| I
[Ad

In this Part

Chapter 1: What Does It Mean to Be Pragmatic?

Chapter 2: Triangle Test Exercise

Chapter 3: Aligning Testing with the Project

Chapter 4: Understanding Test Strategies, Tactics, and Design

What Does It Mean
to Be Pragmatic?

Let’s start at the beginning by exploring some obvious questions with some
not-so-obvious and not-so-universally-accepted answers about pragmatic
testing. From a pragmatic, or practical, standpoint, it involves being effective
and efficient when testing software. What is effective software testing? What is
efficient software testing? What is software testing, anyway? What is quality?

While these might seem like impractical, philosophical questions, in my
experience, they are not. Your answers to these questions determine what you
expect to do as a tester. Other people’s answers to these questions determine
what they expect you to do as a tester. Having common expectations up, down,
and across the organizational chart and throughout the project team is essen-
tial to success. Without such commonality, no matter what you do, someone’s
sure to be disappointed. With common expectations, you can all strive for the
same goals, and support others in their endeavors.

What Do Effective and Efficient Mean?

Webster’s dictionary defines the word effective as “producing a decided, deci-
sive, or desired result; impressive.” So, to be an effective software tester, you
must decide what results you desire from your testing efforts.

Likewise, Webster’s defines efficient as “productive of the desired effect;
especially to be productive without waste.” So, to be an efficient tester, you
must allocate resources (time and money) appropriately.

Part |1 = Goals, Strategies, and Tactics

In the next few pages, you'll get a closer look at each of these concepts.

First, though, note that testing usually occurs within the context of some
larger project or effort. That larger project could be developing a new system,
maintaining an existing system, deploying a system in a new or existing envi-
ronment, or deciding whether to accept or reject a proposed system. So, when
the testing subproject exists within the context of the larger project, you should
look at test effectiveness and efficiency from the project perspective, not the
test subproject perspective.

What Effects Do You Want?

On most projects I've worked on, I've typically wanted to do the following:

m Produce and deliver information to the project team about the most
important aspects of the quality of the system under test.

m Produce and deliver information to the development team so they can
fix the most important bugs.

m Produce and deliver information to the project management team so
they can understand issues such as the current levels of system quality,
the trends of those levels, and the level of quality risk reduction being
achieved.

m Produce and deliver information that can help the technical support
team, help desk, and other folks on the receiving end of the project deal
effectively with the system they received, warts and all.

In short, I often find myself a producer and provider of useful information
for the project team. This has some interesting implications, which you’ll
examine in a minute.

Reading this list, you might have thought of some effects that you — or
other people with whom you’ve worked — typically want from testing that
are missing. Good! There is no one right set of answers for this question.

What Is the Right Level of Efficiency?

The definition of efficiency that was presented earlier included the ideas of
productivity and a lack of waste. What does that mean?

Avoiding Redundancy

Of course, you don’t want to waste time, so you should try to avoid redundancy.
You should try to run the right tests and run them as rapidly as possible. You
should try to discover bugs as early as possible and find the more-important
bugs before the less-important bugs.

Chapter 1 » What Does It Mean to Be Pragmatic?

That said, you've probably seen more than one project where the old cliché
“more haste, less speed” applied. You rushed into things without planning and
preparation. You didn’t attend to details. You abandoned carefully thought-out
strategies at the first sign of trouble or delay. In short, in an attempt to save time,
you made mistakes that cost you more time than you saved.

Reducing Cost

You also don’t want to waste money, so you should buy only the supplies —
software and hardware tools, test environments, and so on — that you really
need and that you have the time and talents to gainfully employ. You should
carefully evaluate tools before you buy them and be ready to justify them with
cost-benefit analyses.

When you do such analyses, you'll often find that good tools and test con-
figurations can pay for themselves — sometimes dramatically. On one project,
a manager decided to “save money” by having us use a test server that was in
a different country. This server cost about $20,000, and he said there was no
money in the budget for another one. However, they paid more than $20,000 in
lost time and productivity when people had to wait for the system adminis-
trator in the remote location to respond to their calls for help — sometimes for
more than a day.

This matter of cost-benefit analyses brings us to another question: What is
the cost-benefit analysis for testing? Is testing an investment that pays for itself?

While these questions are more a test management topic, let me briefly
mention the concept of cost of quality. Cost of quality recognizes two types of
quality-related costs that organizations pay:

m Costs of conformance: These are the costs you pay to achieve quality.
They include costs of detection, which are the costs of testing, or looking
for bugs. Conformance costs also include the costs of prevention, which
are the costs of quality assurance, of improving the people, technolo-
gies, and process.

m Costs of nonconformance: These are the costs you pay when you fail to
achieve quality. These costs include the costs associated with finding
and fixing bugs, plus retesting those bugs and doing regression testing,
before you release, deploy, or go live with the system. These are also
called the costs of internal failure. The costs associated with finding bugs
after that point are called costs of external failure. External failures can
cost you in terms of finding, fixing, retesting, and regression testing, as
well as the additional associated costs of support or help desk time,
maintenance or patch releases, angry customers, lost business, and
damage to reputations.

Part |1 = Goals, Strategies, and Tactics

Usually, costs of conformance are less than the costs of nonconformance and
costs of internal failure are less than costs of external failure. So, testing can
have a positive return on investment by reducing the total cost of quality.'

What Software Testing Isn’t...But Is Often Thought to Be

So far, I've talked about effectiveness and efficiency and what those concepts
mean in terms of software testing, but what exactly is software testing?

Let’s start with what it’s not: Software testing is not about proving conclu-
sively that the software is free from any defects, or even about discovering all
the defects. Such a mission for a test team is truly impossible to achieve.

Why? Consider any system that solves complex business, scientific, and mil-
itary problems. There are typically an infinite or practically infinite number of
sequences in which the programming language statements that make up such
a system could be executed. Furthermore, large amounts of tremendously
diverse kinds of data often flow not only within each subsystem but also
across subsystems, with features influencing other features, data stored earlier
being retrieved again later, and so forth. Finally, users will use systems in unin-
tended, often impossible-to-anticipate fashions, eventually even on system
configurations that did not exist when the software was being written.

As if this were not enough, the complex flows of control and data through
your systems create intricate dependencies and interactions. Careful system
designers can reduce coupling, but some of these flows arise due to essential
complexity. So, minor changes can have significant effects, just as a pebble can
produce rings of ripples across a whole pond or, perhaps more aptly, just as the
lightest touch of a fly’s wing vibrates the whole spider web.

Perhaps you're thinking, “Okay, Rex, I get it, let's move on.” The problem
isn’t that we testers seldom understand the impossibility of complete, exhaus-
tive testing that proves conclusively that the system works or reveals every
single bug. The problem is that many managers and even some developers do
think we can completely, exhaustively test software.

I have heard managers say things like, “Oh, how hard can it be? Anyone can
test. Just make sure everything works before we ship it.”

I have heard developers say things like, “Of course my units work fine. I ran
unit tests and tested everything that could break.”

Maybe you've heard statements like this too.

I used to ignore those statements or dismiss them as outsiders’ blissful igno-
rance of the difficulties of my job. I found that testers ignore such statements
only at their peril. Statements such as these indicate a fundamental misunder-
standing of what testing can accomplish. That means people have expectations
of you, the test professional, that you cannot possibly meet. When you don't

! For more on the important management issue of testing economics and return on investment,
see my other two books, Managing the Testing Process and Critical Testing Processes.

Chapter 1 » What Does It Mean to Be Pragmatic?

7

meet those expectations, people might conclude that you're incompetent.
Therefore, one of the first steps to testing success is the alignment of realistic
expectations about testing across the project team.

.m One of the reviewers of this book, Judy McKay, mentioned, “We have
to be sure that we don't compound this misperception that testing can prove
the absence of defects or can discover all defects by publishing testing metrics
with statements like ‘100 percent test coverage [achieved]: Just because we ran
100 percent of our test cases doesn’t mean that we’ve covered 100 percent of
what the code could do. We need to be sure our information is accurate,
supportable, and understandable.”

The following sections investigate what testing is, and isn’t, as well as what
it can realistically do for you.

Five Phases of a Tester's Mental Life

One of the three founders of modern software testing, Boris Beizer, identified
five phases of a tester’s mental life:

m Phase 0: There’s no difference between testing and debugging. Other
than in support of debugging, testing has no purpose.

m Phase 1: The purpose of testing is to show that the software works.

m Phase 2: The purpose of testing is to show that the software
doesn’t work.

m Phase 3: The purpose of testing is not to prove anything, but to reduce
the perceived risk of the software not working to an acceptable value.

m Phase 4: Testing is not an act. It is a mental discipline that results in
low-risk software without much testing effort.

The first two phases can be thought of as myths of individuals and organi-
zations with immature testing practices and processes.?

This leads you to the practical testing reality in phase 2. Some testers stop
here. In some organizations, that’s fine. If all your peers and managers expect
from you is that you find lots of important bugs, and find them quickly and
cheaply, then this book can teach you how to do that.

However, you can also progress to phase 3. In this phase, testing is part of an
overall strategy of risk management. Testing is risk focused. Testing produces
risk-related information. This book can teach you how to do that too.

2 See Boris Beizer’s Software Testing Techniques for a more thorough description of the phases
and his conclusions about them.

Part |1 = Goals, Strategies, and Tactics

Phase 4 represents more of an organizational mindset than a tester’s mind-
set. Once testing—and the implications of testing —become pervasive
throughout the organization, everyone will start to act in a way that reduces
bugs before a single test is run. *

So, what phase do you find yourself in right now, and why? In which phase
do your peers and managers expect to find you, and why? In which phase
does your organization need you to be, and why?

Other Founding Views on Testing

Another founder of the testing profession, Bill Hetzel, wrote, “Testing is any
activity aimed at evaluating an attribute or capability of a program or system
and determining that it meets its required results.”*

This definition, while perhaps implying the dated concept of “proving that
the system works,” does include the useful concept of evaluating system
attributes and capabilities. Indeed, tests do evaluate some facet of the system,
under some set of conditions, and check system behavior against expected
results. If you substitute the word whether — as in “determining whether [the
system] meets its required results” — you can say Hetzel hit the nail on the
head — such is the act of testing.

This leads to an obvious question, though: How do you know whether the
system behaved as required? The collection of tools, techniques, and docu-
ments that testers use — together with the tester’s judgment — to make this
decision is referred to as the test oracle. The name comes from oracles in ancient
Greek history (most famously the Oracle of Delphi), supposedly able to fore-
tell the future. Calling the technique used to predict and /or check the expected
result an oracle is a nice way of hinting at how hard this often is. This book
revisits the challenges of test oracles in various chapters.

The first founder of the testing profession, Glenford Myers, wrote, “Testing
is the process of executing a program with the intent of finding errors.” Myers
was onto something with his definition too. The mind tends to see what it
expects to see. People who think they can achieve something often do. A good
tester intends to and expects to find bugs because a good tester recognizes that
all programs have bugs.?

Those of us who have carried on the work started by Myers, Hetzel, and
Beizer have continued to refine their ideas on what software testing is all
about. Mark Fewster and Dorothy Graham described testing as building con-
fidence where the system under test works and locating bugs so that we can fix
them. This definition bring us to the “why test?” question. We would want to

* This brings us to topics more properly related to test management again, so I'll refer you to
my two books, Managing the Testing Process and Critical Testing Processes.

* See Bill Hetzel’s Complete Guide to Software Testing.
* See Glenford Myers'’s The Art of Software Testing.

Chapter 1 » What Does It Mean to Be Pragmatic?

ship a system only when we were confident that the important stuff worked.
We’d need to fix as many bugs as necessary — and then some, I'd hope — to
get to that point.®

Testing as a Form of Quality Risk Management

So, now I've cited some people whose thinking on testing has influenced mine.
Through my study of risk and risk management, I've come to think about
system development, maintenance, deployment, and acceptance projects as
dealing with four main variables:

m Features: Will the system provide the right capabilities?
m Schedule: Will you deploy or release the system soon enough?
m Budget: Will the overall effort or project make financial sense?

m Quality: Will the system you create satisfy the users, customers, and
other stakeholders?

Because the answers to these questions are not clear in advance — that is,
there are risks that might lead to answers you wouldn’t like — you need some
way to manage those risks. One or more risks in any of these areas can, if
unmanaged, lead to undesirable outcomes that sink the project. Any attempt
to reduce the risk in one category always affects the other categories, usually
by increasing risk in one or more of them. If the project team properly manages
and balances these risks, the project has a strong chance of succeeding.

So, as a test professional, you should give the management team insight into
the fourth risk category, quality. You do that by producing and delivering
assessments of quality and other quality-related information in terms man-
agement can understand and act upon.

Sometimes, that information leads to actions to improve the quality of the
system. The management prioritizes the bugs you’ve found. The development
team fixes the high-priority bugs. Sometimes, though, that information can
lead to actions that trade risks in one category for risks in other categories. For
example, if you can’t get a feature bug free enough to be good enough for
release, you might push that feature into a subsequent release.

So What Is the Test Team All About?

How do you summarize the purpose of the test team? Here’s a generic state-
ment that you can tailor for any of the organizations you may work in and with:

To effectively and efficiently provide timely, accurate, and useful testing
services and quality information that helps the project team manage the risks
to system quality.

¢ See Mark Fewster and Dorothy Graham’s Software Test Automation.

Part |1 = Goals, Strategies, and Tactics

This statement is very similar to what a newspaper publisher wants to
achieve. A publisher wants their newspaper to provide timely, accurate, and
useful information to their readers.

As with newspaper articles and newspapers themselves, credibility is key
for testers. This book focuses on effective ways to produce timely, accurate,
and useful information. However, you must always remind yourself that how
you produce the information is only the first half of the battle. You also must
credibly provide that information. So effectiveness of communication is
important, and details and presentation matter.’

What Does “Quality” Mean to You?

If you want to assess quality, communicate about levels of quality, and help
management understand and manage quality, then you need a working defin-
ition for quality.

There are a number of different definitions for quality out there. I happen to
like J. M. Juran’s definition:

Fitness for use. Features [that] are decisive as to product performance and as to
“product satisfaction”.... The word ‘quality’ also refers to freedom from defi-
ciencies...[that] result in complaints, claims, returns, rework and other dam-
age. Those collectively are forms of “product dissatisfaction.”

To some extent, Juran’s wording is a bit clunky and oblique. Fitness for use
by whom? Who is being satisfied or dissatisfied here? Project sponsors, cus-
tomers, users, and other stakeholders. Juran’s definition of quality centers on
the needs and demands, the desires and the preferences of the people who pay
for, use, and are affected by our systems.

Contrast this with Phil Crosby’s definition of quality. Crosby defined qual-
ity as conformance to requirements as specified, nothing more, nothing less. The
problem for software testers is that they often receive flawed requirements
specifications — or none at all.’

I suggest that, on most projects, testers should be free to call a behavior a
“bug” when they suspect that, due to that behavior, the system might dissat-
isfy a sponsor, customer, user, or other stakeholder. I like Juran’s definition
because it makes it clear that we can do that, especially in the absence of clear
requirements specifications. Even with them, testers, thinking skeptically,
should recognize that those specifications are as likely to be wrong as the sys-
tem implementation itself.

7 See Critical Testing Processes for a detailed description of the issues relating to test results
reporting.

*See J. M. Juran’s book Juran on Planning for Quality.
? See Phil Crosby’s book Quality Is Free.

Chapter 1 » What Does It Mean to Be Pragmatic?

Now certainly there are cases, such as contract development, where require-
ments specifications draw a contractual distinction between an enhancement
request and a bug. However, for most IT and mass-market software, does the
average project sponsor, user, or customer care about such distinctions? No.
They simply want their software to show a preponderance of satisfying behav-
iors and a relative absence of dissatisfying behaviors. That’s quality to them.
Test professionals need to know how to assess quality. This book shows you
the places to look for bugs and the tools to root bugs out.

