
Chapter 1

What Is an Agile

Methodology?

SUMMARY

Rapid business change requires rapid software development. How can we react to
changing needs during software development? How can we ensure quality (correctness)
as well as fitness for purpose? What are the requirements that an agile process should
meet? What are the problems and limitations of agile processes?

1.1 RAPID BUSINESS CHANGE: THE ULTIMATE
DRIVER

It has often been said that the modern world is experiencing unprecedented levels
of change in technology, in business, in social structures, and in human attitudes. Of
course, this is a complex and poorly understood phenomenon, but I know of no
sources that disagree with the basic axiom that the world is changing fast and that
fact is not, itself, about to change. Some may prefer that the world not be like that,
and others may believe that this phenomenon is unsustainable in the long-term—the
world will simply run out of resources or collapse into social anarchy and destruction.

At the present time, however, rapid change is a key factor of both business and
public life. The other important truism is that computer technology, and software in
particular, is a vital component of many businesses and organizations. It is clear,
then, that the developers of this software have a problem. The pressure to develop
new software support for rapidly changing processes is causing serious problems
for the software industry. Traditional software engineering has repeatedly failed to
deliver what is needed at the cost and within the timescale that are required.

This is caused bysome structural and attitudinal problems associated with traditional
software engineering. Deep thinkers about this problem have come up with a number
of—what may seem to be paradoxical—insights into the problems. Key texts such as
Pressman (2001) and Sommerville (2006) present a broad survey of traditional software
engineering that documents many of the current approaches. Other thinkers such as

Running an Agile Software Development Project. By Mike Holcombe
Copyright # 2008 John Wiley & Sons, Inc.

1

CO
PYRIG

HTED
 M

ATERIA
L

Gilb (1988) and more recently Beck (1999) are beginning to question the way in
which software engineering has been carried out.

Thinkers such as Beck recognize that everything about our current software
processes must change. On the other hand, their proposed solutions partly involve
a number of well-tried and trusted techniques that have been around for years. It is
not just a matter of shuffling around a few old favorite techniques into a different
order; rather, it is a new combination of activities that are grounded in a new and
very positive philosophy of agile software development.

1.2 WHAT MUST AGILE METHODOLOGIES
BE ABLE TO DO?

We note that any agile software development process has to be able to adapt to rapid
changes in scope and requirements, but it has also to satisfy the needs for the delivery
of high-quality systems in a manner that is highly cost-effective, unburdened by
massive bureaucracy, and that does not demand heroics from the developers involved.
Thus, we will try to specify the basic properties that a successful agile software devel-
opment process must satisfy.

1 The first issue is the ability to adapt the development of the software as the
client’s problem changes.

2 The second issue derives from the need to allow for the future evolution of any
delivered solution.

3 The third issue is that of software quality: How do we know that the software
always does what it is supposed to do?

4 The fourth issue is the amount of unnecessary documentation and other
bureaucracy that is required to sustain and manage the development process.

5 The fifth issue is the human one, which relates both to the experiences of the
developers in the development process and to the way in which the human
resources are managed.

Coupled with these is a need to have a clear business focus for any software
development project and application.

We will look at all of these in turn.

1.3 AGILITY: WHAT IS IT AND HOW DO WE
ACHIEVE IT?

When we embark on a software development project, the initial and some would say
the hardest phase is that of determining the requirements—finding out, with the
client, what the proposed system is supposed to do.

It might start with a brief overview of the business context and the identification
of the kind of data that is to be involved, how this data is to be manipulated, and how

2 Chapter 1 What Is an Agile Methodology?

these various activities mesh together with each other and with the other activities in
the business.

Many techniques exist to do this: Ways of collecting information, not just from the
client but also from the intended users of the system, will be needed in this initial stage.
Sifting through this information, making decisions about the relative importance of
some of the information, and trying to set it into a coherent picture follow. Again, a
number of different approaches, notations, and techniques exist to support this.

Having achieved some indication of the overall purpose of the system, the way
that it interfaces and interacts with other business processes will be the next issue.
We are trying to establish the system boundary during this phase.

From this we construct a detailed requirements document. Some examples of
actual documents will be given in a later chapter. Such a document will be structured,
typically, into functional requirements and non-functional requirements. Both are
vitally important. Each requirement will be stated in English, perhaps structured
into sections containing related requirements and described at various levels of
detail. The client may well be satisfied at this point with what is proposed.
However, it is always difficult to visualize exactly how the system will work at this
stage, and our understanding of it may not be right.

Now we would embark on some analysis, looking at these key operational
aspects, identifying the sort of computing resources needed to operate such a
system and considering many other aspects of the proposed system. After analysis
we get into the design phase, and it is here where we describe the data and processing
models and how the system could be created from the available technical options.

This stage is often lengthy and complicated. Rarely will the developers be able to
proceed independently of the client although there may be pressure on them from
managers to do so. There will be many issues that will arise during this process
requiring further consultation with the client. This is often not carried out, and the
developers start making decisions that only the client should take. We see the
system starting to drift from what it should be.

At the end of this process, we will have a large and complicated detailed design
that may or may not still be valid in terms of the client’s business needs, which may
be evolving.

If we go back to the client at this stage, we may very well find that the business
has moved on and the requirements have changed significantly. The traditional devel-
opment methods, such as the waterfall method, cannot handle this challenge
effectively. Because of the investment in the design, there may be a reluctance to
change it significantly or to start again.

The waterfall model envisions a steady and systematic sequence of stages starting
with the capture and definition of the requirements, the analysis of these require-
ments, the formalizing of a system and software design, the implementation of the
design, and the testing of the software. Finally we have delivery and after-sales,
which covers a number of different types of maintenance : perfective maintenance
where faults are removed after delivery, adaptive maintenance, which might
involve building more functionality in the system, and maintenance to upgrade the
software to a different operating environment.

1.3 Agility: What Is It and How Do We Achieve It? 3

It will always be necessary, and sometimes possible, to backtrack around some of
the stages, but the emphasis is on a trying to identify the requirements in one go. The
diagram in Fig. 1.1 tries to illustrate the approach.

The need to respond more quickly to the changing nature of the customer’s needs
does not sit easily with this type of model.

The first two key issues are, therefore, to find an approach that retains a continual
and close relationship with the client, and to find an approach to development that
does not involve the heavy overhead of a long and complex design phase.

If this is achieved, then the development process might be more able to adapt to
the changing requirements.

There are a number of other approaches to software development that have
attempted to address these issues. The spiral model (Sommerville, 2006) describes
this approach (Fig. 1.2). It involves a series of iterations around the requirements
capture or specification–implementation–testing or validation–delivery and oper-
ation loop together with periodic reviews of the overall project and the analysis of
risks that have been identified during the course of the project.

It attempts to recognize that for many projects, there is an ongoing relationship
with the customer that does not end with the delivery of the system but will continue
through many further stages involving correcting and extending or adapting the
product. In these cases, there is no such thing as a finished product.

Rapid applications development and evolutionary delivery are similar sorts of
approaches that are built around the idea of building and demonstrating, and in the
latter case delivering, parts of the system as the project goes along.

Such approaches can be successful but differ in many ways from the approaches
taken by the current agile or lightweight methodologies, one of which we are consid-
ering here. One issue is the length of an iteration cycle; in agile approaches, these are
very short.

Figure 1.1 The waterfall model of software development.

4 Chapter 1 What Is an Agile Methodology?

There have been many analyses of failed software development projects. Failures
in communication, both between developers and clients and between and among
developers, seem to be some of the most common causes of problems. In the tra-
ditional approach, the various documents (requirements documents, design docu-
ments, etc.) are supposed to facilitate this communication; however, often the
language and notation used in these documents fails to support effective communi-
cation. UML (Unified Modeling Language) diagrams, for example, can often be
interpreted differently by different people.

1.4 EVOLVING SOFTWARE: OBSTACLES
AND POSSIBILITIES

Even if we are able to deliver a solution that is still relevant, it may not remain so for long.
Things are bound to change, and there is thus a need to see how we can evolve the soft-
ware toward its new requirements. Some of the old functionality is likely to remain,
however, so it would be inefficient to throw it away and start again. How can we
develop a method whereby changes can be achieved in the software quickly, cheaply,
and reliably? Agile techniques are an attempt to answer some of these questions.

Many systems will involve a database somewhere, and this is one of the key issues
when it comes to obstacles to evolution. Traditionally we use a relational database
structure and a relational database management system to manage it. Much time is
spent building and normalizing the data model. When circumstances change,
however, the data model may not still be appropriate. What can we do about this? It
may not be a straightforward matter to reengineer this data model. It may not be poss-
ible to just insert a couple of new fields or a new table or two. It is likely that the whole
data model will have to be substantially reengineered, and this could be expensive.

What are the requirements of a software engineer when faced with the problem of
adapting an existing or proposed system to deal with some new requirements?

Figure 1.2 The spiral model.

1.4 Evolving Software: Obstacles and Possibilities 5

In the case where there is an existing system that forms the basis of the develop-
ment, the first thing to do is to gain a clear understanding of what the current system
does. This can be achieved, to a certain extent, by running the software and observing
its behavior. A complete knowledge, however, will only be achieved by looking at the
design in some detail. The design may not be reliable, and so we have to look at the
source code. If this is written in a clear and simple fashion, then it will be possible to
understand it well. If we could do this with a clear structure to the requirements docu-
ment, we may have a chance of understanding things.

If the original system was built in stages, gradually introducing new functionality
in a controlled manner, we may be able to see where features that are no longer
needed were introduced, and we can explore how we might evolve the software
gradually by introducing, in stages, any new functionality and removing some of
the old. Throughout, we need to consult the client.

For projects that require a completely new system to be built, then time needs to
be spent on identifying the business processes that will be supported by the new
system, along with information about how current manual processes operate, if
there are any. The more that is known about the users and their needs, the better.

Thus we need the system to be built in such a way that the relationship
between the requirements and the code is clear; and the code itself to be clear
and understandable.

1.5 THE QUALITY AGENDA

The quality of software is a key issue for the industry although one that it has had
great difficulty in addressing successfully.

For real quality systems, we have to address two vital issues: identifying the right
software to be built and demonstrating that this has been achieved.

In terms of the types of faults that are often made in software development, we
can identify two important types of faults: requirements faults (we tell the computer
to do the wrong thing) and operational faults (the computer wrongly does the thing
we told it to do).

Neither problem is easy to deal with. The first task is made more difficult by the
possible changing nature of the business need and the consequential requirement to
adapt to a changing target. This is one of the key objectives of an agile methodology.
However, it might be possible to find a way of adapting and altering the software
being built to reflect the developers’ changing understanding of the client’s needs,
but it is quite another to be sure that they have got the changes right. Here is
where a strong relationship between the developers and the business they are
trying to develop a system for is needed. It also requires a considerable amount of
discussion and review both between the developers and the client and among the
developers but also among the client’s staff; they really do have to know where
their company is going.

Hence an agile methodology must be able to deal with identifying and maintain-
ing a clear and correct understanding of the system being built. By correct we mean

6 Chapter 1 What Is an Agile Methodology?

something that is acceptable to the client, a system that has the correct functional and
non-functional attributes as well as being within budget and time.

To satisfy such requirements, the agile methodology must provide support, not
only for changing business needs but also for giving assurance that these are indeed
the real requirements. In order to do this, there has to be a continuous process of
discussion, question asking, and resolution based on clear and practical objectives.

The second quality issue is that of ensuring that the delivered system meets its
requirements. Here there are serious problems with almost all approaches. Despite
the best intentions of many, testing and review are aspects of software engineering
that are either done inadequately or too late to be effective.

An approach to improving quality in a model like the waterfall model is called
the V model (Fig. 1.3). Here each stage in the process provides the basis for testing
of a particular type. We will discuss more about testing later. Some of the terms
may seem unfamiliar at this stage; they are also not always distinct. However, the
idea that, for example, the requirements could be used to define some of the accep-
tance tests, and so on, is a useful indication of what might be a practical approach
to ensuring quality.

In most development projects that are not completely chaotic, some attempt is
also made to carry out reviews of the work done. This might be the review of require-
ments documents, designs, or code and should involve a number of people examining
the documentation and code provided by the developers and inspecting it for flaws of
various types. The developers then have to address any concerns raised by the review.
Human nature, being what it is, is such that developers are often reluctant to accept
other people’s opinions. In many cases where serious problems have been found, the
developers will try to adjust and work around the problems rather than carry out sig-
nificant reworking. In fact, one often sees the situation where the best solution is to
start again with a component but the resistance to doing this is often profound. This
just compounds the problems and is very hard to overcome. If a developer has spent a
week or longer on some component that is then found to be seriously flawed, they are

Figure 1.3 The V model.

1.5 The Quality Agenda 7

likely to resent having to start again. This is a potentially serious quality and
efficiency problem. In many companies, software developers spend most of their
time developing their code on their own with little discussion with others, and
when flaws in their output are found, a lot of time has been wasted.

An agile methodology, therefore, needs to address this issue of review and testing
and to provide a mechanism that will provide confidence in the quality of the product.

Another quality aspect is the correctness of the final code. This is usually
addressed by testing whereby the software is run against suitable test sets and its
behavior monitored to establish whether it is behaving in the required manner. For
this to work we need two basic things: we need to know what the software is sup-
posed to do, and we need to be able to create test sets that will give us enough con-
fidence that the code does do what it is supposed to do.

The role of testing in the design and construction of software is a misunderstood
and underdeveloped activity. An effective agile methodology must provide a clear
link between the identification of what the system is supposed to do and the creation
and maintenance of effective test sets. Furthermore the testing must be fully inte-
grated into the construction process so that we avoid the massive problems and
expense that arise when the testing is done last.

It also allows us to introduce key design for test considerations driven by the
realization that the way the system is constructed will affect the ease and effectiveness
of the testing. Some systems are almost impossible to test properly because of the way
that they have been built. This is well-known in hardware design (microprocessors,
etc.) but is not something that seems to exercise software engineering much.

There are many myths about software quality and what the position really is.
Little empirical research has been carried out analyzing the quality of software
systems. What has been done has often uncovered some uncomfortable news. In
terms of the operational faults—leaving aside the problem of capturing the wrong
requirements—the evidence is pretty gloomy.

Hatton (1998) in a series of studies discovered the following: Using static deep-
flow analysis across many different industries and application areas, he measured the
consistency of several million lines of software written in various languages: C,
Fortran 77, Cþþ, and so forth.

He also measured the level of dynamic disagreement between independent
implementations of the same algorithms acting on the same input data with the
same parameters in just one of these industrial application areas.

On average there were 8 serious faults per 1000 lines for C programs and 12 for
Fortran; 10% of the C population would be deemed untestable by any standards.

Object-oriented languages were worse, not only in the density of faults but also
in the time it took to correct them—findings also supported by the work of
Humphreys (1995).

Many of these faults relate to technical issues in the implementation; the pro-
grams compile but do not work in a predictable or correct way. Variables are used
before being properly declared, memory overflows, and so on.

The key to managing these problems is to test thoroughly all the time.

8 Chapter 1 What Is an Agile Methodology?

1.6 DO WE REALLY NEED ALL THIS MOUNTAIN
OF DOCUMENTATION?

Most nonchaotic software development methods are design led and document driven.
We need to examine the purpose of all this paperwork (it might be stored electroni-
cally, but it still amounts to masses of text, diagrams, and arcane notations).

Let’s look first at the issue of design: what is it for and where does it fit in a devel-
opment project?

Design is a mechanism for exploring and documenting possible solutions in a
way that should make the eventual translation into working software easy and
trouble free. If there is an analysis phase, then typically this will establish the
overall parameters of the project and will result in a (usually fixed) set of requirements
and constraints for the project. The design phase then takes this information and
develops a more concrete representation of the system in a form that is suitable as
a basis for programming.

The desire for agility means that the analysis phase is likely to be continuous
throughout most of the project if it is to be able to adapt to changing business
need. If an agile approach is to work, the nature and role of analysis must change.
Therefore the role of design will also be an issue. How can we deal with the rapid
changes that analysis might throw up if the design is proceeding by way of a large
and complex process that is trying to identify, at a significant level of detail, issues
that will eventually be the responsibility of programmers to solve? Large, complex
designs are almost impossible to maintain in this context. Some tool vendors will
emphasize the benefit of using computer-aided software engineering (CASE) and
other tools that might provide support for the maintenance of the design, but many
programmers dislike these systems, which are often imposed by the management,
and some programmers may feel that their creativity is compromised.

Creative programmers will also be tempted to solve problems that arise during
implementation that were not predicted by the analysis or design phases without
updating the design archive. This is a real problem in many projects that may only
come to light during maintenance when it is discovered that the design differs
from what the system actually is. In other words, the code does not work as the
design documents indicate in some, possibly crucial, areas. Thus maintenance is
carried out by reference to the code, which is the key resource, and the design may
not be used or trusted.

Thus why is it there? The design is a resource that has cost time and money to
create, and yet it may not seem to provide any reliable value. It might actually damage
projects because of the difficulties of ensuring that the design can evolve as the business
needs change. It is possible that the existence of a large and complex design may
encourage developers to resist changes to the system asked for by the client. If this
happens, and I believe that it often does, then the client is not going to get the system
they want. A standard technique is to tell the client that it would be too expensive to
change things and this often works, but it is a short-term solution. The client is going
to be less than satisfied at the end. An agile process needs to be able to deal with this issue.

1.6 Do We Really Need All This Mountain of Documentation? 9

Thus is design a key part of an agile process? It has to be made much more
responsive to a project’s changing needs and it should also provide a precise
description of the final code, otherwise it is merely of historical value. Design nota-
tions can help us to clarify and discuss our ideas, and from that point of view they are
useful. Bearing in mind that design documents might be misinterpreted by people
who were not involved in the development, for example those carrying out mainten-
ance in subsequent years, we should not place all our reliance on these documents.
We will also need to document the code carefully and also the test sets; these will
help a great deal in understanding what the software does when the original team
has dispersed.

Another aspect that also relates to the human dimension is that creative people—
and good programmers are creative—do not work to their best ability if they feel
dominated by bureaucratic processes and large amounts of seemingly irrelevant docu-
mentation. It’s a natural feeling and applies in all walks of life. If you feel that churn-
ing out lots of unnecessary paperwork gets in the way of your ultimate desire—
building a quality system to satisfy your client—then you may not put your best
effort into creating all this stuff. Good morale, as we shall see next, is vital for
good productivity. If nobody needs it, why generate it?

1.7 THE HUMAN FACTOR

People are individuals with their own desires, values, and capabilities. Software
engineering is a people-based business, and the morale of the team is a vital com-
ponent in the success of the project. Too often, organizations organize themselves
in hierarchical structures whereby those who are above you feed down instructions
perhaps without any serious explanation, and those below you suffer from you
doing the same. It is often difficult to feel valued and to know what is really going
on—as opposed to what the managers think is going on.

To obtain the best work from people, we have to consider them as intelligent and
responsible individuals and to show interest in their views and an awareness of their
objectives. This calls for skilled and sensitive management. This does not mean that
the management system abdicates all responsibility and we are left with a chaotic
approach where everyone just does their own thing.

What is needed is a system that focuses on the key issues, involves everyone
to the greatest possible extent, jointly identifies the constraints and parameters
applicable to the project, and provides an open mechanism for discussion, decision
making, and the taking of responsibility. Over many years of supervising and
managing projects, I am convinced that this is the most effective way. It is not
without problems, there will always be problems, and sometimes individuals are
just unreasonable and threaten the joint endeavors of the team. In my experience
the team, if given the responsibility, will deal with the issues effectively. In the
few instances where I have had to intervene, the solution has been negotiated
quickly and effectively. There are a number of management devices that can work:
yellow cards and red cards as used in football (soccer) may be useful; the use of a

10 Chapter 1 What Is an Agile Methodology?

sin bin might also be considered for unreasonable colleagues. It has to be a group
decision rather than the manager’s to be most effective, however.

Agility requires cooperation from the development teams; they need to be able to
adapt to changing circumstances without feeling threatened or pressured. A flat and
inclusive management structure seems to be able to deliver this.

We shouldn’t forget the needs of the clients. They are the other people in the
loop, and one way to ensure that they are kept happy is to keep them informed and
to have excellent lines of communication between the development team and the
clients and users. Clients also worry about progress because they may be held respon-
sible for project failure or other consequences caused by problems beyond their
control. Many clients are skeptical about the reassurances given to them by develo-
pers using traditional approaches to software engineering where the only things
to show for months of work are incomprehensible diagrams and paperwork.
Providing pieces of functioning software, albeit prototypes in some methodologies,
provides some confidence that things are progressing. It also provides a mechanism
for feedback from a real implementation rather than from vague abstractions.

The issue of end-user programming could be raised here. One of the most ambi-
tious goals of this is to provide users with no programming experience with the facili-
ties to build their own applications, the argument being that they know their business
better than the programmers and analysts and thus they should be in a better position
to know what they want. If we can give them an environment that enabled them to
build their application easily, then this would overcome some of the problems.

Things aren’t quite as simple as this, however. Some clients find it difficult to
articulate what they want or to step back sufficiently to understand their business pro-
cesses adequately to create a coherent business model and thus an application to
support it.

However, there are some possibilities. In a way, spreadsheets are an example of
the sort of application that many business people can create and use, although it is
easy to make errors in the way these are set up and the formulas in the cells
defined. It does present a possible way forward, however.

Another example is the work of Bagnall (2002) who built an experimental end-
user system called Program It Yourself (PIY). This was founded on a particular
approach to identifying the business model for an e-commerce site that was based
directly around concrete things involved in the business, products, prices, and so
forth. In trials with naı̈ve users (i.e., nonprogrammers), he found that they could
build useful and maintainable systems based on the use of an XML Hunter (2000)
database supporting a user-friendly GUI that implemented a clear business model.
Similar systems for other business domains should be possible.

1.8 SOME AGILE METHODOLOGIES

There are a number of possible contenders for the description of an agile method-
ology. We will look at some of the more popular ones, leaving extreme programming
until the next chapter where we will look at it in more detail. This account is not

1.8 Some Agile Methodologies 11

exhaustive but is meant to provide some ideas of the different directions in which
agile development is going.

1.8.1 Dynamic Systems Development Method

The dynamic systems development method (DSDM) (Stapleton, 1997) is an approach
that uses an iterative process based on prototyping that involves the users throughout
the project life cycle. In DSDM, time is fixed for the life of a project rather than start-
ing with a set of requirements and trying to keep going until everything has been
done—or we have all given up! Thus resources are fixed as far as possible at the
start, and this can provide a more realistic planning framework for a project. This
means that the requirements that will be satisfied are allowed to change to suit the
resources available.

There are nine underlying principles of DSDM, the key one being that fitness for
business purpose is the essential criterion for the acceptance of deliverables. This
philosophy should ensure a clearer focus on the purpose of the software rather than
on technology for technology’s sake.

1.8.1.1 The Underlying Principles

The following principles1 are the foundations on which DSDM is based. Each one of
the principles is applied as appropriate in the various parts of the method.

1 Active user involvement is imperative. Users are active participants in the
development process. If users are not closely involved throughout the devel-
opment life-cycle, delays will occur, and users may feel that the final solution
is imposed by the developers and/or management.

2 The team must be empowered to make decisions. DSDM teams consist of both
developers and users. They must be able to make decisions as requirements are
refined and possibly changed. They must be able to agree that certain levels of
functionality, usability, and so forth, are acceptable without frequent recourse
to higher-level management.

3 The focus is on frequent delivery of products. A product-based approach is
more flexible than is an activity-based one. The work of a DSDM team is con-
centrated on products that can be delivered in an agreed period of time. By
keeping each period of time short, the team can easily decide which activities
are necessary and sufficient to achieve the right products.

4 Fitness for business purpose is the essential criterion for acceptance of deliver-
ables. The focus of DSDM is on delivering the essential business requirements
within the required time. Allowance is made for changing business needs
within that time frame.

1These are taken from the DSDM site: http://www.dsdm.org.

12 Chapter 1 What Is an Agile Methodology?

5 Iterative and incremental development is necessary to converge on an accurate
business solution. DSDM allows systems to grow incrementally. Therefore the
developers can make full use of feedback from the users. Moreover partial sol-
utions can be delivered to satisfy immediate business needs. Rework is built
into the DSDM process; thus, the development can proceed more quickly
during iteration.

6 All changes during development are reversible. To control the evolution of all
products, everything must be in a known state at all times. Backtracking is a
feature of DSDM. However in some circumstances, it may be easier to recon-
struct than to backtrack. This depends on the nature of the change and the
environment in which it was made.

7 Requirements are baselined at a high level. Baselining high-level requirements
means “freezing” and agreeing on the purpose and scope of the system at a
level that allows for detailed investigation of what the requirements imply.
Further, more detailed baselines can be established later in the development,
although the scope should not change significantly.

8 Testing is integrated throughout the life cycle. Testing is not treated as a sep-
arate activity. As the system is developed incrementally, it is also tested and
reviewed by both developers and users incrementally to ensure that the devel-
opment not only is moving forward in the right business direction but also is
technically sound.

9 Collaboration and cooperation between all stakeholders is essential.

DSDM is independent and can sometimes be used in unison with other frame-
works and development approaches, such as extreme programming (XP).

1.8.2 Feature-Driven Design

Feature-driven design (FDD) (Coad, 1999) begins by developing a domain object
model in collaboration with domain experts that is then used to create a features
list. This is used to produce a rough plan, and informal teams are set up to build
small increments over short, say 2-week, periods.

There are five processes within FDD:

1 Develop an overall model.

2 Build a features list; these should be small but useful to the client.

3 Plan by feature.

4 Design by feature.

5 Build by feature.

A feature is a client-valued function that can be implemented in 2 weeks or less.
A feature set is a grouping of business-related features.

We illustrate the process in Fig. 1.4.

1.8 Some Agile Methodologies 13

1.8.3 Crystal

Communication is a key aspect of Crystal (Cockburn, 2001) by considering develop-
ment as “a cooperative game of invention and communication.” Crystal aims to
overcome many of the problems caused by poor communication between all the
stakeholders, particularly developers, customers, and clients.

Cockburn looks at a software development project as a bit like an ecosystem “in
which physical structures, roles, and individuals with unique personalities all exert
forces on each other.”

The approach highlights intermediate work products that exist in order to help the
team make their next move in the game. These products help team members to orient
themselves in the project and to remind members of important issues, decisions, goals,
and so forth. They also help in prompting new ideas and potential solutions to pro-
blems. These products do not have to be complete or perfect but should help to
guide and motivate team members. As the game progresses, these products help in
the management of it. “The endpoint of the game is an operating software system”

As we can see, the approach is more of a management framework rather than a
set of explicit technical practices. There exist some policy standards and guidelines on
the numbers of developers and how to assess the critical attributes of projects.

1.8.4 Agile Modeling

“Agile modeling is a collection of values, principles, and practices for modeling
software that can be applied on a software development project in an effective and
light-weight manner” [http://www.agilemodeling.com].

An agile modeling (AM) approach (Ambler, 2002) can be taken to requirements,
analysis, architecture, and design. The idea is that whatever modeling approach is
taken, whether as use case models, class models, data models, or user interface
models, the emphasis should be on a lightweight but effective approach to the
modeling. The model should not become the purpose but just the vehicle for under-
standing the customer’s needs better. Because the models are light weight, they
are easier to adapt or are even thrown away if they become obsolete through require-
ments change.

Figure 1.4 Feature-driven design.

14 Chapter 1 What Is an Agile Methodology?

AM is often combined with notations from UML and for example the rational
unified process (RUP), but the full bureaucratic treadmill often associated with
these processes is reduced. AM is not a complete software process; it doesn’t
cover programming, software delivery, or testing activities, although testability is
considered through the modeling process. There is also no emphasis on project man-
agement and many other important issues. However, AM is very sympathetic to the
principles of XP that we examine in Chapter 2 and it is possible to combine AM with
some of the more complete agile processes such as XP, DSDM, or crystal. In this
book, we will combine a type of agile modeling with XP.

1.8.5 SCRUM

SCRUM is a management process that can be applied to a number of different activi-
ties, not just software development. Introduced in 1995 (Schwaber, 2002), it has had
some success in a number of projects.

A project is divided into features with an assigned project value and estimated
effort or cost. Sprints are time-boxed plans corresponding with iterations. Daily
scrum meetings—which are short and focused—are held to monitor progress. At
the end of each sprint, a review meeting is held to consider the quality of the features
produced. Different stakeholders and actors are identified including the product
owner, the scrum master, and the team members.

There have been successful approaches that combine SCRUM with other agile
methodologies; for example, SCRUM might be used for the overall management
of a project, which could include marketing and support activities, while an agile soft-
ware development method is used for the production.

SCRUM has been applied to a distributed development project across several
countries (e.g., Sutherland, 2007).

1.8.6 Summary Table

These different approaches have different strengths and weaknesses, but all adopt
parts of the agile philosophy. There are a number of other approaches such as lean
software development (Poppendieck, 2002 http://www.Poppendieck2002.com).
We briefly summarize some of their properties in Table 1.1. In the table, “þ” indi-
cates a strong aspect featured in the approach, “2” means that this aspect is not
emphasized in the literature, and “?” indicates that this can be featured but not
always, and critical support for this is not a fundamental part of the method.

Some of these approaches are really more like philosophical perspectives on soft-
ware development rather than a complete set of techniques and methods, some are
general approaches to managing and planning software projects, and some are tied
into an existing design-based approach such as UML. All have their strengths, and
which ones will succeed in the industry over the next few years is dependent on
many things.

1.8 Some Agile Methodologies 15

There is a shortage of scientific evidence about the benefits and weaknesses of
these approaches. There are plenty of case studies, experience reports, and opinions
available—in the proceedings of conferences on agile development and on Web sites
that abound. However, no extensive comparative trials have been carried out in an
industrial context except those undertaken in the Sheffield Software Engineering
Observatory (http://observatory.group.shef.ac.uk/) where the approach described
in the next chapter has been compared with a traditional design-led approach.

In the next chapter, we will focus on extreme programming, XP (Beck, 1999)
and see that it will provide all of the desirable features that we have identified. It
also gives much clearer guidance on how to achieve them. Some of the other agile
approaches, such as DSDM and SCRUM, are proposing to adopt some of the XP
ideas in a kind of hybrid approach.

1.9 REVIEW

The issues that an agile approach to software engineering must address can be sum-
marized in the following six properties:

1 a clear business focus;

2 the ability to plan and adapt the development of the software as the client’s
problem changes and to provide feedback on progress;

3 the need to allow for the future maintenance and evolution of any delivered
solution;

4 the assurance of the quality of the delivered software;

5 the reduction of the amount of documentation and other bureaucracy that is
required to sustain and manage the development process;

6 the emphasis on the human dimension must be a key aspect both for the devel-
opers and the clients.

Table 1.1 A Summary of the Features of the Agile Methodologies in This Chapter

Feature DSDM FDD Crystal
Agile

modeling SCRUM

Clear business focus þ þ ? 2 þ
Strong quality/testing focus ? 2 2 2 ?
Handles changing requirements þ þ ? þ þ
Human-centered philosophy ? ? þ þ ?
Support for maintenance ? 2 2 2 2

User/customer-centered approach þ þ ? þ ?
Encourages good communications þ ? þ ? þ
Minimum bureaucracy ? ? þ þ 2

Support for planning þ þ þ 2 þ

16 Chapter 1 What Is an Agile Methodology?

Consult the agile modeling manifesto for another perspective on the issues
discussed above.

EXERCISE

Consider the Agile Manifesto reproduced here from the following Web page: http://www.
agilemanifesto.org/principles.html.

We follow these principles:

Our highest priority is to satisfy the customer through early and continuous delivery
of valuable software.

Welcome changing requirements, even late in development. Agile processes harness
change for the customer’s competitive advantage.

Deliver working software frequently, from a couple of weeks to a couple of months,
with a preference to the shorter timescale.

Business people and developers must work together daily throughout the project.

Build projects around motivated individuals. Give them the environment and support
they need, and trust them to get the job done.

The most efficient and effective method of conveying information to and within a
development team is face-to-face conversation.

Working software is the primary measure of progress.

Agile processes promote sustainable development. The sponsors, developers, and
users should be able to maintain a constant pace indefinitely.

Continuous attention to technical excellence and good design enhances agility.

Simplicity—the art of maximizing the amount of work not done—is essential.

The best architectures, requirements, and designs emerge from self-organizing teams.

At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.

Think about these principles and reflect on your own experiences in software development,
what you have been taught about the process. How do these principles relate to these issues?
If you have been involved in a significant development project, what processes did you follow?

CONUNDRUM

The following scenario is based on a real-life business situation that arose in the late
1990s.

The Internet is opening up, and many businesses are now connected. Banks are
beginning to consider if they could provide online access to their business customers.
One bank considers two strategies.

(A) The bank’s IT director suggests that they put together a quick and dirty Web
site that allows customers to submit transactions through their browser, to
get this up and running, and to try to develop a connection with the
“back-office” legacy mainframe database system.

Conundrum 17

(B) The bank also gets a report from some outside consultants that suggests they
should reengineer the legacy back-end and build an integrated Web front-
end to provide a powerful user-friendly e-banking system engineered to a
high standard.

Which strategy would be best and why?
See Chapter 11 for a discussion of this dilemma.

REFERENCES

S. ANCHA, A. CIOROIANU, J. COUSINS, J. CROSBIE, J. DAVIES, K. AHMED, J. HART, K. GABHART, S. GOULD,
R. LADDAD, S. LI, B. MACMILLAN, D. RIVERS-MOORE, J. SKUBAL, K. WATSON, S. WILLIAMS.
Professional Java XML. Wrox Press, 2001.

M. BAGNALL. The Dyna Cat System. http://www.dcs.shef.ac.uk/intranet/teaching/projects/archive/

ug2002/pdf/ugmab.pdf.
S. AMBLER. Agile Modeling. John Wiley & Sons, 2002.
K. BECK. Extreme Programming Explained. Addison-Wesley, 1999.
P. COAD, J. DE LUCA, E. LEFEBRE. Java Modelling in Color. Prentice Hall, 1999.
A. COCKBURN. Agile Software Development (A. Cockburn and J. Highsmith, eds.). Addison Wesley, 2001.
T. GILB. Principles of Software Engineering Management (S. Finzi-Wokingham, ed.). Addison-Wesley,

1988.
L. HATTON. Does OO sync with the way we think? IEEE Software, 15(3):46–54, 1998.
W.S. HUMPHREYS. A Discipline for Software Engineering. Addison-Wesley, 1995.
D. HUNTER. Beginning XML. Wrox Press, 2000.
R.S. PRESSMAN. Software Engineering: A Practitioner’s Approach. McGraw Hill, 2000.
K. SCHWABER, M. BEEDLE. Agile Software Development with SCRUM. Prentice Hall, 2002.
I. SOMMERVILLE. Software Engineering, 8th ed. Addison-Wesley, 2006.
J. STAPLETON. DSDM: The Dynamic Systems Development Method. Addison-Wesley, 1997.
J. SUTHERLAND, A. VIKTOROV, J. BLOUNT, N. PUNTIKOV. Proc. HICSS. 2007.

Web Sites

http://www.Poppendieck2002.com.

18 Chapter 1 What Is an Agile Methodology?

