
1
INTRODUCTION TO REGRESSION ANALYSIS

1.1 INTRODUCTION

Thegeneral purpose of regression analysis is to study the relationship between one ormore dependent variable(s) and one ormore
independent variable(s). Themost basic form of a regressionmodel is where there is one independent variable and one dependent
variable. For instance, a model relating the log of wage of married women to their experience in thework force is a simple linear
regressionmodel given by log(wage)¼b0 þ b1exper þ «, whereb0 andb1 are unknown coefficients and « is randomerror.One
objective here is to determine what effect (if any) the variable exper has on wage. In practice, most studies involve cases where
there is more than one independent variable. As an example, we can extend the simple model relating log(wage) to exper by
including the square of the experience (exper2) in thework force, alongwith years of education (educ). The objective heremay be
to determine what effect (if any) the explanatory variables (exper, exper2, educ) have on the response variable log(wage). The
extended model can be written as

logðwageÞ ¼ b0 þb1experþb2exper
2 þb3educþ «;

where b0, b1, b2, and b3 are the unknown coefficients that need to be estimated, and « is random error.
An extension of themultiple regressionmodel (with one dependent variable) is themultivariate regressionmodelwhere there is

more than one dependent variable. For instance, the well-known Grunfeld investment model deals with the relationship between
investment (Iit) with the truemarket value of a firm (Fit) and thevalue of capital (Cit) (Greene, 2003). Here, i indexes the firms and t
indexes time.Themodel isgivenby Iit¼b0i þ b1iFit þ b2iCit þ «it.Asbefore,b0i,b1i, andb2iareunknowncoefficients thatneed
to be estimated and «it is random error. The objective here is to determine if the disturbance terms are involved in cross-equation
correlation.Equationbyequationordinary least squares isused toestimate themodelparameters if thedisturbancesarenot involved
incross-equation correlations.A feasiblegeneralized least squaresmethod is used if there is evidenceof cross-equation correlation.
We will look at this model in more detail in our discussion of seemingly unrelated regression models (SUR) in Chapter 8.

Dependent variables can be continuous or discrete. In the Grunfeld investment model, the variable Iit is continuous. However,
discrete responses are also very common. Consider an examplewhere a credit card company solicits potential customers via mail.
The responseof theconsumercanbeclassified asbeingequal to1or0dependingonwhether theconsumer chooses to respond to the
mailornot.Clearly, theoutcomeof thestudy(aconsumerrespondsornot) isadiscrete randomvariable. In thisexample, the response
is a binary random variable. We will look at modeling discrete responses when we discuss discrete choice models in Chapter 10.

In general, a multiple regression model can be expressed as

y ¼ b0 þb1x1 þ � � � þbkxk þ « ¼ b0 þ
Xk
i¼1

bixi þ «; ð1:1Þ
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where y is the dependent variable, b0; . . . ;bk are the k þ 1 unknown coefficients that need to be estimated, x1; . . . ; xk are the k
independent or explanatory variables, and « is random error. Notice that the model is linear in parameters b0; . . . ;bk and is
therefore called a linear model. Linearity refers to how the parameters enter the model. For instance, the model
y ¼ b0 þb1x

2
1 þ � � � þbkx

2
k þ « is also a linear model. However, the exponential model y¼b0 exp(�xb1) is a nonlinear model

since the parameter b1 enters the model in a nonlinear fashion through the exponential function.

1.1.1 Interpretation of the Parameters

One of the assumptions (to be discussed later) for the linear model is that the conditional expectationE(«jx1; . . . ; xk) equals zero.
Under this assumption, the expectation, Eðyjx1; . . . ; xkÞ can be written as Eðyjx1; . . . ; xkÞ ¼ b0 þ

Pk
i¼1 bixi. That is, the

regressionmodel can be interpreted as the conditional expectation of y for givenvalues of the explanatory variables x1; . . . ; xk. In
theGrunfeld example, we could discuss the expected investment for a given firm for knownvalues of the firm�s truemarket value
and value of its capital. The intercept term, b0, gives the expected value of ywhen all the explanatory variables are set at zero. In
practice, this rarely makes sense since it is very uncommon to observe values of all the explanatory variables equal to zero.
Furthermore, the expected value of y under such a casewill often yield impossible results. The coefficient bk is interpreted as the
expected change in y for a unit change in xk holding all other explanatory variables constant. That is, ¶E(yjx1; . . . ; xk)=¶xk¼bk.

The requirement that all other explanatory variables be held constant when interpreting a coefficient of interest is called the
ceteris paribus condition. The effect of xk on the expected value of y is referred to as the marginal effect of xk.

Economists are typically interested in elasticities rather thanmarginal effects. Elasticity is defined as the relative change in the
dependent variable for a relative change in the independent variable. That is, elasticity measures the responsiveness of one
variable to changes in another variable—the greater the elasticity, the greater the responsiveness.

There is a distinction between marginal effect and elasticity. As stated above, the marginal effect is simply ¶E(yjxÞ=¶xk
whereas elasticity is defined as the ratio of the percentage change in y to the percentage change in x. That is, e ¼ ð¶y=yÞ=ð¶xk=xkÞ.

Consider calculating the elasticity of x1 in the general regression model given by Eq. (1.1). According to the definition of
elasticity, this is given by ex1 ¼ ð¶y=¶x1Þðx1=yÞ ¼ b1ðx1=yÞ 6¼ b1. Notice that the marginal effect is constant whereas the
elasticity is not. Next, consider calculating the elasticity in a log–log model given by log(y)¼b0 þ b1 log(x) þ «. In this case,
elasticity of x is given by

¶ logðyÞ ¼ b1¶ logðxÞ ) ¶y
1

y
¼ b1¶x

1

x
) ¶y

¶x
x

y
¼ b1:

Themarginal effect for the log–logmodel is alsob1. Next, consider the semi-logmodel given by y¼b1 þ b1 log(x) þ «. In this
case, elasticity of x is given by

¶y ¼ b1¶ logðxÞ ) ¶y ¼ b1¶x
1

x
) ¶y

¶x
x

y
¼ b1

1

y
:

On the other hand, the marginal effect in the semi-log model is given by b1(1=x).
For the semi-log model given by logðyÞ ¼ b0 þ b1xþ «, the elasticity of x is given by

¶y logðyÞ ¼ b1¶x ) ¶y
1

y
¼ b1¶x ¼

¶y
¶x

x

y
¼ b1x:

On the other hand, the marginal effect in the semi-log model is given by b1y.
Mostmodels that appear in this bookhavea log transformationon the dependent variable or the independent variable or both. It

may be useful to clarify how the coefficients from these models are interpreted. For the semi-log model where the dependent
variable has been transformed using the log transformation while the explanatory variables are in their original units, the
coefficient b is interpreted as follows: For a one unit change in the explanatory variable, the dependent variable changes by
b�100% holding all other explanatory variables constant.

In the semi-logmodelwhere the explanatory variable has been transformedbyusing the log transformation, the coefficientb is
interpreted as follows: For a one unit change in the explanatory variable, the dependent variable increases (decreases) by
b/100 units.

In the log–logmodelwhere both the dependent and independent variable havebeen transformed byusing a log transformation,
the coefficient b is interpreted as follows: A 1% change in the explanatory variable is associated with a b% change in the
dependent variable.
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1.1.2 Objectives and Assumptions in Regression Analysis

There are three main objectives in any regression analysis study. They are

a. To estimate the unknown parameters in the model.

b. To validate whether the functional form of the model is consistent with the hypothesized model that was dictated by theory.

c. To use the model to predict future values of the response variable, y.

Most regression analysis in econometrics involves objectives (a) and (b). Econometric time series analysis involves all
three. There are five key assumptions that need to be checked before the regressionmodel can be used for the purposes outlined
above.

a. Linearity: The relationship between the dependent variable y and the independent variables x1; . . . ; xk is linear.

b. Full Rank: There is no linear relationship among any of the independent variables in the model. This assumption is often
violated when the model suffers from multicollinearity.

c. Exogeneity of the Explanatory Variables:This implies that the error term is independent of the explanatory variables. That
is,E(«ijxi1; xi2; . . . ; xik)¼ 0. This assumption states that the underlyingmechanism that generated the data is different from
the mechanism that generated the errors. Chapter 4 deals with alternative methods of estimation when this assumption is
violated.

d. Random Errors: The errors are random, uncorrelated with each other, and have constant variance. This assumption is
called the homoscedasticity and nonautocorrelation assumption. Chapters 5 and 6 deal with alternative methods of
estimation when this assumption is violated. That is estimation methods when the model suffers from heteroscedasticity
and serial correlation.

e. Normal Distribution: The distribution of the random errors is normal. This assumption is used in making inference
(hypothesis tests, confidence intervals) to the regression parameters but is not needed in estimating the parameters.

1.2 MATRIX FORM OF THE MULTIPLE REGRESSION MODEL

The multiple regression model in Eq. (1.1) can be expressed in matrix notation as y¼Xb þ e. Here, y is an n� 1 vector of
observations,X is a n� (kþ 1)matrix containing values of explanatory variables,b is a (kþ 1)� 1 vector of coefficients, and e is
an n� 1 vector of random errors. Note that X consists of a column of 1’s for the intercept term b0. The regression analysis
assumptions, in matrix notation, can be restated as follows:

a. Linearity: y¼b0þ x1b1 þ � � � þ xkbk þ e or y¼Xb þ e.

b. Full Rank: X is an n� (kþ 1) matrix with rank (kþ 1).

c. Exogeneity: E(ejX)¼ 0 � X is uncorrelated with e and is generated by a process that is independent of the process that
generated the disturbance.

d. Spherical Disturbances: Var(«ijX)¼s2 for all i¼ 1; . . . ; n and Cov(«i,«jjX)¼ 0 for all i 6¼ j. That is, VarðejXÞ ¼ s2I.

e. Normality: ejX�N(0,s2I).

1.3 BASIC THEORY OF LEAST SQUARES

Least squares estimation in the simple linear regression model involves finding estimators b0 and b1 that minimize the sums of
squares L ¼ Sn

i¼1ðyi �b0 �b1xiÞ2. Taking derivatives of L with respect to b0 and b1 gives

¶L
¶b0

¼ �2
Xn
i¼1

ðyi�b0�b1xiÞ;

¶L
¶b1

¼ �2
Xn
i¼1

ðyi�b0�b1xiÞxi:
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Equating the two equations to zero and solving for b0 and b1 givesXn
i¼1

yi ¼ nb̂0 þ b̂1

Xn
i¼1

xi;

Xn
i¼1

yixi ¼ b̂0

Xn
i¼1

xi þ b̂1

Xn
i¼1

x2i :

These two equations are known as normal equations. There are twonormal equations and twounknowns. Therefore, we can solve
these to get the ordinary least squares (OLS) estimators ofb0 andb1. The first normal equation gives the estimator of the intercept,
b0, b̂0 ¼ �y�b̂1�x. Substituting this in the second normal equation and solving for b̂1 gives

b̂1 ¼
n
Pn
i¼1

yixi �
Pn
i¼1

yi
Pn
i¼1

xi

n
Pn
i¼1

x2i �
Pn
i¼1

xi

� �2 :

Wecan easily extend this to themultiple linear regressionmodel inEq. (1.1). In this case, least squares estimation involves finding
an estimator b of b to minimize the error sums of squares L¼ (y�Xb)T(y�Xb). Taking the derivative of L with respect to b
yields kþ 1 normal equations with kþ 1 unknowns (including the intercept) given by

¶L=¶b ¼ �2ðXTy�XTXb̂Þ:
Setting this equal to zero and solving for b̂ gives the least squares estimator ofb, b¼ (XTX)�1XTy. A computational form for b is
given by

b ¼
Xn
i¼1

xTi xi

 !�1 Xn
i¼1

xTi yi

 !
:

The estimated regression model or predicted value of y is therefore given by ŷ ¼ Xb. The residual vector e is defined as the
difference between the observed and the predicted value of y, that is, e ¼ y�ŷ.

The method of least squares produces unbiased estimates of b. To see this, note that

EðbjXÞ ¼ EððXTXÞ�1XTyjXÞ
¼ ðXTXÞ�1XTEðyjXÞ
¼ ðXTXÞ�1XTEðXbþ ejXÞ
¼ ðXTXÞ�1XTXbEðejXÞ
¼b:

Here, we made use of the fact that (XTX)�1¼ (XTX)¼ I, where I is the identity matrix and the assumption that E(ejX)¼ 0.

1.3.1 Consistency of the Least Squares Estimator

First, note that a consistent estimator is an estimator that converges in probability to the parameter being estimated as the sample
size increases. To say that a sequence of random variables Xn converges in probability to X implies that as n ! ¥ the probability
that jXn�Xj � d is zero for all d (Casella and Berger, 1990). That is,

lim
n!¥

PrðjXn �Xj � dÞ ¼ 0 8 d:

Under the exogeneity assumption, the least squares estimator is a consistent estimator of b. That is,

lim
n!¥

Prðjbn�bj � dÞ ¼ 0 8 d:

To see this, let xi, i¼ 1; . . . ; n; be a sequence of independent observations and assume that XTX/n converges in probability to a
positive definite matrix C. That is (using the probability limit notation),

p lim
n!¥

XTX

n
¼ C:
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Note that this assumption allows the existence of the inverse of XTX . The least squares estimator can then be written as

b ¼ bþ XTX

n

� ��1
XTe
n

� �
:

Assuming that C�1 exists, we have

p limb ¼ bþC�1p lim
XTe
n

� �
:

Inorder to showconsistency,wemust show that the second term in this equationhas expectation zero and avariance that converges
to zero as the sample size increases.Under the exogeneity assumption, it is easy to show thatE(XTejX)¼ 0 sinceE(ejX)¼ 0. It can
also be shown that the variance of XTe=n is

Var
XTe
n

� �
¼ s2

n
C:

Therefore, as n ! ¥ the variance converges to zero and thus the least squares estimator is a consistent estimator for b (Greene,
2003, p. 66).

Moving on to the variance–covariance matrix of b, it can be shown that this is given by

VarðbjXÞ ¼ s2ðXTXÞ�1:

To see this, note that

VarðbjXÞ¼ VarððXTXÞ�1XTyjXÞ
¼ VarððXTXÞ�1XTðXbþ eÞjXÞ
¼ ðXTXÞ�1XTVarðejXÞXðXTXÞ�1

¼ s2ðXTXÞ�1:

It can be shown that the least squares estimator is the best linear unbiased estimator of b. This is based on the well-known result,
called the Gauss–Markov Theorem, and implies that the least squares estimator has the smallest variance in the class of all
unbiased estimators of b (Casella and Berger, 1990; Greene, 2003; Meyers, 1990).

An estimator ofs2 can be obtained by considering the sums of squares of the residuals (SSE). Here, SSE¼ (y�Xb)T(y�Xb).
Dividing SSE by its degrees of freedom, n� k� 1 yields ŝ2. That is, the mean square error is given by
ŝ2 ¼ MSE ¼ SSE=ðn�k�1Þ. Therefore, an estimate of the covariance matrix of b is given by ŝ2ðXTXÞ�1.

Using a similar argument as the one used to showconsistencyof the least squares estimator, it can be shown that ŝ2 is consistent
fors2 and that the asymptotic covariance matrix of b is ŝ2ðXTXÞ�1 (see Greene, 2003, p. 69 for more details). The square root of
the diagonal elements of this yields the standard errors of the individual coefficient estimates.

1.3.2 Asymptotic Normality of the Least Squares Estimator

Using the properties of the least squares estimator given in Section 1.3 and the Central Limit Theorem, it can be easily shown that
the least squares estimator has an asymptotic normal distribution with mean b and variance–covariance matrixs2(XTX)�1. That
is, b̂ � asym:N

�
b;s2ðXTXÞ�1�.

1.4 ANALYSIS OF VARIANCE

The total variability in the data set (SST) can be partitioned into the sums of squares for error (SSE) and the sums of squares for
regression (SSR). That is, SST¼ SSE þ SSR. Here,

SST ¼ yTy�

Xn
i¼1

yi

 !2

n
;

SSE ¼ yTy�bTXTy;

SSR ¼ bTXTy�

Xn
i¼1

yi

 !2

n
:
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TABLE 1.1. Analysis of Variance Table

Source of
Variation

Sums of
Squares

Degrees of
Freedom Mean Square F0

Regression SSR k MSR¼ SSR/k
Error SSE n� k�1 MSE¼ SSE/(n� k�1)
Total SST n� 1 MSR/MSE

The mean square terms are simply the sums of square terms divided by their degrees of freedom. We can therefore write the
analysis of variance (ANOVA) table as given in Table 1.1.

The F statistic is the ratio between the mean square for regression and the mean square for error. It tests the global hypotheses

H0: b1 ¼ b2 ¼ . . . ¼ bk ¼ 0;

H1: At least one bi 6¼ 0 for i ¼ 1; . . . ; k:

Thenull hypothesis states that there is no relationshipbetween the explanatoryvariables and the responsevariable. The alternative
hypothesis states that at least one of the k explanatory variables has a significant effect on the response. Under the assumption that
the null hypothesis is true,F0 has anF distribution with k numerator and n� k�1 denominator degrees of freedom, that is, under
H0, F0�Fk,n�k�1. The p value is defined as the probability that a random variable from the F distribution with k numerator and
n� k�1 denominator degrees of freedom exceeds the observed value of F, that is, Pr(Fk,n�k�1>F0). The null hypothesis is
rejected in favor of the alternative hypothesis if the p value is less than a, where a is the type I error.

1.5 THE FRISCH–WAUGH THEOREM

Often, wemay be interested only in a subset of the full set of variables included in themodel. Consider partitioningX intoX1 and
X2. That is, X¼ [X1 X2]. The general linear model can therefore be written as y¼Xb þ e¼X1b1 þ X2b2 þ e. The normal
equations can be written as (Greene, 2003, pp. 26–27; Lovell, 2006)

XT
1X1 XT

1X2

XT
2X1 XT

2X2

" #"
b1

b2

#
¼

XT
1y

XT
2y

" #
:

It can be shown that

b1 ¼ ðXT
1X1Þ�1XT

1 ðy�X2b2Þ:

IfXT
1X2 ¼ 0, then b1 ¼ ðXT

1X1Þ�1XT
1y. That is, if the matricesX1 andX2 are orthogonal, then b1 can be obtained by regressing y

on X1. Similarly, b2 can be obtained by regressing y on X2. It can easily be shown that

b2 ¼ ðXT
2M1X2Þ�1ðXT

2M1yÞ;

where M1 ¼ ðI�X1ðXT
1X1Þ�1XT

1 Þ so that M1y is a vector of residuals from a regression of y on X1.
Note thatM1X2 is amatrix of residuals obtained by regressingX2 onX1. The computations described here form the basis of the

well-knownFrisch–WaughTheorem,which states thatb2 can be obtained by regressing the residuals from a regression of y onX1

with the residuals obtained by regressingX2 onX1.One application of this result is in the derivation of the formof the least squares
estimators in the fixed effects (LSDV) model, which will be discussed in Chapter 7.

1.6 GOODNESS OF FIT

Two commonly used goodness-of-fit statistics used are the coefficient of determination (R2) and the adjusted coefficient of
determination (R2

A). R
2 is defined as

R2 ¼ SSR

SST
¼ 1� SSE

SST
:
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It measures the amount of variability in the response, y, that is explained by including the regressors x1; x2; . . . ; xk in the model.
Due to the nature of its construction, we have 0�R2� 1. Although higher values (values closer to 1) are desired, a large value
of R2 does not necessarily imply that the regression model is a good one. Adding a variable to the model will always increase
R2 regardless of whether the additional variable is statistically significant or not. In other words,R2 can be artificially inflated by
overfitting the model.

To see this, consider themodel y¼X1b1þ X2b2þU. Here, y is a n�1 vector of observations,X1 is the n� k1 datamatrixb1

is a vector of k1 coefficients,X2is the n� k2 data matrix with k2 added variables, b2 is a vector of k2 coefficients, andU is a n�1
random vector. Using the Frisch–Waugh theorem, we can show that

b̂2 ¼
�
XT

2MX2

��1
XT

2My ¼ �X2*
T X2*

��1
X2*
T y*:

Here,X2* ¼ MX2; y* ¼ My, andM ¼ I�X1ðXT
1X1Þ�1XT

1 . That is,X2* and y* are residual vectors of the regression ofX2 and
y on X1. We can invoke the Frisch–Waugh theorem again to get an expression for b̂1. That is, b̂1 ¼

�
XT

1X1

��1
XT

1

�
y�X2 b̂2

�
.

Using elementary algebra, we can simplify this expression to get b̂1 ¼ b��XT
1X1

��1
XT

1X2 b̂2, where b ¼ �XT
1X1

��1
XT

1y.
Next, note that u ¼ y�X1 b̂1�X2 b̂2. We can substitute the expression of b̂1 in this to get Û ¼ u ¼ e�MX2b̂2 ¼ e�X2*b̂2. The
sums of squares of error for the extra variable model is therefore given by

uTu ¼ eTeþ b̂T
2

�
XT

2*X2*

�
b̂2�2b̂2X

T
2*e ¼ eTe þ b̂T

2

�
XT

2*X2*

�
b̂2�2b̂T

2X
T
2*y*:

Here, e is the residual y�X1b or My¼ y*. We can now, manipulate b̂2 to get

XT
2*y* ¼

�
XT

2*X2*

�
b̂2 and

uTu ¼ eTe�b̂T
2

�
XT

2*X2*

�
b̂2 � eTe:

Dividing both sides by the total sums of squares, yTM0y, we get

uTu

yTM0y
� eTe

yTM0y
) R2

X1;X2
� R2

X1
;

whereM0¼ I� i(iTi)�1 iT. See Greene (2003, p. 30) for a proof for the casewhen a single variable is added to an existingmodel.
Thus, it is possible for models to have a high R2 yet yield poor predictions of new observations for the mean response. It is for

this reason thatmanypractitioners also use the adjusted coefficient of variation,R2
A,which adjustsR

2 with respect to the number of
explanatory variables in the model. It is defined as

R2
A ¼ 1� SSE=ðn�k�1Þ

SST=ðn�1Þ ¼ 1� n�1

n�k�1

� �
ð1�R2Þ:

In general, it will increase onlywhen significant terms that improve themodel are added to themodel. On the other hand, it will
decreasewith the addition of nonsignificant terms to themodel. Therefore, it will always be less than or equal toR2.When the two
R2 measures differ dramatically, there is a good chance that nonsignificant terms have been added to the model.

1.7 HYPOTHESIS TESTING AND CONFIDENCE INTERVALS

The global F test checks the hypothesis that at least one of the k regressors has a significant effect on the response. It does not
indicatewhich explanatory variable has an effect. It is therefore essential to conduct hypothesis tests on the individual coefficients
bj(j¼ 1; . . . ; k). The hypothesis statements are H0:bj¼ 0 and H1:bj 6¼ 0. The test statistic for testing this is the ratio of the least
squares estimate and the standard error of the estimate. That is,

t0 ¼ bj
s:e:ðbjÞ ; j ¼ 1; . . . ; k;
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where s.e.(bj) is the standard error associated with bj and is defined as s:e:ðbjÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ŝ2Cjj

q
, where Cjj is the jth diagonal element

of (XTX)�1 corresponding to bj. Under the assumption that the null hypothesis is true, the test statistic t0 is distributed as a
tdistributionwithn� k� 1degrees of freedom.That is, t0� tn�k� 1. Thepvalue is defined as before. That is, Pr(jt0j>tn�k� 1).We
reject thenull hypothesis if thepvalue<a,wherea is the type I error.Note that this test is amarginal test sincebjdependsonall the
other regressors xi(i 6¼ j) that are in the model (see the earlier discussion on interpreting the coefficients).

Hypothesis tests are typically followed by the calculation of confidence intervals. A 100(1�a)% confidence interval for the
regression coefficient bj(j¼ 1; . . . ; k) is given by

bj�ta=2;n�k�1s:e:ðbjÞ � bj � bj þ ta=2;n�k�1s:e:ðbjÞ:

Note that these confidence intervals can also be used to conduct the hypothesis tests. In particular, if the range of values for the
confidence interval includes zero, then we would fail to reject the null hypothesis.

Two other confidence intervals of interest are the confidence interval for themean responseEðyjx0Þ and the prediction interval
for an observation selected from the conditional distribution f ðyjx0Þ, where without loss of generality f ð*Þ is assumed to be
normally distributed. Also note that x0 is the setting of the explanatory variables at which the distribution of y needs to be
evaluated. Notice that the mean of y at a given value of x¼ x0 is given by Eðyjx0Þ ¼ xT0b.

An unbiased estimator for themean response is x0
Tb. That is,E(x0

TbjX)¼ x0
Tb. It can be shown that the variance of this unbiased

estimator is given by s2xT0 ðXTXÞ�1x0. Using the previously defined estimator for s2 (see Section 1.3.1 ), we can construct a
100(1� a)% confidence interval on the mean response as

ŷðx0Þ� ta=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2xT0 ðXTXÞ�1x0

q
� myjx0 � ŷðx0Þþ ta=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2xT0 ðXTXÞ�1x0

q
:

Using a similar method, one can easily construct a 100(1�a)% prediction interval for a future observation x0 as

ŷðx0Þ� ta=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2ð1þ xT0 ðXTXÞ�1x0Þ

q
� yðx0Þ � ŷðx0Þþ ta=2;n�k�1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ŝ2ð1þ xT0 ðXTXÞ�1x0Þ

q
:

In both these cases, the observation vector x0 is defined as x0¼ (1; x01; x02; . . . ; x0k), where the “1” is added to account for the
intercept term.

Notice that the width of the prediction interval at point x0 is wider than the width of the confidence interval for the mean
response atx0.This is easy to see because the standard error used for the prediction interval is larger than the standard error used for
themean response interval. This shouldmake intuitive sense also since it is easier to predict themean of a distribution than it is to
predict a future value from the same distribution.

1.8 SOME FURTHER NOTES

Akey step in regression analysis is residual analysis to check the least squares assumptions. Violation of one ormore assumptions
can render the estimation and any subsequent hypothesis tests meaningless. As stated earlier, the least squares residuals can be
computed as e¼ y�Xb. Simple residual plots can be used to check a number of assumptions.Chapter 2 shows how these plots are
constructed. Here, we simply outline the different types of residual plots that can be used.

1. A plot of the residuals in time order can be used to check for the presence of autocorrelation. This plot can also be used to
check for outliers.

2. A plot of the residuals versus the predicted value can be used to check the assumption of random, independently distributed
errors. This plot (and the residuals versus regressors plots) can be used to check for the presence of heteroscedasticity. This
plot can also be used to check for outliers and influential observations.

3. The normal probability plot of the residuals can be used to check any violations from the assumption of normally
distributed random errors.
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