Swenson c02.tex V3-01/29/2008 1:07pm Page 1

—p—

Simple Ciphers

As long as there has been communication, there has been an interest in
keeping some of this information confidential. As written messages became
more widespread, especially over distances, people learned how susceptible
this particular medium is to being somehow compromised: The messages can
be easily intercepted, read, destroyed, or modified. Some protective methods
were employed, such as sealing a message with a wax seal, which serves to
show the communicating parties that the message is genuine and had not been
intercepted. This, however, did nothing to actually conceal the contents.

This chapter explores some of the simplest methods for obfuscating the
contents of communications. Any piece of written communication has some
set of symbols that constitute allowed constructs, typically, words, syllables,
or other meaningful ideas. Some of the simple methods first used involved
simply manipulating this symbol set, which the cryptologic community often
calls an alphabet regardless of the origin of the language. Other older tricks
involved jumbling up the ordering of the presentation of these symbols.
Many of these techniques were in regular use up until a little more than
a century ago; it is interesting to note that even though these techniques
aren’t sophisticated, newspapers often publish puzzles called cryptograms or
cryptoquips employing these cryptographic techniques for readers to solve.

Many books have been published that cover the use, history, and cryptanal-
ysis of simple substitution and transposition ciphers, which we discuss in this
chapter. (For example, some of the resources for this chapter are References
[2] and [4].) This chapter is not meant to replace a rigorous study of these
techniques, such as is contained in many of these books, but merely to expose
the reader to the contrast between older methods of cryptanalysis and newer
methods.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 2

—p—

Chapter 1 = Simple Ciphers

1.1 Monoalphabetic Ciphers

It's certain that, as long as people have been writing, people have been
using codes to communicate —some form of writing known only to the
communicating parties. For example, the two people writing each other secret
letters might agree to write the first letter of each word last, or to exchange some
letters for alternate symbols. Even many children experiment with systems
and games of writing based on similar ideas.

The most basic kind of cipher is one in which a piece of text is replaced with
another — these are called substitution ciphers. These can be single-letter
substitutions, in which each letter in each word is exchanged one at a time, or
whole-block substitutions, in which whole blocks of text or data are exchanged
for other whole blocks (block ciphers, which are discussed in detail in
Chapter 4).

One family of simple substitution ciphers related to the above is the family
of monoalphabetic ciphers — ciphers that take the original message and
encrypt it, one letter (or symbol) at a time, using only a single new alphabet
to replace the old. This means that each character is encrypted independently
of the previous letter, following the same rule. Since these rules must always
translate a character in the same way every time, a rule can be represented
as a new alphabet, so that a message can be encrypted via a conversion table
between the two alphabets.

The simplest example of a monoalphabetic cipher is to perform a single shift
on the alphabets. In other words, replace all &s with Bs, 8s with s, and so
forth, and wrap around the end so that Zs are replaced with &s. This means
that the word cat would be encrypted as peu, and the word Epr would be
decrypted as dog.

One of the first, and certainly the most widely known, monoalphabetic
ciphers was one used by ancient Romans. It is affectionately called the Caesar
cipher after the most famous of Romans [4]. This system was reportedly
used to encrypt battle orders at a time when having the orders written at
all was almost good enough to hide them from the average soldier, and it is
extraordinarily simple. To obtain the ciphertext for a plaintext using the Caesar
cipher, it is necessary simply to exchange each character in the plaintext with
the corresponding character that occurs three characters later in the common
order of the alphabet (so that a encrypts to b, b encrypts to E, etc., and wrapping
around, so that x encrypts to a).

Naturally, getting the plaintext back from the ciphertext is simply a matter
of taking each character and replacing it with the character that appears three
characters before it in the common order of the alphabet (see Table 1-1).

For example, the text retreat would be encoded as uswuHDI.

To decrypt a message, simply reverse the table so that d —a, e —b, and
SO on.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 3

—p—

Monoalphabetic Ciphers 3

Table 1-1 Caesar Cipher Lookup Table
PLAINTEXT < CIPHERTEXT

a<d h<k o<r Voy
boe i< | p<s W<z
cof j< m qot X< a
dog k< n r<u y< b
e<h <o S<V Z<cC
foi m < p tow

g<] n<q u< X

As a quick example, the text

the quick brown roman fox jumped over the lazy ostrogoth dog

can be easily encrypted by shifting each character three to the right to obtain

WKH TXLFN EURZQ URPDQ IRA MXPSHG RYHU WKH ODCB RVWURJRWK GRJ

However, as any person experienced in newspaper crypto-puzzles can
tell you, one of the key features to breaking these codes is found in the
placement of the spaces: If we know how many letters are in each word,
it will help us significantly in guessing and figuring out what the original
message is. This is one simple cryptanalytic piece of knowledge we can use
right away — we are not encrypting the spaces! There are two solutions: We
can either encrypt the spaces as an additional “27-th” letter, which isn’t a
terrible idea, or remove spaces altogether. It turns out that it makes slightly
more sense, cryptanalytically speaking, to remove the spaces altogether. This
does make it hard to read and write these codes by hand; thus, we often just
remove the spaces but add in new ones at regular intervals (say, every four or
five characters), giving us ciphertext such as

WKHTX LFNEU RZQUR PDQIR AMXPS HGRYH UWKHO DCBRV WURJR WKGRJ

When encrypted, the lack of the correct spaces in the ciphertext means
nothing to either party. After decryption, though, when the party has plaintext
with few spaces in the correct place, the inconvenience is usually minor, as
most people can read the message anyway. The added security of removing all
spaces from the plaintext before encryption is worth the small added difficulty
in reading the message. The spaces added at regular intervals add no new
information to the data stream and are therefore safe to keep.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 4

—p—

Chapter 1 = Simple Ciphers

With these examples, it is easier to see exactly what is meant by the term
monoalphabetic. Essentially, to use a monoalphabetic cipher, we only need to
consult a single lookup table. This will contrast shortly with other techniques,
which consult multiple tables.

1.2 Keying

The Caesar cipher has a prominent flaw: Anyone who knows the cipher
can immediately decrypt the message. This was not a concern to Caesar
2,000 years ago, as having the message in writing often provided sufficient
subterfuge, considering the high illiteracy of the general population. However,
the simplicity of the cipher allowed field commanders to be able to send and
receive encrypted messages with relative ease, knowing that even if a message
was intercepted and the enemy was literate, the opposition would have little
hope of discovering the content.

As time progressed, more people became aware of the algorithm, and its
security was therefore lessened. However, a natural evolution of the Caesar
cipher is to change the way the letters are transformed into other letters, by
using a different ordering of the alphabet.

But easily communicating an alphabet between two parties is not necessarily
so easy. There are 26! = 403,291,461,126,605,635,584,000,000 different possible
arrangements of a standard 26-letter alphabet, meaning that both sides would
need to know the encrypting alphabet that the other was using in order to
decrypt the message. If the two parties first agree on an alphabet as a key, then,
since they both know the algorithm, either can send messages that the other
can receive. However, if they number the alphabets individually, they would
have an 89-bit key (since 26! ~ 2%), which is difficult to work with. Instead,
most cryptographers would typically use a few simple transformations to the
alphabet, and have a much smaller key.

For example, the most common method is simply to shift the letters of the
output alphabet to the right or left by a certain number of positions. In this
way, the Caesar cipher can be viewed as having a shift of +3. There are then 26
different keys possible, and it should be fairly easy for two parties to exchange
such keys. Moreover, such a short key would also be easy to remember.

Other common transformations are typically a combination of the shifting
operation above and another simple operation, such as reversing the order of
the output alphabet [4].

1.2.1 Keyed Alphabets

To increase the number of alphabets available for easy use, a popular keying
method is to use a keyword, such as swordfish, to generate an alphabet.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page5

—p—

Keying 5

An alphabet can be derived, for example, by removing the letters in the
keyword from the alphabet, and appending this modified alphabet to the end
of the keyword. Thus, the alphabet generated by swordfish would be

swordf ihabcegjklmnpgtuvxyz

Note that the second s was removed from the keyword in the alphabet and
that the alphabet is still 26 characters in length.

There are a few disadvantages to using such a technique. For example,
encrypting a message that contains the keyword itself will encrypt the keyword
as a string of letters starting something along the lines of aBcpEFGH. Another,
probably more severe disadvantage is that letters near the end of the alphabet
will not be shifted at all unless the keyword has one or more characters
appearing at the end of the alphabet, and even so, would then likely be shifted
very little. This provides patterns for the experienced code breaker.

1.2.2 ROT13

A modern example of a monoalphabetic cipher is ROT13, which is still used
on the Internet, although not as much as it has been historically. Essentially,
this is a simple cipher in the style of the Caesar cipher with a shift of +13.

The beauty of this cipher is in its simplicity: The encryption and decryption
operations are identical. This fact is simply because there are 26 letters in the
Latin alphabet (at least, the way we use it in English); thus, shifting twice by
13 yields one shift of 26, which puts things back the way they were. Also note
that it doesn’t matter in which “direction”” we shift, since shifting left by 13
and shifting right by 13 always yield the same results.

But why use such an easy-to-break cipher? It’s, in fact, trivial to break
since everyone knows the cipher alphabet! Despite the fact that this style of
cipher has been obsolete for centuries, ROT13 is useful to protect slightly
sensitive discussions. For example, readers of a message board might discuss
the endings of books using ROT13 to prevent spoiling the conclusion for
others.

Looking through articles or posts on the Internet where sensitive top-
ics might be displayed, and suddenly having the conversation turn into
strange-looking garbage text in the middle (often with other parties replying
in the exact same code) often means that the posters are writing in ROT13.
Plus, ROT13 often has a very distinctive look that one can recognize after a
while. For example, our standard text from above,

the quick brown roman fox jumped over the lazy ostrogoth dog

would display as

—p—

Swenson c02.tex V3 -01/29/2008

—p—

Chapter 1 = Simple Ciphers

GUR DHVPX OEBJA EBZNA SBK WHZCRQ BIRE GUR YNML BFGEBTBGU QBT

when encrypted with ROT13.

1.2.3 Klingon

I would like to delve into a language other than English for a moment, to
show that these cryptographic (and later, cryptanalytic) techniques are not
reliant on English, but can have similar properties in other languages as well,
including even constructed languages. An example language that might be
easy to follow is the Klingon language.

Klingon [1] (more properly, “tlhIngan Hol”), as seen in the Star Trek films
and television shows, is an artificial language invented mostly by Marc Okrand
using only common Latin characters and punctuation. This allows the use of
encryption techniques similar to the ones we have used in English so far,
showing some different properties of the language.

Table 1-2 shows all of the characters of tlhIngan Hol as they are commonly
spelled in the Latin alphabet. From this table, we can then determine that
the 25 characters, abcDeghHIjlmnopgQrstuvwy, are the only ones we should be
seeing and therefore need to encrypt (note that English has 52 characters, if
you include capital letters).

Using the character ordering of the previous paragraph, we can perform a
ROT13 of the Klingon text:

Heghlu'meH QaQ jajvam

(In English, this translates as “Today is a good day to die.”)
After the ROT13, we obtain the enciphered text:

trStyIn'rt DoD wowjo'

Table 1-2 Sounds of tlhingan Hol [1]

b ch D gh H

j | m n ng
P q Q r S

t tlh v w y

! a e I o

u

1:07pm Page 6

Swenson c02.tex V3-01/29/2008 1:07pm Page 7

—p—

Polyalphabetic Ciphers 7

1.3 Polyalphabetic Ciphers

We can naturally think of several ways to make the monoalphabetic cipher
a more powerful encryption scheme without increasing its complexity too
much. For example, why not use two different ciphers, and switch off every
other letter? Or use three? Or more?

This would be an example of a polyalphabetic cipher. These began to be
widely adopted over the past 500 years or so owing to the increasing awareness
of how weak monoalphabetic ciphers truly are. There are a few difficulties in
managing the alphabets. A key must be used to select different alphabets to
encrypt the plaintext.

However, this necessitates an increase in key complexity. If a key represents
some set of k alphabets, then there are (26!)* different sets of alphabets that
could be chosen. (This is 26 factorial to the k-th power. In other words, take the
number 26 and multiply it by 25,24, and so on down to 2, and take that number,
and multiply it by itself k times. With k = 1, this is about four hundred million
billion billion, or a 4 followed by 23 zeros. The number of zeros roughly doubles
with each increment of k.) To reduce this number, cryptographers often use a
small number of alphabets based on easily remembered constructions (such
as shifts and reversals of the normal alphabetic ordering), and use parts of the
key to select alphabets used for substitution.

1.3.1 Vigenére Tableau

The most common table used to select alphabets is the famous Vigenere
Tableau, as shown in Table 1-3. The Vigenere Tableau is a pre-selected set of
alphabets, along with some guides to help encrypt and decrypt text characters
if you know the key. When using the Vigenere Tableau to select alphabets for a
polyalphabetic cipher, we obtain the Vigenere cipher. For this polyalphabetic
cipher, the key is a word in the alphabet itself.

Encrypting a message using the Vigenere Tableau is fairly easy. We need
to choose a keyword, preferably of short length to make it easy to remember
which alphabet we are using at every point in the message. We then take our
message and encrypt it character by character using the table and the current
character of the keyword (start with the first of each). We merely look up the
current character of the keyword in the left column of the Tableau.

To show an example, we can use our favorite phrase:

the quick brown roman fox jumped over the lazy ostrogoth dog

We then encrypt it with the key caesar to obtain the ciphertext:

VHI IUZEK FJONP RSEAE HOB BUDREH GVVT TLW LRBY SKTIQGSLH UQG

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 8

—p—

8 Chapter 1 = Simple Ciphers

Table 1-3 The Vigenére Tableau

abcde £f ghi

Swenson c02.tex V3-01/29/2008 1:07pm Page9

—p—

Transposition Ciphers 9

1.4 Transposition Ciphers

The preceding encryption mechanisms are all substitution ciphers, in which the
primary operation is to replace each input character, in place, with some other
character in a reversible way. Another general class of ciphers mentioned
briefly above is transposition ciphers (or permutation ciphers), in which
instead of characters being substituted for different ones, they are shuffled
around without changing the actual characters themselves. This preserves the
actual contents of the characters but changes the order in which they appear.
For example, one of the simplest transposition ciphers is simply to reverse the
characters in the string — cryptology becomes YGOLOTPYRC.

In order for a transposition cipher to be secure, its encryption mechanism
can’t be so obvious and simple as merely reversing the string, since even an
amateur eye can easily see what is happening. In the following sections, we
explore some of the more popular and effective methods of implementing
transposition ciphers.

1.4.1 Columnar Transpositions

Probably the most common, simple transposition cryptographic method is
the columnar transposition cipher. A columnar transposition works in the
following way: We write the characters of the plaintext in the normal way
to fill up a line of a rectangle, where the row length is referred to as k; after
each line is filled up, we write the following line directly underneath it with
the characters lining up perfectly; to obtain the ciphertext, we should read the
text from top to bottom, left to right. (Often, spaces can be removed from the
plaintext before processing.)

For example, to compute the ciphertext of the plaintext all work and no
play makes johnny a dull boy with k = 6, write the message in a grid with six
columns:

=B AT~ 0
B 0 0 -
oK n o B3
o o K Qg
XK @ o0 BB O

e 5o o0 R

Now, reading from the first column, top to bottom, then the second column,
and so forth, yields the following message. Spaces are added for clarity.

AKPKNL LALENL LNASYB WDYJAO ONMODY ROAHU

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 10

—p—

Chapter 1 = Simple Ciphers

To decrypt such a message, one needs to know the number of characters
in a column. Decryption is then just writing the characters in the same order
that we read them to obtain the ciphertext, followed by reading the text left to
right, top to bottom.

The key can then be viewed as the integer k, the number of columns. From
this, we can calculate the number of rows (r) by dividing the message length
by k and rounding up.

1.4.2 Double Columnar Transpositions

It does not take an advanced cryptanalyst to see an immediate problem with
the above columnar transposition cipher — we can easily guess the number
of columns (since it is probably a low number for human-transformable
messages), or just enumerate all possibilities for k and then check to see if any
words are formed by taking characters that are k.

To protect messages more without increasing the complexity of the algo-
rithm too much, it is possible to use two columnar transpositions, one right
after the other. We simply take the resulting ciphertext from the single colum-
nar transposition above and run it through the columnar transposition again
with a different value of k. We refer to these values now as k; and k.

For example, if we take the encrypted string, shown earlier, from a1l work
and no play makes johnny a dull boy, encrypt it with k = 6 (as above,
obtaining the ciphertext from the previous section), and encrypt it again with
k, = 8, we get:

ALYOA KEBNH PNWMU KLDON LYDLN JYLAA RASOO

To show how jumbled things get quite easily, we will take the plaintext P to
be the alphabet:

abcde fghij klmno pgrst uvwxy z
Encrypting with k; = 5, we get the ciphertext C;:
AFKPU ZBGLQ VCHMR WDINS XEJOT Y

And we encrypt the ciphertext C; with k, = 9 to obtain the next and final
ciphertext C:

AQNFV SKCXP HEUMJ ZROBW TGDYL I

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 11

—p—

Cryptanalysis 11

1.5 Cryptanalysis

In the previous sections, we explored the evolution of several simple cryp-
tographic systems, many of which were used up until the previous century
(and some still find limited use, such as ROT13). Now we will discuss the
weaknesses in the above methods and how to defeat these codes.

1.5.1 Breaking Monoalphabetic Ciphers

The first topic we covered was monoalphabetic ciphers. These simple ciphers
have several weaknesses, a few of which were alluded to previously. There are
a few important tools and techniques that are commonly used in the evaluation
and breaking of monoalphabetic ciphers, which we explore in the following
sections.

1.5.1.1 Frequency Analysis

The most obvious method is called frequency analysis — counting how often
individual letters appear in the text.

Frequency analysis is based on patterns that have evolved within the
language over time. Most speakers of English know that certain letters occur
more often than others. For example, any vowel occurs more often than X or
Z in normal writing. Every language has similar character properties like this,
which we can use to our advantage when analyzing texts.

How? We simply run a counter over every character in the text and compare
it to known samples of the language. For the case of frequency analysis,
monoalphabetic ciphers should preserve the distribution of the frequencies, but
will not preserve the matching of those relative frequencies to the appropriate
letters. This is how these ciphers are often broken: trying to match the
appropriate characters of a certain frequency in the underlying language to a
similarly acting character in the ciphertext. However, not all ciphers preserve
these kinds of characteristics of the origin language in the ciphertext.

A distribution of English is shown in Figure 1-1, which is derived from The
Complete Works of William Shakespeare. The graph shows the frequency of each
character in the Latin alphabet (ignoring case) in The Complete Works of William
Shakespeare [3].

Each language has a unique footprint, as certain letters are used more than
others. Again, in Figure 1-1, we can see a large peak corresponding to the letter
E (as most people know, E is the most common letter in English). Similarly,
there are large peaks in the graph around the letters R, S, and T.

For monoalphabetic substitution ciphers, the graph will be mixed around,
but the frequencies will still be there: We would still expect to see a large

—p—

12

Swenson c02.tex V3-01/29/2008 1:07pm Page 12

—p—

Chapter 1 = Simple Ciphers

0.120

0.100

0.080

0.060

0.040

0.020

0.000

Figure 1-1 Frequency distribution table for Shakespeare’s complete works [3]. The letters
are shown left to right, A through Z, with the y-value being the frequency of that character
occurring in The Complete Works of William Shakespeare [3].

peak, which will probably be the ciphertext letter corresponding to E. The next
highest occurring letters will probably correspond to other high-frequency
letters in English.

Frequency distributions increase in utility the more ciphertext we get. Trying
to analyze a five-letter word will have practically no information for us to
derive any information about frequencies, whereas several paragraphs or more
will give us more information to derive a frequency distribution.

Note, however, that just as frequency distributions are unique to languages,
they can also be unique to particular samples of languages. Figure 1-2 shows
a frequency analysis of the Linux kernel source code that has a different look
to it, although it shares some similar characteristics.

1.5.1.2 Index of Coincidence

One of the first questions we might ask is if a particular message is encrypted
at all. And, if it is encrypted, how is it encrypted? Based on our discussion
above about the different kinds of cryptography, we would want to know
whether the message was encrypted with a mono- or polyalphabetic cipher so
that we can begin to find out the key.

We can begin with the index of coincidence (the I¢), a very useful tool
that gives us some information about the suspect ciphertext. It measures

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 13

—p—

Cryptanalysis 13

0.120

0.100

0.080

0.060

0.040

0.020

0.000

Figure 1-2 Frequency distribution table for “vanilla” Linux 2.6.15.1 source code (including
only alphabetic characters). The total size is approximately 205 megabytes.

how often characters could theoretically appear next to each other, based on
the frequency analysis of the text. You can think about it as a measure of
how evenly distributed the character frequencies are within the frequency
distribution table — the lower the number, the more evenly distributed. For
example, in unencrypted English, we know that letters such as E and S appear
more often than X and Z. If a monoalphabetic cipher is used to encrypt the
plaintext, then the individual letter frequencies will be preserved, although
mapped to a different letter. Luckily, the I¢ is calculated so that the actual
character does not matter, and instead is based on the ratio of the number of
times the character appears to the total number of characters.
The index of coincidence is calculated by the following:

count(c) x [count(c) — 1]

le= Z length -
¢ € alphabet gt x (length 1)
This means that we take each character in the alphabet, take the number of
them that appear in the text, multiply by that same number minus one, and
divide by the ciphertext length times the ciphertext length minus one. When
we add all of these values together, we will have calculated the probability that
two characters in the ciphertext could, theoretically, be repeated in succession.
How do polyalphabetic ciphers factor into this? In this case, the same
letter will not be encrypted with the same alphabet, meaning that many of

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 14

—p—

Chapter 1 = Simple Ciphers

the letter appearances will be distributed to other letters in a rather random
fashion, which starts to flatten out the frequency distribution. As the frequency
distribution becomes flatter, the I becomes smaller, since the amount of
information about the frequencies is decreasing.

An adequate representation of the English language is The Complete Works of
William Shakespeare [3]. We can easily calculate the index of coincidence, ignor-
ing punctuation and spaces, by counting the occurrences of each character and
applying the above formula. In this case, we calculate it to be approximately
0.0639.

While Shakespeare provides an interesting reference point and is fairly
representative of English, it is necessary to consider the source of the message
you are analyzing. For example, if your source text likely is C code, a better
reference might be a large collection of C code, such as the Linux kernel. The
Linux 2.6.15.1 kernel has an Ic = 0.0585. Or, if the text is in Klingon, we can
take a sample size of Klingon with a few English loan words (taken from about
156 kilobytes of the Qo’noS Qonos), and find the I ~ 0.0496.

The theoretically perfect I is if all characters occurred the exact same
number of times so that none was more likely than any other to be repeated.
This can be easily calculated. For English, since we have 26 characters in our
Latin-based alphabet, the perfect value would be that each character occurs
exactly 1/26-th of the time. This means that, in the above equation, we can
assume that length = 26 x count(c) for all c.

This gives us the following formula to calculate the perfect theoretical
maximum. We can assume that the count is 7, to make the formula easier to
read. To see what happens as we get more and more ciphertext, the counts
will be more precise; therefore, we will assume that the amount of ciphertext
is approaching an infinite amount.

im Y n(n—1)
Ic = lim P
n—>ooc € alphabet 261’[(267[N 1)

We can simplify this a little (since we know that each part of the sum is
always the same):
26n(n — 1)

Ic = im ———
n—o0 261(26m — 1)
And we can even simplify a little further:

n—1

26n —1

Most calculus courses teach L'Hopital’s Rule, which tells us that the above
limit can be simplified again, giving our theoretical best:

IC = lim
n—00

Ic =1/26 ~ 0.03846

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 15

—p—

Cryptanalysis 15

This can be seen intuitively by the fact that, as n gets very large, the
subtraction of the constant 1 means very little to the value of the fraction,
which is dominated by the n/26n part. This is simplified to 1/26.

Note that this technique does not allow us to actually break a cipher. This
is simply a tool to provide us more information about the text with which we
are dealing.

1.5.1.3 Other Issues

There are some proposed methods of strengthening basic ciphers (monoal-
phabetic, polyalphabetic, transposition, or others). See Reference [5] for some
of these examples.

One very simple method is to throw meaningless characters called nulls
into the ciphertext. For example, the character X does not appear very often in
texts. Therefore, we could just throw the letter X randomly into the plaintext
before encrypting. This technique isn’t terribly difficult to spot: Frequency
analysis will show a fairly normal distribution of characters, except for an
extra, large spike in the distribution. Once any suspected nulls are removed,
the analysis should be easier. Another common null is to remove spaces from
the plaintext and add them to the ciphertext in a random, English-like manner.

Another popular mechanism is to use monophones — where one plaintext
letter can be represented by more than one ciphertext letter. They can be
chosen randomly or with some certain pattern. This is slightly more difficult to
detect, since it will have the property of flattening the distribution a bit more.
Since using monophones quickly depletes the normal alphabet, extra symbols
can often be introduced.

The opposite of a monophone is a polyphone — where multiple plaintext
characters are encoded to the same ciphertext character. This requires the
receiver to know this is happening and be a bit clever about decrypting the
message, since there may be multiple interpretations of the characters.

There are no good ways of automatically detecting and removing these
security measures — a lot of them will involve a human using the preceding
and following tools, along with practice, and simply trying out different ideas.

1.5.2 Breaking Polyalphabetic Ciphers

The key to breaking a polyalphabetic cipher of a keyed type (such as Vigenere)
is to look for certain patterns in the ciphertext, which might let us guess at
the key length. Once we have a good guess for the key length, it is possible
to break the polyalphabetic ciphertext into a smaller set of monoalphabetic
ciphertexts (as many ciphertexts as the number of characters in the key), each
a subset of the original ciphertext. Then, the above methods, such as frequency
analysis, can be used to derive the key for each alphabet.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 16

—p—

Chapter 1 = Simple Ciphers

The question is, how do we guess at the key length? There are two primary
methods: The first is a tool we described above — the index of coincidence.

As stated above, the index of coincidence is the probability of having
repeated characters and is a property of the underlying language. After a text
has been run through a monoalphabetic cipher, this number is unchanged.
Polyalphabetic ciphers break this pattern by never encrypting repeated plain-
text characters to be the same character in the ciphertext. But the index of
coincidence can still be used here —it turns out that although the ciphers
eliminate the appearance of repeated characters in the plaintext being trans-
lated directly into the ciphertext, there will still be double characters occurring
at certain points. Ideally (at least from the point of view of the person
whose messages are being cracked), the index of coincidence will be no
better than random (0.03846). But, luckily (from the viewpoint of the crypt-
analyst), the underlying language’s non-randomness comes to the rescue,
which will force it into having a non-perfect distribution of the repeated
characters.

Just as longer keys for polyalphabetic ciphers tend to flatten out the fre-
quency distributions, they also flatten out the non-random measurements,
such as the index of coincidence. Hence, a smaller key will result in a higher
index of coincidence, while a longer key gives us an index of coincidence
closer to 0.03846. Table 1-4 shows us the relationship between the number of
characters in the key and the index of coincidence.

As can be seen, the measurement starts to get pretty fuzzy with key lengths
of around six or so characters. Without a great deal of ciphertext, it becomes
very difficult to tell the difference between a polyalphabetic key length of six
and seven, even.

We clearly cannot rely completely on the I for determining the key length,
especially for smaller amounts of ciphertext (since it is only effective with
large amounts of text, and not very precise for larger keys). Luckily, we have
another method for guessing at the likely key length.

Friedrich Kasiski discovered that there is another pattern that can be seen,
similar to the index of coincidence [4]. In English, for example, the is a very
common word. We would, therefore, assume that it will be encrypted multiple
times in a given ciphertext. Given that we have a key length of 1, we can hope
that we will have the word the encrypted at least n times in a given ciphertext.
Given that it is encrypted at least that many times, we will be guaranteed to
have it be encrypted to the exact same ciphertext at least twice, since there are
only n different positions that the can be aligned to with regard to the key.

We know that we can expect there to be repetitions of certain strings of
characters of any common patterns (any common trigraphs, e.g.). But what
does this reveal about the key? This will actually give us several clues about
the length of the key.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 17

—p—

Cryptanalysis 17

Table 1-4 Relationship between Key Length of a Polyalphabetic Cipher
and the Resulting Index of Coincidence of the Ciphertext in The Complete
Works of William Shakespeare [3]

KEY LENGTH APPROXIMATE Ic

-

0.0639

0.0511

0.0468

0.0446

0.0438

0.0426

0.0423

0.0417

O |0 (N | | U |~ W (N

0.0412

o

0.0410

) 0.0384

If we are very certain that two repetitions of ciphertext represent the exact
same plaintext being encrypted with the same pieces of the key, and we know
that the key is repeated (such as in Vigenere) over and over again, this means
that it must be repeated over and over again in between those two pieces of
ciphertext. Furthermore, it means that they were repeated an integral number
of times (so that it was repeated 15 or 16 times, but not 14.5). Therefore, we
calculate the difference in the positions of the two pieces of ciphertext, and we
know that this must be a multiple of the length of the ciphertext. Given several
of these repetitions, and several known multiples of the length of the cipher
key, we can start to hone in on the exact length of the key.

A good example may help clear up what is going on. The following plaintext
is from the prologue to Romeo and Juliet [3]:

twoho useho ldsbo thali keind ignit yinfa irver
onawh erewe layou rscen efrom ancie ntgru dgebr
eakto newmu tinyw herec ivilb loodm akesc ivilh
andsu nclea nfrom forth thefa tallo insof these
twofo esapa irofs tarcr ossdl overs taket heirl

We can encrypt this using the key romeo (the key in this case has length 5),
to obtain the following ciphertext:

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 18

—p—

18 Chapter 1 = Simple Ciphers

KEALC LGQLC CREFC KVMPW BSURR ZUZMH PWZJIO ZEHIF
FBMAV VFQAS COKSI IGOIB VIIDSZA RBOMS EHSVI UUQFF

VOWXC ESIQI KWZCK YSDI[Q ZJUBP CCAHA RYQWQD ZJUBV
RBPWI EQXIO WCDXV [RVQJO KOXPC ZBEST [RVQWS
RRAJC VGMTIOD ZFAJG RADGF FGEHZ FJQVIG_ ROWIH YSUVZ

These repetitions occur at the paired positions:
(0,160), (34,169), (61,131), (99,114), (140, 155), (174, 189)

This corresponds to differences of 160, 135, 70, 15, 15, and 15. We can factor
these, givingus 160 =2 x 2 x 2 x 2 x2x5,135=3x3 x 3 x5,70=2 x 5 x
7,and 15=3 x 5.

The only common factor of all of them is 5. Furthermore, the sequence with
difference 15 occurs many times (once with five-character repetition), and 70
occurs with a four-character repetition, giving us strong evidence that the key
length is a common factor of these two numbers.

Now that we know how many different alphabets are used, we can split the
ciphertext into many ciphertexts (one for each character in the key), and then
perform frequency analysis and other techniques to break these ciphers. Note
that each of these ciphertexts now represents a monoalphabetic substitution
cipher.

1.5.3 Breaking Columnar Transposition Ciphers

Breaking the simple transposition ciphers is not incredibly difficult, as the
key space is typically more limited than in polyalphabetic ciphers (the key
space being the total possible number of distinct keys that can be chosen). For
example, the key space here is limited by the size of the grid that the human
operator can draw and fill in reliably.

The preferred method is performing digraph and trigraph analysis, partic-
ularly by hand.! A digraph is a pair of letters written together. Similarly,
a trigraph is a set of three letters written together. All languages have
certain letter pairs and triplets that appear more often than others. For
example, in English, we know that characters such as R, S, T, L, N, and
E appear often — especially since they appear on Wheel of Fortune’s final
puzzle — thus it should come as no shock that letter pairs such as ER and
ES appear often as well, whereas letter pairs such as ZX appear very infre-
quently. We can exploit this property of the underlying language to help
us decrypt a message. Tables 1-5 and 1-6 show some of the most common
digraphs and trigraphs for English (again, from Shakespeare) and Klingon,
respectively.

1A computer program could easily try every value of the key and analyze each decrypted text
to see if it makes sense in the language, for example, by dictionary lookups. This method would
also work on any other small key space, such as monoalphabetic shift ciphers.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 19

—p—

Cryptanalysis 19

Table 1-5 Most Common Digraphs and Trigraphs in The Complete Works of William
Shakespeare

DIGRAPH PROBABILITY TRIGRAPH PROBABILITY
th 3.16% the 1.45%
he 2.28% and 0.87%
an 1.63% you 0.58%
er 1.62% her 0.53%
ou 1.47% hat 0.50%
in 1.45% tha 0.48%
ha 1.27% ing 0.48%
es 1.27% eth 0.41%
nd 1.24% our 0.40%
st 1.24% his 0.38%
re 1.24% thi 0.37%
en 1.19% for 0.35%
ea 1.14% ere 0.34%
or 1.07% ith 0.33%
at 1.02% ent 0.32%
is 1.01% oth 0.31%

How exactly do we exploit these language characteristics? This isn’t ter-
ribly difficult, even without a computer. The trick is to write out two
or more copies of the ciphertext vertically, so that each ciphertext strip
looks like

Al
K

We take out the two or more copies of this sheet we have made, and line
them up side by side. We then use the sliding window technique — essentially
moving the sheets of paper up and down with respect to each other. Then
we measure how common the digraphs (and trigraphs with three letters, or
4-graphs with four letters, etc.) found in the resulting readout are. Next, we
measure how far apart they are (in characters), and this length will be the
number of rows (represented as r) in the matrix used to write the ciphertext.
We then calculate the number of columns (based on dividing the ciphertext

—p—

20

Swenson c02.tex V3-01/29/2008 1:07pm Page 20

—p—

Chapter 1 = Simple Ciphers

Table 1-6 Most Common Digraphs and Trigraphs in Klingon, Taken from Qo’noS QonoS

Sample
DIGRAPH PROBABILITY TRIGRAPH PROBABILITY

ch 2.53% tlh 1.44%
gh 2.27% wl' 0.71%
u' 1.71% atl 0.58%
a' 1.57% be' 0.57%
tl 1.49% mey 0.53%
1h 1.44% cha 0.50%
e' 1.21% ‘e 0.50%
I 1.15% chu 0.49%
wIl 1.14% pu' 0.45%
ng 1.13% ach 0.41%
aH 1.13% 'e! 0.41%
'e 1.02% nga 0.38%
ej 0.99% Dag 0.37%
me 0.91% ogh 0.36%
Da 0.91% vam 0.35%
ha 0.87% taH 0.34%

size by the number of rows and rounding up), so that we have the original key
(k, the number of columns).

To show this method, let’s take the first transposition-cipher example
ciphertext (from Section 1.4.1) and show how to break it using the sliding
window technique. The ciphertext obtained from encrypting “all work and
no play.. " was

AKPKNL LALENL LNASYB WDYJAO ONMODY ROAHU

The sliding windows for this ciphertext are shown in Figure 1-3.

Examining the example in Figure 1-3 can reveal a great deal about the best
choices. Looking at r = 1, we have letter pairs in the very beginning such as
KP and PK. We can consult a table of digraphs and trigraphs to check to see
how common certain pairs are, and note that these two letter pairs are very

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 21

—p—

Cryptanalysis 21

[] = [[z [1 [=] [] =1 [[=] [1 [=]
A K ke K K K K
K| — |P al = |= P P P P
P K El < |% al e+ | K K K K
E| — |u Pl = |un E| — [u 2| = |4 I M
K L K|l <« |L pl«:|L Kl «» |L o | L L
T = | T M| «— | T Kl +— |T Pl = |T Kl — |T Al — | T
L« |a L]« |a M| e |a Kl < |a | |a K| « |a
Al — | T Tl = |T Tl +— |T M| «— |7 Tl = |7 Pl +— |T
Ll = |E al e |2 L]« |k L] « |k Wl — |k K|« |k
E| — |n L] e |u B = |w T| = |9 T = |¥ joll PR BN
b« |L I L] e |L al = |L Lf = |L L]« |L
Bt I) I) A A 7 e) I Y (R I 1 gy)
r=1 r=2 r=23 r=4 r=>=5 Fr=6
Figure 1-3 Sliding window technique example forr=1, ..., 6.

infrequent. For r = 2, letter pairs such as KK and PN are also fairly uncommon.
It would not be too difficult to create a simple measurement of, say, adding up
the digraph probabilities with all of the pairs in these examples, and comparing
them.

However, a word of caution is necessary — since we removed all of the
spaces, there is no difference between letter pairs inside a word and letter pairs
between words. Hence, the probabilities will not be perfect representations, and
we cannot simply always go for the window with the highest probability sum.

It is also useful to note that digraphs and trigraphs can also be easily used
for helping to break substitution ciphers. If we calculate the most common
digraphs and trigraphs appearing in a ciphertext, then we can see if those
correspond to common digraphs and trigraphs in the assumed source text.

1.5.4 Breaking Double Columnar Transposition Ciphers

Breaking double columnar transposition ciphers is still possible by hand, but
a little more complex to work out visually, as we did with the sliding window
technique for single columnar ciphers. The operations required are much more
suited to computers, because of the large amount of bookkeeping of variables
and probabilities.

The primary technique for breaking the double transposition ciphers is
the same, in theory, as the sliding window technique: We want to simulate
different numbers of columns and calculate the digraph, trigraph, and so
on probabilities from these simulations. For double (or even higher-order)
transposition ciphers, we simply have to keep track of which character winds
up where.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 22

—p—

Chapter 1 = Simple Ciphers

It is best to examine these ciphers slightly more mathematically to under-
stand what is going on. Let’s assume that we have ciphertext length n, with
ki being the number of columns in the first transposition and r; being the
number of rows in the first transposition (and similarly, k, and r, for the
second transposition).

In all cases, to our luck, the character in position 0 (computer scientists
all start to count from 0) always stays in position 0. But after the first
transposition, the character in position 1 ends up in position r,. The character
in position 2 ends up in position 2r;. Going further, the character in position
ki — 1 ends up in position (k; — 1)r;. The next position, k;, falls under the
next row, and therefore will end up in position 1. Then k; + 1 ends up in
position r; + 1. In general, we might say that a ciphertext bit, say, P[i], ends
up in position C; [|i/ki] + (i mod kq)r1]. Here, “mod” is simply the common
modulus operator used in computer programming, that is, “a mod b’ means to
take the remainder when dividing a by b. The | x| operation (the floor function)
means to round down to the smallest integer less than x (throwing away any
fractional part), for example, [1.5] =1, [-2.1] = =3, and [4] = 4.

Things start to get jumbled up a bit more for the next transposition. Just as
before, the character in position 1 ends up in position r,, but the character that
starts up in position 1 is C;[1], which corresponds to P[k].

We can draw this out further, but it’s needlessly complex. Then we can
simply write out the two formulas for the transformation, from above:

Gili] = G [li/k2] + (i mod ky)r |

Now we have equations mapping the original plaintext character to the final
ciphertext character, dependent on the two key values k; and k, (since we can
derive the r-values from the k-values). In order to measure the digraph (and
other n-graph) probabilities, we have to check, for each k; and k, guess, the
digraph possibility for P[i] and P[i + 1] for as many values of i as we deem
necessary.

For example, to check values i = 0 and i = 1 for, say, k; =5 and k, =9, we
then run through the numbers on the previous double columnar transposition
cipher used (the alphabet, thus n = 26). We know that P[0] = C;[0 + 0] =
C1[0] = G,[0+ 0] = G,[0] = 2, just as it should be. We can then calculate
P[1] = Gi[0+1 x 1] = Ci[r1] = Co[|11/9] + (r1 mod 9) x 1, |. Knowing that ry
= [26/k] = [26/5] = 6 and r, = [26/k,] = [26/9] = 3, we have P[1] =
G[0+ 6 - 3] = G,[18] = B. Although performing digraph analysis would be
useless on this ciphertext (since the plaintext is not from common words, but
simply the alphabet), we could easily then calculate the digraph probability
for this pair. Also, this pair ensures that the calculations came out correctly,
since the alphabet was encrypted with those two keys in that order, and we
know that the first two characters in the plaintext were ab.

—p—

Swenson c02.tex V3-01/29/2008 1:07pm Page 23

—p—

Exercises 23

1.6 Summary

In this chapter, we discussed many techniques used regularly throughout
civilization until the start of the twentieth century. As can be seen from
the demonstrated analysis, the encryption techniques are very weak from a
modern standpoint, although easy to implement. However, the ideas behind
these ciphers, including substitutions and transpositions, represent the core of
modern ciphers, and we can learn a lot by studying the analyses of these now
mostly defunct ciphers.

Furthermore, we looked at many of the simple cryptanalytic methods used
to break apart these cryptographic schemes. Although modern ciphers are
not this easy to break, analyzing these ciphers illustrates ideas that resonate
throughout the rest of the book. Particularly, it is important to know that
ciphers are not broken by accident — it takes a lot of work, patience, cleverness,
and sometimes a bit of luck.

Exercises

Exercise 1. The following message is encrypted with a monoalphabetic cipher.
Ignoring spaces and punctuation, decrypt the message.

WKH FDW LQ WKH KDW VWULNHV EDFN

Exercise 2. Write a program to find the most common digraphs in a Latin-based
alphabet, ignoring everything except alphabetic characters.

Exercise 3. Write a program to find the most common trigraphs in a
non-Latin-based language (say, using Unicode).

Exercise 4. Write a program to use a dictionary file (a listing of valid words in
the appropriate language) to break single transposition ciphers. Your program
should work by choosing the decryption with the highest number of dictionary
words formed. Such dictionary files can either be compiled (by finding a large
enough source of similar text to the kind being analyzed, and making a list of
the words found in it), or by using a pre-constructed dictionary file.

Exercise 5. Implement Kasiski’s method for breaking polyalphabetic ciphers.
The first step should be producing a candidate list of numbers that could
be the key length. Then, assuming that the underlying cipher is a Vigenere
polyalphabetic cipher, attempt to break the ciphertext into multiple ciphertexts
and perform a frequency analysis on each. The program should produce a
reasonable guess to a certain selection of keys, as well as accompanying
plaintexts. Use of a dictionary file is encouraged to increase the precision.

—p—

24

Swenson c02.tex V3-01/29/2008 1:07pm

—p—

Chapter 1 = Simple Ciphers

References

[1] Marc Okrand. The Klingon Dictionary. (Pocket Books, New York, 1992).

[2] Charles P. Pfleeger. Security in Computing, 2nd ed. (Prentice-Hall, Upper
Saddle River, NJ, 2000).

[3] William Shakespeare. The Complete Works of William Shakespeare. (Project
Gutenberg, 1994); nttp: / /www.gutenberg.org.

[4] Simon Singh. The Code Book. (Anchor, New York, 2000).

[5] Jeff Thompson. Monoalphabetic cryptanalysis. Phrack Magazine, 51
(September 1997); www.phrack.org/issues.html?issue=51.

Page 24

