA dlls just
fine. If you don’t do that your game cannot even be started on any x64-bit platform.

In Visual Studio 2005 you can just select “x86” platform instead of “All CPUs” in the Project ➪

Properties ➪ Build screen. In XNA Game Studio Express there is no such option and if you want the
same setting you have to add a line to your .csproj file in each PropertyGroup section:

<PlatformTarget>x86</PlatformTarget>

I also wrote a little tool that converts XNA Game Studio Express projects to Visual Studio 2005 projects
and back, and it also handles the x64 bit issue. You can download it on my blog at
http://abi.exdream.com.

Configuring Your Xbox 360
To connect your Xbox 360 to your PC you have to install the XNA Framework on your Xbox 360 first via
the Xbox Live Service. Unlike the Windows platform the download of the XNA Framework for the Xbox
360 is not free. You will have to join the “Creator’s Club” subscription on the Xbox 360 through the Xbox
Live Marketplace for $99 a year or $49 for four months. Microsoft does this to have a little control over
the developers. Console development is usually very closed off and there is no open source thinking like
in the Windows or Linux world. We can all just hope this is going to change.

First of all make sure your PC and the Xbox 360 are connected to the same network. You don’t have to
connect the Xbox 360 directly to your PC; just plug it into the same network (router or modem). It is
important that you always have access to the Internet from the console and not just to your PC because
XNA requires an Xbox Live connection on your console. Once you have installed the XNA Framework
on the Xbox 360, which also includes a custom version of the .NET 2.0 Compact Framework to make it
run on the console, you can start the XNA Game Launcher (see Figure 1-8).

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 13

Part I: XNA Framework Basics

14

Figure 1-8

In the XNA Game Launcher you can now start your game projects or copy over XNA games from your
friends or the Internet and start them on your console. Before you can connect to the PC you will have to
make an encryption key first by clicking Settings and then “Create Encryption Key.” You will now see
the encryption key; don’t close this window. On your PC open up XNA Game Studio Express and go to
Tools ➪ Options and scroll down. You will see the new XNA Game Studio option. Here you can add
your Xbox 360 and enter your encryption key, and just click Add (see Figure 1-9).

Figure 1-9

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 14

Chapter 1: Introducing XNA

15

After you have successfully entered the encryption key, you can click OK on both the PC and the con-
sole. If this failed or you reinstall XNA Game Studio, you can always get a new encryption key and enter
it again here.

From now on you can create Xbox 360 projects and deploy them to your console, which can be done in
the XNA Studio build menu. If you start to debug a project with F5 it will get deployed too and you can
directly debug it on your console, which is pretty cool because you can step through code on your PC
and immediately see the results on your Xbox 360 (kind of multi-monitor developing for free). Read
more about running your first game in Chapter 2.

Getting Star ted
You have everything set up now and it is time to finally do some coding and get your hands dirty. In this
chapter you will just create a simple project with the help of the XNA Studio templates. Then you will
change the code a little and add a little functionality to the Update and Draw methods. In the next chap-
ter you will create your first game after you learn about the SpriteBatch class.

Your First Project
Create a new XNA project in XNA Studio by clicking File ➪ New Project. Now select Windows Game and
enter a name for your first project — for example, “Hello World” — or just leave it as “WindowsGame1”
(see Figure 1-10). As you can see you can also create games based on the starter kits quite easily from
here too.

Figure 1-10

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 15

Part I: XNA Framework Basics

16

You can see now that a new project was created and it contains two source files: Game1.cs and
Program.cs. The Program file basically just contains the following three lines of code:

using (Game1 game = new Game1())
{
..game.Run();
} // using

The Game1 class contains the Initialize, Update, and Draw methods mentioned a little bit earlier.
Initialize does nothing for now and Update just checks if the back button on the first connected
gamepad was pressed.

For now you are just interested in the Draw method, which basically just executes the following line to
clear the background to a specific color:

graphics.GraphicsDevice.Clear(Color.CornflowerBlue);

F5 and Go
If you press F5, the project starts (same as Debug ➪ Start Debugging) and you see the screen shown in
Figure 1-11, which shows the blue color that is specified in the Draw method.

Figure 1-11

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 16

Chapter 1: Introducing XNA

17

To feel like you are actually doing something, change the Color to Color.Green and press F5 again.
The window now has a green background. The Clear method of the graphics device has other over-
loads that can be used to clear the depth and stencil buffers, which will be done automatically if you just
set the color. For example, later in this book you will just need to clear the depth buffer, but not the color
of the background. To do that you just write the following line:

graphics.GraphicsDevice.Clear(ClearOptions.DepthBuffer,
Color.Green, 1, 0);

By default the ClearOptions are set to ClearOptions.Target | ClearOptions.DepthBuffer,
which means both the background color and the depth buffer are cleared. By the way, if you don’t know
it already the | operator between the ClearOptions flags will combine both settings.

Changing the Code
Ok, instead of giving up here, think about some ways you can modify the code in a useful manner. First
of all you should be able to quit your program by pressing Escape. By default XNA just adds the following
lines to the Update method, which quits the program when the Xbox 360 controller’s back button is
being pressed:

// Allows the default game to exit on Xbox 360 and Windows
if (GamePad.GetState(PlayerIndex.One).Buttons.Back ==
ButtonState.Pressed)
this.Exit();

To learn more about the Input classes go to Chapter 3, “Helper Classes.” For now you will just use a
quick and dirty way to access the keyboard. If you modify the code in the following way you can also
press Escape now to quit the application:

// Get current gamepad and keyboard states
GamePadState gamePad = GamePad.GetState(PlayerIndex.One);
KeyboardState keyboard = Keyboard.GetState();
// Back or Escape exits our game on Xbox 360 and Windows
if (gamePad.Buttons.Back == ButtonState.Pressed ||
keyboard.IsKeyDown(Keys.Escape))
this.Exit();

As you can see you put the gamepad and keyboard states in extra variables to have easier access. If you
press F5 again, you can quit the game with Escape now.

Next you are going to jump a little bit ahead and load a graphic into your game. More details about
sprites are discussed in Chapter 2. The idea is to display a small background texture and tile it over the
whole screen. Then you implement some simple keyboard and gamepad controls to move the back-
ground like in a top-down racing game or a tile engine, which is often used in 2D role playing games.
For a more complex tile engine you would need more textures like stones, grass, water, mud, and so on,
and then even transition textures you can put between grass and water, for example. This would require
a little bit more textures and custom code, but overall this is not a very hard topic. You can also find a lot
of information about this topic on the Internet if you are really interested in tile engines.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 17

Part I: XNA Framework Basics

18

For your simple first project you just add the texture shown in Figure 1-12.

Figure 1-12

To load this texture (CityGroundSmall.jpg) into your game, just drag it into your project on the
Solution Explorer. Then click the file in the project and select Properties. You should now see the screen
shown in Figure 1-13.

Figure 1-13

Normally you would just see the build action and some options for copying the content file to the output
directory (e.g. if you want to include a .dll or .xml file). But if XNA Studio detects one of the supported
content file formats, you will see the advanced XNA properties. There are three important new settings:
Asset Name, Content Importer, and Content Processor. The Asset Name is used to load the content later;
each content file must have a unique Asset Name. For the Content Importer you can select a Texture as
in this case or a Model Importer for .x files or an Effect Importer for .fx files.

The Content Processor contains more options; for example, you could select DXT, DXT mip-mapped,
or Sprite 32bpp for your texture here. DXT is a compression format, which is also used in dds files

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 18

Chapter 1: Introducing XNA

19

and it is very good for textures in games because they get compressed down in a 1:6 ratio (or 1:4 if
they contain transparent pixels). This means you can have up to six times as many textures for the
same space on the hard disk and graphic memory. For 2D sprites it is usually better not to compress
them because you see them in their full size, and using 32bpp (bits per pixel) guarantees the best
possible sprite quality. For more information about the content pipeline read the next part of this
chapter.

If you press F5 or build the project (F6) the content is processed and a new file, CityGroundSmall.xnb,
will be created in your output directory. The build output window also shows the following new line:

Building CityGroundSmall.jpg -> bin\x86\Debug\CityGroundSmall.xnb

The final thing you have to do now is to load the imported texture. You will do that in the Initialize
method and use a new variable backgroundTexture in your class. To load the texture you use the asset
name you specified earlier (it was actually generated automatically from the filename of the file you
dragged into your project). To render the texture on the screen you need a SpriteBatch, which is dis-
cussed in the next chapter. Basically it sets up the alpha blending, then draws textures into the sprite and
finally draws everything on the screen:

Texture2D backgroundTexture;
SpriteBatch sprites;
protected override void Initialize()
{
backgroundTexture = content.Load<Texture2D>(“CityGroundSmall”);
sprites = new SpriteBatch(graphics.GraphicsDevice);
base.Initialize();

} // Initialize()

To display the background texture you have to start the sprite batch and render the texture to your
sprites in the Draw method:

protected override void Draw(GameTime gameTime)
{
graphics.GraphicsDevice.Clear(Color.Green);

sprites.Begin();
sprites.Draw(backgroundTexture, Vector2.Zero, Color.White);
sprites.End();
base.Draw(gameTime);

} // Draw(gameTime)

This renders the background texture at the location (0, 0) on top of your green background. With the
color parameter you can also recolor a sprite, but for now this is not important.

If you press F5 you will now see the result shown in Figure 1-14.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 19

Part I: XNA Framework Basics

20

Figure 1-14

One final thing you are going to add for this first project is the ability to scroll the background with the
cursor keys or a gamepad and then you render the scrollable tiles to the whole background. To capture
the gamepad and keyboard input you modify the Update method a little:

float scrollPosition = 0;
protected override void Update(GameTime gameTime)
{
// Get current gamepad and keyboard states
GamePadState gamePad = GamePad.GetState(PlayerIndex.One);
KeyboardState keyboard = Keyboard.GetState();
// Back or Escape exits our game on Xbox 360 and Windows
if (gamePad.Buttons.Back == ButtonState.Pressed ||
keyboard.IsKeyDown(Keys.Escape))
this.Exit();

// Move 400 pixels each second
float moveFactorPerSecond = 400 *
(float)gameTime.ElapsedRealTime.TotalMilliseconds / 1000.0f;
// Move up and down if we press the cursor or gamepad keys.
if (gamePad.DPad.Up == ButtonState.Pressed ||
keyboard.IsKeyDown(Keys.Up))
scrollPosition += moveFactorPerSecond;

if (gamePad.DPad.Down == ButtonState.Pressed ||
keyboard.IsKeyDown(Keys.Down))
scrollPosition -= moveFactorPerSecond;

base.Update(gameTime);
} // Update(gameTime)

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 20

Chapter 1: Introducing XNA

21

The first few lines are the same as before. Then you calculate how many pixels you would move this
frame. If a frame would take 1 second, moveFactorPerSecond would be 400; for 60 frames it would be
400/60. Because you use floats here instead of just integers you can have a couple of thousand frames
and the movement is still 400 pixels per frame if you press up or down.

The variable scrollPosition is changed if the user presses up or down. In your draw method you can
now render each tile and add the scrollPosition to the y position to move the background up and down:

protected override void Draw(GameTime gameTime)
{
graphics.GraphicsDevice.Clear(Color.Green);

sprites.Begin();
int resolutionWidth = graphics.GraphicsDevice.Viewport.Width;
int resolutionHeight = graphics.GraphicsDevice.Viewport.Height;
for (int x = 0; x <= resolutionWidth / backgroundTexture.Width;
x++)

for (int y = -1; y <= resolutionHeight / backgroundTexture.Height;
y++)

{
Vector2 position = new Vector2(
x * backgroundTexture.Width,
y * backgroundTexture.Height +
((int)scrollPosition) % backgroundTexture.Height);

sprites.Draw(backgroundTexture, position, Color.White);
} // for for
sprites.End();
base.Draw(gameTime);

} // Draw(gameTime)

Now you can start your project and move around with up and down. This is pretty good for your first
little application, isn’t it?

Notes about XNA
To finish this chapter, here are some additional tips and tricks about the XNA Framework and XNA
Game Studio Express. As you saw, you can just start coding and it works great, but it is always good to
have a couple of bookmarks for your browser you can rely on when you run into problems or don’t
know how to solve a specific issue. Additionally, this section discusses the advantages of .NET and C# a
little and checks out the differences between XNA and Managed DirectX.

Important Links
Just a couple of links for your bookmarks:

❑ http://msdn.microsoft.com/directx/xna/ — XNA Developer Center on Microsoft’s MSDN page
with the XNA Game Studio Forum and the XNA Framework Forum, which are the most active
XNA forums you will find on the Internet. You can also download the latest XNA version here,
read the FAQ, and see what’s new.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 21

Part I: XNA Framework Basics

22

❑ http://en.wikipedia.org/wiki/Microsoft_XNA — Entry on Wikipedia about XNA, constantly
updated and contains many links to other topics. On the bottom of the page a few useful exter-
nal links are listed.

❑ http://xnadevelopment.com — Nice new site with many links, tutorials, and tips to get you
started in the XNA world.

❑ http://xnaresources.com — Another new site with lots of news and some really useful tutorials
on tile engines. Also contains a lot of game components you might like.

❑ http://learnxna.com — XNA news site in form of a blog, also contains some video tutorials and
focuses on learning XNA and tips and tricks with graphic tools.

❑ http://abi.exdream.com — Official website of the author. You can find more games I made here,
as well as Rocket Commander XNA, the XNA Shooter, or the Racing Game from this book, and
all the documentation and video tutorials I made for them. Additionally I suggest checking out
the Rocket Commander Video Tutorials, which were pretty popular on Coding4Fun.

Is C# Good for Game Development?
There are constantly forum threads on sites like www.GameDev.net discussing the differences between
C++ and C#. Usually after a few posts they all end in a senseless language war. Back in the early days of
.NET (2002) I discussed quite a lot in those threads, but it was way too depressing when 99.9% of the
programmers were on the C++ side and there was no way to convince anyone because they didn’t even
take you seriously. The language war does not really have anything to do with C# as a language, except
it might have some bad taste because Java failed as a game programming platform except for cell phone
games, because both Java and C# are managed languages and look very similar. But if you think about it
the same kind of wars happened in the days when C replaced Assembler and C++ replaced C. Even to
this day, more than 20 years after C++ was developed by Bjarne Stroustrup, some game programmers still
use C and do not really take full advantage of C++. Even if you take a look at the source code for popu-
lar game engines like Quake or Half-Life it looks more like C than C++.

This is something really strange in the game programming world; everyone is afraid of losing too much
performance by switching to a new language, and additionally might also lose their old code base or
have a lot of work converting it to a new language. However, game programmers quickly adopt new
techniques and scripting languages, and are always on the very latest hardware developments. One year
before Shader Model 4 cards are even available we game developers had Direct3D 10 available and
many people checked this out without even having the hardware to run it.

I adopted .NET and C# pretty quickly in the beginning of 2002 after checking out the early betas at the
end of 2001. I just started a new game engine and our team had a new project we wanted to do. There
were absolutely no graphic engines or anything but some simple 2D games around in the early years of
.NET. This made it very hard to use OpenGL or DirectX directly in C#. It required a lot of calls to
unmanaged dlls and involved a lot of nasty pointer logic, which is only available in the unsafe mode of
C#. In 2003 Microsoft finally released the first beta of Managed DirectX, which made it possible to pro-
gram new DirectX applications quite easily in .NET. It proved that using Managed DirectX instead of the
native DirectX dlls has only a performance impact of 1%–2%, which is really not important if you think
about it (just the CPU has a little more work; most games are GPU bound anyway).

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 22

Chapter 1: Introducing XNA

23

However, this did not mean that game developers were jumping on C#; everyone was still very skeptical
and even after I released the first commercial .NET game ever, Arena Wars, in 2004, it took another year
until more and more developers finally gave .NET another chance. Students and beginners especially
really appreciate the simplicity of C#, and more and more people started to develop games in .NET. C++
versus C# discussions still exist and the discussion points are still the same, but the result is more bal-
anced right now (I stopped looking at any topic that has “vs” in the name a long time ago; it is just a
waste of time reading the same arguments over and over again).

Always remember this when you run into guys that might tell you C++ is superior and that C# is only
for newbies. The same thing happened with Assembler and C++ few years ago, and in the future there
will be new languages that make our life easier and there will still be people hesitant to adopt them right
away. Most big game studios also can’t just adopt every new technology right away; they might be in
the middle of some big project and they also have a very big code base, which is not easy to port. In the
long run, however, code will get converted and we will move up the ladder of high-level languages.

Figure 1-15 is an old picture I did to show the differences between DirectX with C++ and Managed
DirectX in C#. As you can see, MDX code can be half the size of unmanaged code. For XNA the code
would even be shorter and it gets much easier to load textures and show them on the screen, but the
comparison to MDX gets harder because the concepts are different.

Figure 1-15

C++ c#

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 23

Part I: XNA Framework Basics

24

Getting Used to the Content Pipeline
As you saw earlier with your first XNA project it is quite easy to just drag and drop a texture into your
game project inside XNA Studio. Although it is nice to have all your game content in one place and
directly side by side with the code, there are a couple of things you have to remember. Most projects I
saw in my life did not put the textures, models, or shaders directly in the Visual Studio project. The rea-
son for that is the fact that it is much easier to just copy a few files over and then let the game load them
directly. By default Visual Studio will also not copy any content files to your output directory; you have
to change the Build Action from None to Content and set the Copy to Output Directory setting to Copy if
newer. This is quite a hassle and XNA makes it a little easier.

You might even ask why change the way you loaded textures before. If you just want your game to run
on the Windows platform, you can certainly load textures and shaders dynamically and without import-
ing them first into your project as XNA content files. This has the advantage that you can change tex-
tures or shaders while the game is running (a feature that is not supported by the XNA content pipeline).
However, for model files this will not work because there are no load methods other than from the
ContentManager class, which only loads compiled .xnb content files.

On the Xbox 360 you can only load content files; there is no support to load textures or shaders directly.
If you use direct texture or shader loading, make sure you exclude that code from the Xbox 360 platform;
the dlls for the Xbox will not support loading anything but the content files.

For more details about important model files, read the chapters in Part II of this book. This topic is not as
easy as using textures. For that reason this section sticks with sprites and 2D textures and keeps things
simple. For simple 2D games it is nice and easy, but to write a serious game you will need 3D models
and many cool shader effects. I also suggest that you get an artist to do the textures and 3D models for
you. It is a quite complex topic and you might waste a lot of time doing all this yourself. Other people
might also be more talented doing textures and 3D models; take advantage of your coding skills and let
other people do the painting. If you don’t have any artists available, try to use some of the models and
textures from this book and the XNA starter kits to get started.

Differences with MDX
If you are coming from MDX (Managed DirectX) and want to migrate your game to the XNA Framework,
there is a great guide on the official XNA pages at http://msdn.microsoft.com/directx/xna/migration/.

You can find the same help in the XNA documentation. I won’t repeat all that here, but basically you
have to remember that XNA uses right-handed matrices and MDX was left handed by default. Also
there are some new classes and structures to make sure you don’t need the Windows.Forms namespace
anymore. Because there is no fixed function pipeline support, the old way of working with Windows
Forms and handles and thinking of supporting older PC configurations is no longer necessary. Graphics
and shaders are discussed in Part II of this book.

Additional Tools and Tips
Additionally you should take a look at the Getting Started help topics in the XNA documentation, which
can be accessed from XNA Studio ➪ Help ➪ Contents ➪ XNA Game Studio Express. You can find more
information about connecting to your Xbox 360, writing your first project, and about all the starter kits.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 24

Chapter 1: Introducing XNA

25

As I mentioned before, TestDriven.NET is a nice tool for Visual Studio and test-driven development is a
very important methodology in this book (see Chapter 3). Another great tool for .NET development is
the Ants Profiler. Unlike all other tools and programs I mentioned so far it is not free, but there are alter-
natives available on the net, which might help you as well. The Ants Profiler can be used to directly see
how much time every single line of your project takes. In my opinion this is much more useful than
using some high-level application performance tool like NvPerf from Nvidia, PIX from the DirectX SDK,
or using the Performance Counters of Windows. You can quickly figure out why parts of your render
code gets slow, detect bugs that call slow methods way too often, and it is always good to review your
code by having some new interesting information available.

For more links on the Internet, check out the great collection of XNA links at http://xnadevelopment
.com/links.shtml.

There are many more sites about XNA and it seems every day you see a couple of new community sites
and more resources. Do a Google search to find out which site is the most popular.

Troubleshooting
You have now read everything you need to know to get started with your first XNA project. If you just
read through this chapter, I highly recommend you at least open up the project for this chapter (down-
load it from www.wiley.com) and run it.

If you run into problems installing DirectX, .NET 2.0, or XNA, try to search for help on the XNA
Forums — http://msdn.microsoft.com/xna/forums. It is hard to give tips in the form of a book
because of the many errors that can happen. Generally, make sure you meet the minimum requirements.
For example, if you try to install on an unsupported platform and it does not work out, try to find help
on that issue on the Internet or switch to a supported platform.

For .NET 2.0 it is important that you have the most recent service pack for your operating system. For DirectX
make sure you have the most recent graphics driver and a decent graphic card to even work on 3D graphics,
and finally for XNA, make sure you have everything correctly installed before starting the XNA setup.

Getting XNA to work on Windows isn’t very hard. On the Xbox 360 a lot of things go can go wrong.
Here are a couple of tips to make sure you meet the requirements for running XNA games on your 360:

❑ You need an Xbox 360 Live Account on your Xbox 360, which must be connected at all times
when you develop and test your XNA games.

❑ Make sure your PC and the Xbox 360 are on the same network and they can “see” each other.
You can test ping-ing the Xbox 360 IP from your PC or connecting to your PC as a media center
from the Xbox 360.

❑ If the Xbox 360 XNA Framework could not be installed, search for more help on the Internet to
see if your Xbox 360 meets the minimum requirements (you need a hard disk, for example).

❑ When you create an encryption key in Settings of the XNA Game Launcher and it is not
accepted by your PC because you maybe mistyped it or it contained 0 (the number zero) and O
letters, which almost look the same, just try it again; you can always create a new encryption
key. See earlier in the chapter for details.

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 25

Part I: XNA Framework Basics

26

❑ If the XNA Game Launcher does not start or all buttons are grayed out or if you receive some
error like 0xffffffff, it means that your profile is not connected to Xbox Live or it has some wrong
settings. If you had an older version of the XNA Framework installed before, uninstall it, delete
your profile, and create a new profile and reinstall the XNA Framework again.

Chapter 2 talks in greater detail about every single step required to get a game running on the Xbox 360,
but the sample of this chapter does also work on the console out of the box. Just start the project, switch
to the Xbox 360 output, and press F5. If you have set up everything correctly you can see the same output
on the Xbox 360. Congratulations, you just started your first Xbox 360 game!

Last but not least if you run into compiler errors from the code in this chapter, here are some final tips:

❑ Make sure you have all required variables defined: graphics, content, backgroundTexture,
sprites, and scrollingPosition.

❑ Read the compiler error message and change the code accordingly. Maybe you are trying to use
some obsolete method; either replace it with the new method or just comment it out to see how
the rest of the code behaves.

❑ If the compiling works, but the program crashes or throws an exception, it is most likely that you
have some content file missing (the CityGroundSmall.jpg texture in this project) or that
your graphic hardware does not support at least Shader Model 1.1.

Summary
This chapter covered a lot about the background of XNA and how to get XNA Game Studio Express
working on your PC, and even how to install XNA on your Xbox 360 if available. You also wrote your
first little project — I wouldn’t really call it a game, but it has a texture, the Xbox 360 controller input and
keyboard input is handled, and you have a response on the screen by scrolling the background texture
up and down.

The following chapters focus more on programming cool little games. Here’s a recap of what you have
learned so far:

❑ Background of the XNA Framework

❑ Installing XNA Game Studio Express

❑ Tips and tricks how to get XNA running on Visual Studio 2005

❑ Additional tools that might be useful like TestDriven.NET, SourceSafe, and Ants Profiler

❑ Writing your first XNA project

❑ Concept of the Application Model and the Initialize, Update, and Draw methods

❑ Clearing the background

❑ Drawing a texture with help of a sprite batch

❑ Handling gamepad and keyboard input

❑ Drawing a tiled background based on your input

26776c01.qxd:WroxPro 3/25/07 9:16 PM Page 26

