
 Introduction

1

1

Using Aspect-Oriented Programming for Trustworthy Software Development,
By Vladimir O. Safonov
Copyright © 2008 John Wiley & Sons, Inc.

 In this introductory chapter we explain why aspect - oriented programming is
so closely related to trustworthy software development, and review the orga-
nization of the book in detail.

 1.1 THE ROLE OF ASPECT - ORIENTED PROGRAMMING
IN TRUSTWORTHINESS

 Each software product is expected by its users to be trustworthy. But the
concept of software trustworthiness consists of many parts and aspects, as we ’ ll
see later. Intuitively, this concept has evolved since the early days of program-
ming. Thanks to Microsoft ’ s announcement in 2002 to follow and support
the trustworthy computing initiative , software experts are paying much more
attention to the task of making trustworthy computing a more systematic
discipline.

 It is very important to understand that viewing particular software as trust-
worthy or nontrustworthy generally evolves over time and may also depend
on the environment and the target platform. Software considered to be trust-
worthy at one moment or in one environment may demonstrate nontrust-
worthy behavior at another moment or after porting to another platform or
environment. Let ’ s consider a real example that occurred in the 1980s with

CO
PYRIG

HTED
 M

ATERIA
L

2 INTRODUCTION

one of our university ’ s mathematical packages written in FORTRAN that we
were porting from IBM 360 mainframes to Soviet Elbrus [11] computers with
tagged architecture. The package seemed to work fi ne and to deliver trustwor-
thy results for a few years while running on an IBM 360. During the fi rst run
of the package on Elbrus, an interrupt occurred and a runtime error (“ invalid
operand ”) was detected by hardware. It appeared that some noninitialized
variable was used in the package. It is intriguing that the package worked
reasonably on an IBM 360, but porting to a new, more secure hardware archi-
tecture obviously contributed to making the software more trustworthy, by
detecting and fi xing the bug immediately.

 As another example, let ’ s consider a library, part of a legacy code that works
well and is trustworthy in a single - threaded environment but needs to be
updated to become multithreaded (MT) safe. The library may contain static
variables and other implementation specifi cs that can preclude its trustworthi-
ness in a multithreaded environment, so to achieve MT safety, its code needs
to be updated systematically by, at a minimum, adding calls to synchronization
primitives (semaphores, mutexes, etc.) before and after the operations that
retrieve or update global resources shared by the library ’ s functions.

 There are many more other situations in which the existing code should be
updated to become more trustworthy. Due to the evolving nature of hardware
and software platforms, networking and operating system (OS) environments,
and the tasks to be solved by software, most software products cannot be
developed to be trustworthy “ once and for all. ” So a typical task in modern
software development is to update software to improve its trustworthiness in
some sense or in some relation. Such a software update should be made safely
and systematically, according to an explicit and consistent plan, using special
tools adequate to such a task, preferably with the help of formal methods such
as specifi cation and verifi cation.

 It is very important to realize that the task of updating software to attain
more trustworthiness generically has a “ cross - cutting ” nature. For example, to
insert synchronizing actions into library code modules, it is necessary to locate
in its code the scattered fragments responsible for updating or retrieving
global shared resources, and then insert synchronizing actions before and after
them. In other words, what is needed is to cross - cut the existing code for the
purpose of adding tangled (but logically related) fragments responsible for
synchronization.

 All of the above can be achieved using aspect - oriented programming (AOP)
 [12] . AOP is a new discipline targeted to systematic software updates using a
new type of modular units: aspects , whose code fragments are woven into the
target application according to explicit weaving rules provided in the aspect
defi nition. The main goal of AOP is to handle cross - cutting concerns [13] : ideas,
considerations, or algorithms whose implementation, inherently, by its nature,
cannot be implemented by a generalized procedure: a new function, class,
method, or hierarchy of such related entities. Implementing a cross - cutting
concern requires weaving (injecting) tangled code fragments into existing code

HISTORICAL BACKGROUND AND PERSONAL EXPERIENCE 3

modules. Typical cross - cutting concerns formulated by the classicists of AOP
are security, synchronization , and logging — all related to trustworthy comput-
ing. So, generally speaking, we can state that typical cross - cutting concerns are
related to trustworthy software development. In this book you ’ ll fi nd practical
confi rmation of this important principle, and practical recipes for how to use
AOP for trustworthy software development, based on many examples. More
precise defi nitions of trustworthy computing (TWC) are provided in Chapter
 2 , and of AOP, in Chapter 3 .

 1.2 HISTORICAL BACKGROUND AND PERSONAL EXPERIENCE

 The foundation of trustworthy software development was laid out in the 1960s
and 1970s, when programming became a systematic discipline, due to pioneer-
ing work by the classicists of structured programming (C. Boehm, J. Jacopini,
E. Dijkstra, N. Wirth), modular programming (D. Parnas, G. Myers), and
 abstract data types (C. A. R. Hoare, F. Morris, D. Scott, J. Goguen, et al.).

 In the late 1960s, the problem of “ bowl - of - spaghetti ” programs was inves-
tigated [14,15] . The criticism of such programs was that the code “ overpatched ”
with goto statements — added quickly to patch existing code. As a result, pro-
grams became nontrustworthy and even unreadable. To correct this situation,
the discipline of structured programming [16,17] was proposed. Structured
programming is based on using a limited set of syntactically and semantically
clean constructs: a succession of statements, if and while statements, without
the use of goto , can therefore be considered the fi rst attempt to make the code
and the process of its development more trustworthy. An inherent part of
structured programming is stepwise refi nement : an incremental top - down soft-
ware design and implementation technique using Pascal - like pseudocode to
design each node of the program structure tree. Structured programming and
stepwise refi nement have played a historical role and are still being used in
many projects, especially for rapid prototyping. Structured programming has
many advantages: It provides a comfortable way to develop a software proto-
type quickly; it makes it possible to design and implement parts of the code
in parallel; it enables clear control structure in the resulting code (which, in
this sense, appears to get more trustworthy). However, structured program-
ming has some limitations and shortcomings: It is suitable for statements
(executable constructs of the code) but unsuitable for use in designing and
developing defi nitions and declarations; it is not comfortable to use to make
changes in a program; it is not well suited to error and exception handling; and
it may cause the development of low - quality code since it can target highly
skilled developers to design high - level pseudocode and have nonexperienced
programmers make all implementations (i.e., actually produce the resulting
code for the software product).

 Modular programming [18,19] is another important step in trustworthy
software development. It is intended for structural decomposition of a program

4 INTRODUCTION

into logically independent parts: modules . It is very important to understand
that from a modular programming viewpoint, parts of the module interface
are not only its name, arguments, and result types, but also a list of possible
 exceptional conditions of its possible abnormal termination. What is especially
important for TWC is that trustworthy checks and exceptional conditions can
be tied to modules. In terms of modular programming, TWC principles can be
formulated as follows: Each module and all module relationships should be
trustworthy . For that purpose, the module should self - check its pre - and post
conditions, handle all internal exceptions, and explicitly export its public excep-
tions to be processed by its users. Ideally although it has not yet been achieved
in most software projects), the trustworthiness of the module should be proved
by its formal verifi cation, based on some form of its formal specifi cation. The
main shortcoming of classical modular programming [19] is lack of support
for cross - cutting concerns . In traditional meaning, a module is visible and
accessible from the rest of the application via its interface only. Implementa-
tion of the module is hidden, and it is not possible to change it from the outside
in any way: in particular, to inject any new code into its implementation.
However, as we have seen, the tasks of trustworthy software development
require injecting new code (e.g., for synchronization or for security checks)
into the implementation of existing modules. From a conventional modular
programming viewpoint, it may be considered as a violation of modular pro-
gramming principles. But since support for systematic code injections is a
practical need of trustworthy software development, the concepts and views
of modular programming have been augmented to justify systematic ways to
inject or change tangled code. AOP is one approach to achieving this goal.

 Abstract data types (ADTs) [20,21] represent the third classical approach
to making software development more trustworthy, based on defi ning a set of
operations on some data structure or collection (tree, list, graph, stack, etc.) as
a new abstract data type whose implementation is encapsulated (hidden) inside
the ADT defi nition. From the most general viewpoint, an inherent part of an
ADT is its formal specifi cation , which allows us formally to verify the correct-
ness of its implementation (i.e., to prove that the implementation of the ADT
corresponds to its formal specifi cations). Unfortunately, most existing lan-
guages, tools, and environments that include ADT mechanisms do not support
formal specifi cation and verifi cation, which makes applying the discipline
and concepts of ADT less trustworthy than expected. However, two very
important ideas that the concept of ADT has brought to trustworthy software
development are encapsulation of the concrete representation of the data type
and exclusive use of abstract operations (implemented via methods, functions,
macros, etc.) to handle objects of the data type without “ intrusion ” into its
representation by straightforward use of its concrete elements.

 So, to summarize, the concepts of structured programming, modular pro-
gramming, and abstract data types, together with the related formal methods,
contributed a lot to trustworthy software development of executable parts of
programs: statements (structured programming), program architecture by its

HISTORICAL BACKGROUND AND PERSONAL EXPERIENCE 5

decomposition into modules (modular programming), and operations on com-
plicated data types and structures (abstract date types). But all of these
approaches lack the support of cross - cutting concerns — hence the important
role of AOP, which provides such support.

 As for object - oriented programming (OOP), it has been playing an out-
standing role in the rapid development of software, but its key principles and
mechanisms, inheritance and class hierarchy, are not always trustworthy. As
shown in analytical and critical papers on OOP, it has many pitfalls [22] . The
most serious of them is conceptual explosion , an immediate consequence of
implementation inheritance. By inheriting an exponentially growing number
of classes and methods, an OOP programmer is likely to develop nontrustwor-
thy and unreadable code, since it uses hundreds of implicitly inherited features
implemented by other programmers, whose semantics is often unclear and not
well documented. Nevertheless, OOP constructs are comfortable for tying
various features to classes and methods: in particular, security checks and
other TWC support code.

 As for security and information protection, one of the earliest papers on
this subject seems to be that if Saltzer and Schroeder [23] , dating back over
30 years, which considers basic concepts and principles related to information
protection and access rights to information. Trustworthy computing issues
related to sharing and scheduling common resources were studied in the 1960s
and 1970s, primarily in relation to operating systems. New types of security
issues arose later, due to evolution of networking, the Internet, and the Web.

 My own experience of trustworthy software development began in the
1970s. It happened that the fi rst hardware and OS platform I used for develop-
ing research and commercial software projects was not IBM or PDP, but
Elbrus [11] , a Soviet family of computers whose architecture was inspired by
the ideas of Iliffe ’ s paper [24] and Burroughs 5000/5500/6700/7700 hardware
architecture. Elbrus software, including the operating system, compilers, and
application packages, was developed from scratch by thousands of highly
skilled Soviet software engineers in a specialized high - level language. I was
the project lead of the St. Petersburg University team, which in a few years
developed Pascal, CLU, Modula - 2 compilers, and FORTH - 83, SNOBOL - 4,
and REFAL [25] interpreters for Elbrus. These projects became my fi rst school
of trustworthy computing. Elbrus architecture was based on tags , hardware -
 supported runtime data - type information attached to every word of memory.
Another important principle of Elbrus was its support of basic features of
high - level languages and their implementation in hardware. There was no
assembler language in Elbrus in the traditional meaning of the term. Instead,
all its system software, including the OS and compilers, was developed in EL -
 76 [26] , a dynamically typed high - level language whose syntax was close to
that of ALGOL 68. It is interesting now, from a modern TWC viewpoint and
with our .NET experience, to analyze Elbrus architecture. At fi rst, what was
helpful for TWC was its tagged architecture, a kind of dynamic typing. An
example of how it helps has already been given. Hardware - supported dynamic

6 INTRODUCTION

typing helps to detect the use of noninitialized variables, due to the special
 empty tag representing noninitialized data detected by each instruction (e.g.,
arithmetic operation) and causing an interrupt. A tagging mechanism prevents
the spread of nontrustworthy results over the program execution data fl ow. It
also helps to protect memory: a special descriptor tag marks each address word
that points to an array, and contains its initial address and size. So no violation
of array bounds, no buffer overrun [27] security fl aws, and no C - like address
arithmetic operations (which often cause TWC issues) are possible with tagged
architecture. So such architecture looks more trustworthy and more secure
than the traditional × 86 architecture. However, tagged architecture requires
substantial overhead for analyzing the tags of the operands by hardware
during execution of each instruction. For that reason it is not often used in
modern hardware.

 When I switched from Elbrus to using an IBM PC with MS - DOS and Turbo
Pascal in the late 1980s, I was enjoying a very comfortable and trustworthy
integrated development environment (IDE). I was surprised, however, that
the IDE did not, by default, detect bugs such as array indexing out of bounds,
which is especially dangerous since it may cause buffer overrun fl aws. To detect
indexing out of bounds, the user needed explicitly to switch on a special code
generation option that generated much less effi cient code, whereas tagged
architecture would catch indexing out of bounds at once. So, in a sense, a new
IDE working on a traditional hardware platform appeared to be less trustwor-
thy than “ good old ” tagged architecture. For me, that was a useful lesson in
trustworthy computing.

 Much later, in the mid - 1990s, due to my work with Sun, I became acquainted
with Java, and in the early 2000s, due to collaboration with Microsoft Research,
started working with Microsoft.NET. I was pleasantly surprised to discover in
those new software technologies a “ new incarnation ” of the ideas of dynamic
typing that became the basis of Java and .NET trustworthiness, in the form of
managed code execution using metadata. Dynamic typing in Java and .NET
provide a basis for security checks, runtime type checking, array bounds check-
ing, and a lot of other elements of trustworthy code execution. It would not
be realistic to use hardware - supported tags for TWC purposes in modern
computing, due to modern software requirements of scalability, fl exibility,
cross - platform nature, and network - and Web - awareness. Instead, the two
related technologies — common intermediate code (Java bytecode and MSIL)
based on postfi x notation, and effi cient just - in - time compilation of that inter-
mediate code to native code — are used in Java and .NET to support type - safe
execution.

 I became acquainted with the principles and concepts of AOP in 2001
through an article by Elrad et al. [28] . Reading the article made me realize
that like many other experienced software developers I had intuitively used
and developed principles similar to AOP throughout my professional life,
although without explicit use of AOP terminology or adequate tools. For
example, a typical everyday software engineering task is to correct or extend

HISTORICAL BACKGROUND AND PERSONAL EXPERIENCE 7

some functionality in an existing application: either your own or that of other
developers (which can be much more diffi cult). To do that you should fi rst
locate the implementation of the functionality being considered within the
application code and then modify and enhance it. Typically, implementation
of some functionality consists of a related group of modules (class hierarchies,
libraries of functions, etc.) and a set of scattered code fragments (i.e., defi ni-
tions and calls of modules) in different parts of the application code. It may
be very tricky and time consuming to locate and identify all of them unless
the original developers of the application have used some technologies and
software processes to enable quick search of any functionality implemented
in the code. In terms of AOP, this task is referred to as aspect mining [29] ,
extracting aspects from non - aspect - oriented programs. If there are no
adequate tools and technologies to help software developers locate some
functionality in existing applications, software engineers responsible for
code maintenance have to explore the code “ by hand ” (or using simple text -
 searching tools such as grep) and often fail to perform the task completely
(e.g., forget to fi nd some of the scattered code fragments implementing the
functionality). This causes more bugs and security fl aws in the new version of
the application. This is just one example of why AOP can be so helpful, since
it supports aspect mining. In terms of AOP, the task of updating the scattered
functionality can be considered as modifying the aspect and its join points
within the target application. In AOP terms, adding functionality is considered
as weaving the aspect that implements it.

 In the 1980s, before the advent of AOP tools, my team used TIP technology
 [11] , an enhancement of modular programming and abstract data types, to
make the process of developing, self - documenting, and updating the code
more systematic. Speaking in modern terms, TIP technology was based on a
set of design and code templates using a predefi ned scheme of abstraction
levels and vertical cuts (groups of operations). The application (e.g., a compiler)
was designed as a related set of technological instrumental packages (TIPs),
each responsible for implementing a set of abstract operations on a data struc-
ture (e.g., a table of defi nitions in the compiler). Each TIP was designed and
implemented according to its predefi ned and recommended design template,
typically (for compiler development projects) consisting of three abstract
layers (in bottom - up order): representation level, defi nition level , and concept
level ; and four vertical cuts: creation/deletion interface, access interface, update
interface , and output interface . Although for any other area (e.g., operating
systems) the set of TIPs and their layers would be different, the principles of
using the predefi ned “ two - dimensional ” horizontal layering and vertical oper-
ation grouping scheme would be the same. The users of TIPs (any other
modules of the application) were granted access only to the TIP upper abstract
(concept) layer, which supported adequate high - level abstract operations such
as iterators and associative search. The code of each TIP was self - documented
and self - explanatory, so that our colleagues from other institutions working
on related compiler projects used the code of our TIP interfaces as working

8 INTRODUCTION

documentation. Each operation of each TIP had a comfortable mnemonic
name that helped quickly to locate all its uses by ordinary text - searching tools
such as grep . This discipline of programming helped us not only to develop
trustworthy and bug - free code, but also to update or enhance it quickly and
trustworthily, since due to use of such technology, each code modifi cation
could be represented as a simple sequence of steps to update each abstract
layer and each vertical cut. Much more detail on the TIP technology is pro-
vided in my book on Elbrus [11] . To summarize, our TIP technology was an
important step leading to AOP and an understanding of its importance to
trustworthy code development. Compared to AOP, what was not specifi ed in
a TIP (but what is specifi ed in aspect specifi cations in modern AOP) is an
explicit set of weaving rules on how to apply a TIP ’ s operations and where to
insert its calls. Although we provided clear comments to the code, we didn ’ t
use specifi c weaving tools and we inserted or modifi ed the operations ’ calls by
hand. Nevertheless, our TIP technology experience was another school of
trustworthy software development. Our latest experiences and results with
AOP are described in this book.

 1.3 ORGANIZATION OF THE BOOK

 The structure of the book is very simple. The chapters are not strongly inter-
dependent, so any chapter can be read or studied separately.

 In this chapter, our primary goal has been to activate the readers ’ interest
and draw their attention to the problems considered in the book, to provide
an initial understanding of them, and to illustrate them by examples and the
results of my team ’ s long experience with software development.

 In Chapter 2 we explain the history, essence, and modern aspects of trust-
worthy computing as a discipline. We see how TWC concepts originated,
developed, and were brought to the attention of academia and industry by
Microsoft. Microsoft ’ s TWC initiative and its four pillars — security, privacy,
reliability , and business integrity — are explained and analyzed. Finally, we con-
sider the implementation of TWC ideas and principles in the two latest soft-
ware development platforms, Java and .NET.

 Chapter 3 is devoted to aspect - oriented programming in whole and as
related to our AOP framework for .NET, Aspect.NET in particular. We con-
sider the history and basics of AOP, review both existing approaches to it and
AOP tools, prevent the reader from being caught by some AOP “ pitfalls, ” and
in the main focus of the chapter, consider in detail the principles of our
approach to AOP and its implementation for .NET, our Aspect.NET frame-
work, together with its advantages, features, use and perspectives.

 Chapter 3 should be read before Chapter 4 , since the latter describes prin-
ciples and uses of AOP for trustworthy software development using Aspect.
NET. A number of typical TWC - related tasks — such as synchronization, secu-
rity checks, and design - by - contract checks — are considered in Chapter 4 , and

recipes and examples are given on how to implement solutions to those tasks
using AOP and our Aspect.NET framework. Following the traditions of the
Wiley series of which this book is a part, a discussion of the use of quantitative
analysis to improve productivity and effi ciency is a primary focus. Applying
AOP for TWC, we prove that solutions using Aspect.NET are as runtime
effi cient as those developed by hand, using performance tests. We provide a
self - assessment of Aspect.NET using SQFD and ICED - T models. AOP and
its roles are compared to some other popular approaches, such as agile soft-
ware development. The main conclusion in Chapter 4 is that AOP with Aspect.
NET is an adequate and effi cient instrument for trustworthy software develop-
ment. More examples of aspect defi nitions using Aspect.NET are provided in
the Appendix.

 Chapter 5 is for university teachers and students. In this chapter I summa-
rize my teaching experience in the areas of TWC, AOP, and related domains.
I describe my ERATO teaching paradigm, my principles of teaching TWC and
AOP, and the contents of my courses and seminars related to them. Actually,
all the university courses that I teach — secure software engineering, operating
systems, compilers, .NET, and Java — appear to be closely related to TWC and
penetrated by TWC ideas. My secure software engineering course contains a
special chapter on AOP. All my courses are available at Microsoft Developer ’ s
Network Academic Alliance Curriculum Repository (MSDNAA CR)
Web site, so readers can download and use them for both teaching and
self - training.

 In Chapter 6 we outline perspectives on AOP and TWC: in particular, their
relation to knowledge management, and some ideas on how to implement
them.

 The Appendix contains a self - documented code of aspect defi nitions to be
used with Aspect.NET and the target applications to weave the aspects. The
Appendix plays the role of practical addition to Chapter 4 . The code of all
samples is available at the Web site related to the book, www.aspectdotnet.
org , and to the Aspect.NET project.

ORGANIZATION OF THE BOOK 9

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

