
 DSP Development System

 1

 • Installing and testing Code Composer Studio Version 3.1

 • Use of the TMS320C6713 or TMS320C6416 DSK

 • Programming examples

 This chapter describes how to install and test Texas Instruments ’ integrated develop-
ment environment (IDE), Code Composer Studio (CCS), for either the TMS320C6713
or the TMS320C6416 Digital Signal Processing Starter Kit (DSK). Three example
programs that demonstrate hardware and software features of the DSK and CCS
are presented. It is recommended strongly that you review these examples before
proceeding to subsequent chapters. The detailed instructions contained in this
chapter are specifi c to CCS Version 3.1.

 1.1 INTRODUCTION

 The Texas Instruments TMS320C6713 and TMS320C6416 Digital Signal Processing
Starter Kits are low cost development platforms for real - time digital signal pro-
cessing applications. Each comprises a small circuit board containing either a
TMS320C6713 fl oating - point digital signal processor or a TMS320C6416 fi xed - point
digital signal processor and a TLV320AIC23 analog interface circuit (codec) and
connects to a host PC via a USB port. PC software in the form of Code Composer
Studio (CCS) is provided in order to enable software written in C or assembly

Digital Signal Processing and Applications with the TMS320C6713 and TMS320C6416 DSK,
Second Edition By Rulph Chassaing and Donald Reay
Copyright © 2008 John Wiley & Sons, Inc.

1
CO

PYRIG
HTED

 M
ATERIA

L

2 DSP Development System

language to be compiled and/or assembled, linked, and downloaded to run on the
DSK. Details of the TMS320C6713, TMS320C6416, TLV320AIC23, DSK, and CCS
can be found in their associated datasheets [36 – 38] . The purpose of this chapter is
to introduce the installation and use of either DSK.

 A digital signal processor (DSP) is a specialized form of microprocessor. The
architecture and instruction set of a DSP are optimized for real - time digital signal
processing. Typical optimizations include hardware multiply - accumulate (MAC)
provision, hardware circular and bit - reversed addressing capabilities (for effi cient
implementation of data buffers and fast Fourier transform computation), and
Harvard architecture (independent program and data memory systems). In many
cases, DSPs resemble microcontrollers insofar as they provide single chip computer
solutions incorporating onboard volatile and nonvolatile memory and a range of
peripheral interfaces and have a small footprint, making them ideal for embedded
applications. In addition, DSPs tend to have low power consumption requirements.
This attribute has been extremely important in establishing the use of DSPs in cel-
lular handsets. As may be apparent from the foregoing, the distinctions between
DSPs and other, more general purpose, microprocessors are blurred. No strict defi -
nition of a DSP exists. Semiconductor manufacturers bestow the name DSP on
products exhibiting some, but not necessarily all, of the above characteristics as they
see fi t.

 The C6x notation is used to designate a member of the Texas Instruments (TI)
TMS320C6000 family of digital signal processors. The architecture of the C6x digital
signal processor is very well suited to numerically intensive calculations. Based on
a very - long - instruction - word (VLIW) architecture, the C6x is considered to be TI ’ s
most powerful processor family.

 Digital signal processors are used for a wide range of applications, from com-
munications and control to speech and image processing. They are found in cellular
phones, fax/modems, disk drives, radios, printers, hearing aids, MP3 players, HDTV,
digital cameras, and so on. Specialized (particularly in terms of their onboard
peripherals) DSPs are used in electric motor drives and a range of associated
automotive and industrial applications. Overall, DSPs are concerned primarily with
real - time signal processing. Real - time processing means that the processing must
keep pace with some external event; whereas nonreal - time processing has no
such timing constraint. The external event to keep pace with is usually the analog
input. While analog - based systems with discrete electronic components including
resistors and capacitors are sensitive to temperature changes, DSP - based systems
are less affected by environmental conditions such as temperature. DSPs enjoy
the major advantages of microprocessors. They are easy to use, fl exible, and
economical.

 A number of books and articles have been published that address the importance
of digital signal processors for a number of applications [1 – 22] . Various technologies
have been used for real - time processing, from fi ber optics for very high frequency
applications to DSPs suitable for the audio frequency range. Common applications
using these processors have been for frequencies from 0 to 96 kHz. It is standard

within telecommunications systems to sample speech at 8 kHz (one sample every
0.125 ms). Audio systems commonly use sample rates of 44.1 kHz (compact disk) or
48 kHz. Analog/digital (A/D) - based data - logging boards in the megahertz sampling
rate range are currently available.

 1.2 DSK SUPPORT TOOLS

 Most of the work presented in this book involves the development and testing of
short programs to demonstrate DSP concepts. To perform the experiments described
in the book, the following tools are used:

 1. A Texas Instruments DSP starter kit (DSK) . The DSK package includes:

 (a) Code Composer Studio (CCS), which provides the necessary software
support tools. CCS provides an integrated development environment
(IDE), bringing together the C compiler, assembler, linker, debugger, and
so on.

 (b) A circuit board (the TMS320C6713 DSK is shown in Figure 1.1) contain-
ing a digital signal processor and a 16 - bit stereo codec for analog signal
input and output.

 (c) A universal synchronous bus (USB) cable that connects the DSK board
to a PC.

 (d) A +5 V universal power supply for the DSK board.

 2. A PC . The DSK board connects to the USB port of the PC through the USB
cable included with the DSK package.

 3. An oscilloscope, spectrum analyzer, signal generator, headphones, microphone,
and speakers . The experiments presented in subsequent chapters of this
book are intended to demonstrate digital signal processing concepts in real -
 time, using audio frequency analog input and output signals. In order to
appreciate those concepts and to get the greatest benefi t from the experi-
ments, some forms of signal source and sink are required. As a bare minimum,
a microphone and either headphones or speakers are required. A far greater
benefi t will be acquired if a signal generator is used to generate sinusoidal,
and other, test signals and an oscilloscope and spectrum analyzer are used to
display, measure, and analyze input and output signals. Many modern digital
oscilloscopes incorporate FFT functions, allowing the frequency content of
signals to be displayed. Alternatively, a number of software packages that
use a PC equipped with a soundcard to implement virtual instruments are
available.

 All the fi les and programs listed and discussed in this book (apart from some
of the student project fi les in Chapter 10) are included on the accompanying CD.
A list of all the examples is given on pages xxi – xxvi.

 DSK Support Tools 3

4 DSP Development System

 1.2.1 C 6713 and C 6416 DSK Boards

 The DSK packages are powerful, yet relatively inexpensive, with the necessary
hardware and software support tools for real - time signal processing [23 – 43] . They
are complete DSP systems. The DSK boards, which measure approximately 5 × 8
inches, include either a 225 - MHz C6713 fl oating - point digital signal processor or
a 1 - GHz C6416 fi xed - point digital signal processor and a 16 - bit stereo codec
TLV320AIC23 (AIC23) for analog input and output.

 The onboard codec AIC23 [38] uses sigma – delta technology that provides analog -
 to - digital conversion (ADC) and digital - to - analog conversion (DAC) functions. It
uses a 12 - MHz system clock and its sampling rate can be selected from a range of
alternative settings from 8 to 96 kHz.

 A daughter card expansion facility is also provided on the DSK boards.
Two 80 - pin connectors provide for external peripheral and external memory
interfaces.

 The DSK boards each include 16 MB (megabytes) of synchronous dynamic RAM
(SDRAM) and 512 kB (kilobytes) of fl ash memory. Four connectors on the boards
provide analog input and output: MIC IN for microphone input, LINE IN for line
input, LINE OUT for line output, and HEADPHONE for a headphone output
(multiplexed with line output). The status of four user DIP switches on the DSK
board can be read from within a program running on the DSP and provide the user
with a feedback control interface. The states of four LEDs on the DSK board can
be controlled from within a program running on the DSP. Also onboard the DSKs
are voltage regulators that provide 1.26 V for the DSP cores and 3.3 V for their
memory and peripherals.

 1.2.2 TMS 320 C 6713 Digital Signal Processor

 The TMS320C6713 (C6713) is based on the very - long - instruction - word (VLIW)
architecture, which is very well suited for numerically intensive algorithms. The
internal program memory is structured so that a total of eight instructions can be
fetched every cycle. For example, with a clock rate of 225 MHz, the C6713 is capable
of fetching eight 32 - bit instructions every 1/(225 MHz) or 4.44 ns.

 Features of the C6713 include 264 kB of internal memory (8 kB as L1P and L1D
Cache and 256 kB as L2 memory shared between program and data space), eight
functional or execution units composed of six ALUs and two multiplier units, a 32 -
 bit address bus to address 4 GB (gigabytes), and two sets of 32 - bit general - purpose
registers.

 The C67xx processors (such as the C6701, C6711, and C6713) belong to the family
of the C6x fl oating - point processors; whereas the C62xx and C64xx belong to the
family of the C6x fi xed - point processors. The C6713 is capable of both fi xed - and
fl oating - point processing. The architecture and instruction set of the C6713 are dis-
cussed in Chapter 3 .

 1.2.3 TMS 320 C 6416 Digital Signal Processor

 The TMS320C6416 (C6416) is based on the VELOCITI advanced very - long -
instruction - word (VLIW) architecture, which is very well suited for numerically
intensive algorithms. The internal program memory is structured so that a total of
eight instructions can be fetched every cycle. For example, with a clock rate of 1 GHz,
the C6416 is capable of fetching eight 32 - bit instructions every 1/(1 GHz) or 1.0 ns.

(a)

(b)

 FIGURE 1.1. TMS3206713 - based DSK board: (a) board and (b) block diagram.
(Courtesy of Texas Instruments .)

 DSK Support Tools 5

6 DSP Development System

 Features of the C6416 include 1056 kB of internal memory (32 kB as L1P and
L1D cache and 1024 kB as L2 memory shared between program and data space),
eight functional or execution units composed of six ALUs and two multiplier units,
a 32 - bit address bus to address 4 GB (gigabytes), and two sets of 32 - bit general -
 purpose registers.

 1.3 CODE COMPOSER STUDIO

 Code Composer Studio (CCS) provides an integrated development environment
(IDE) for real - time digital signal processing applications based on the C program-
ming language. It incorporates a C compiler, an assembler, and a linker. It has
graphical capabilities and supports real - time debugging.

 The C compiler compiles a C source program with extension .c to produce an
assembly source fi le with extension .asm . The assembler assembles an .asm source
fi le to produce a machine language object fi le with extension .obj . The linker com-
bines object fi les and object libraries as input to produce an executable fi le with
extension .out . This executable fi le represents a linked common object fi le format
(COFF), popular in Unix - based systems and adopted by several makers of digital
signal processors [44] . This executable fi le can be loaded and run directly on the
digital signal processor. Chapter 3 introduces the linear assembly source fi le with
extension .sa , which is a “ cross ” between C and assembly code. A linear optimizer
optimizes this source fi le to create an assembly fi le with extension .asm (similar to
the task of the C compiler).

 A Code Composer Studio project comprises all of the fi les (or links to all of the
fi les) required in order to generate an executable fi le. A variety of options enabling
fi les of different types to be added to or removed from a project are provided. In
addition, a Code Composer Studio project contains information about exactly how
fi les are to be used in order to generate an executable fi le. Compiler/linker options
can be specifi ed. A number of debugging features are available, including setting
breakpoints and watching variables, viewing memory, registers, and mixed C and
assembly code, graphing results, and monitoring execution time. One can step
through a program in different ways (step into, or over, or out).

 Real - time analysis can be performed using CCS ’ s real - time data exchange
(RTDX) facility. This allows for data exchange between the host PC and the target
DSK as well as analysis in real - time without halting the target. The use of RTDX
is illustrated in Chapter 9 .

 1.3.1 CCS Version 3.1 Installation and Support

 Instructions for installation of CCS Version 3.1 are supplied with the DSKs. The
default location for CCS fi les is c: \ CCStudio_v3.1 and the following instructions
assume that that you have used this default. An icon with the label 6713 DSK
CCStudio v3.1 (or 6416 DSK CCStudio v3.1) should appear on the desktop.

 CCS Version 3.1 provides extensive help facilities and a number of examples
and tutorials are included with the DSK package. Further information (e.g.,
data sheets and application notes) are available on the Texas Instruments website
 http://www.ti.com .

 1.3.2 Installation of Files Supplied with This Book

 The great majority of the examples described in this book will run on either the
C6713 or the C6416 DSK. However, there are differences, particularly concerning
the library fi les used by the different processors, and for that reason a complete set
of fi les is provided on the CD for each DSK. Depending on whether you are using
a C6713 or a C6416 DSK, copy all of the subfolders, and their contents, supplied
on the CD accompanying this book in folders C6416 or C6713 into the folder
 c: \ CCStudio_v3.1 \ MyProjects so that, for example, the source fi le sine8_LED.c
will be located at c: \ CCStudio_v3.1 \ MyProjects \ sine8_LED \ sine8_LED.c .

 Change the properties of all the fi les copied so that they are not read - only (all
the folders can be highlighted to change the properties of their contents at once).

 1.3.3 File Types

 You will be working with a number of fi les with different extensions. They include:

 1. fi le.pjt : to create and build a project named fi le.

 2. fi le.c : C source program.

 3. fi le.asm : assembly source program created by the user, by the C compiler,
or by the linear optimizer.

 4. fi le.sa : linear assembly source program. The linear optimizer uses fi le.sa
as input to produce an assembly program fi le.asm .

 5. fi le.h : header support fi le.

 6. fi le.lib : library fi le, such as the run - time support library fi le rts6700.lib .

 7. fi le.cmd : linker command fi le that maps sections to memory.

 8. fi le.obj : object fi le created by the assembler.

 9. fi le.out : executable fi le created by the linker to be loaded and run on the
C6713 or C6416 processor.

 10. fi le.cdb : confi guration fi le when using DSP/BIOS.

 1.4 QUICK TESTS OF THE DSK (ON POWER ON AND USING CCS)

 1. On power on, a power on self - test (POST) program, stored by default in the
onboard fl ash memory, uses routines from the board support library (BSL) to
test the DSK. The source fi le for this program, post.c , is stored in folder

 Quick Tests of the DSK (On Power On and Using CCS) 7

8 DSP Development System

 c: \ CCStudio_v3.1 \ examples \ dsk6713 \ bsl \ post . It tests the internal, exter-
nal, and fl ash memory, the two multichannel buffered serial ports (McBSP),
DMA, the onboard codec, and the LEDs. If all tests are successful, all four
LEDs blink three times and stop (with all LEDs on). During the testing of
the codec, a 1 - kHz tone is generated for 1 second.

 2. Launch CCS from the icon on the desktop. A USB enumeration process will
take place and the Code Composer Studio window will open.

 3. Click on Debug → Connect and you should see the message “ The target is now
connected ” appear (for a few seconds) in the bottom left - hand corner of the
CCS window.

 4. Click on GEL → Check DSK → QuickTest . The Quick Test can be used for
confi rmation of correct operation and installation. A message of the following
form should then be displayed in a new window within CCS:

 Switches Board Revision CPLD Revision: : :15 2 2

 The value displayed following the label Switches refl ects the state of the four
DIP switches on the edge of the DSK circuit board. A value of 15 corresponds to
all four switches in the up position. Change the switches to (1110) 2 , that is, the fi rst
three switches (0,1,2) up and the fourth switch (3) down. Click again on GEL →
 Check DSK → QuickTest and verify that the value displayed is now 7 (“ Switches: 7 ”).
You can set the value represented by the four user switches from 0 to 15. Programs
running on the DSK can test the state of the DIP switches and react accordingly.
The values displayed following the labels Board Revision and CPLD Revision
depend on the type and revision of the DSK circuit board.

 Alternative Quick Test of DSK Using Code Supplied with This Book
 1. Open/launch CCS from the icon on the desktop if not done already.

 2. Select Debug → Connect and check that the symbol in the bottom left - hand
corner of the CCS window indicates connection to the DSK.

 3. Select File → Load Program and load the fi le c: \ CCStudio_v3.1 \ MyProjects \
 sine8_LED \ Debug \ sine8_LED.out . This loads the executable fi le sine8_
LED.out into the digital signal processor. (This assumes that you have
already copied all the folders on the accompanying CD into the folder:
 c: \ CCStudio_v3.1 \ MyProjects .)

 4. Select Debug → Run .

 Check that the DSP is running. The word RUNNING should be displayed in the
bottom left - hand corner of the CCS window.

 Press DIP switch #0 down. LED #0 should light and a 1 - kHz tone should be
generated by the codec. Connect the LINE OUT (or the HEADPHONE) socket
on the DSK board to a speaker, an oscilloscope, or headphones and verify the gen-
eration of the 1 - kHz tone. The four connectors on the DSK board for input and

 Programming Examples to Test the DSK Tools 9

output (MIC, LINE IN, LINE OUT, and HEADPHONE) each use a 3.5 - mm jack
audio cable. halt execution of program sine8_LED.out by selecting Debug → Halt .

 1.5 PROGRAMMING EXAMPLES TO TEST THE DSK TOOLS

 Three programming examples are introduced to illustrate some of the features of
CCS and the DSK board. The aim of these examples is to enable the reader to
become familiar with both the software and hardware tools that will be used
throughout this book. It is strongly suggested that you complete these three exam-
ples before proceeding to subsequent chapters. The examples will be described
assuming that a C6713 DSK is being used.

 Example 1.1: Sine Wave Generation Using Eight Points with DIP Switch
Control (sine8_LED)

 This example generates a sinusoidal analog output waveform using a table - lookup
method. More importantly, it illustrates some of the features of CCS for editing
source fi les, building a project, accessing the code generation tools, and running a
program on the C6713 processor. The C source fi le sine8_LED.c listed in Figure
 1.2 is included in the folder sine8_LED .

 Program Description
 The operation of program sine8_LED.c is as follows. An array, sine_table , of
eight 16 - bit signed integers is declared and initialized to contain eight samples of
exactly one cycle of a sinusoid. The value of sine_table[i] is equal to

 1000 2 8 1sin for , 2, 3, . . . , 7(/)πi i =

Within function main() , calls to functions comm_poll() , DSK6713_LED_init() ,
and DSK6713_DIP_init() initialize the DSK, the AIC23 codec onboard the DSK,
and the two multichannel buffered serial ports (McBSPs) on the C6713 processor.
Function comm_poll() is defi ned in the fi le c6713dskinit.c , and functions
 DSK6713_LED_init() and DSK6713_DIP_init() are supplied in the board support
library (BSL) fi le dsk6713bsl.lib .

 The program statement while(1) within the function main() creates an infi nite
loop. Within that loop, the state of DIP switch #0 is tested and if it is pressed down,
LED #0 is switched on and a sample from the lookup table is output. If DIP switch
#0 is not pressed down then LED #0 is switched off. As long as DIP switch #0 is
pressed down, sample values read from the array sine_table will be output and
a sinusoidal analog output waveform will be generated via the left - hand channel
of the AIC23 codec and the LINE OUT and HEADPHONE sockets. Each time
a sample value is read from the array sine_table , multiplied by the value of
the variable gain , and written to the codec, the index, loopindex , into the array

10 DSP Development System

//sine8_LED.c sine generation with DIP switch control

#include "dsk6713_aic23.h" //codec support
Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input
#define LOOPLENGTH 8
short loopindex = 0; //table index
short gain = 10; //gain factor
short sine_table[LOOPLENGTH]=
 {0,707,1000,707,0,-707,-1000,-707}; //sine values

void main()
{
 comm_poll(); //init DSK,codec,McBSP
 DSK6713_LED_init(); //init LED from BSL
 DSK6713_DIP_init(); //init DIP from BSL
 while(1) //infinite loop
 {
 if(DSK6713_DIP_get(0)==0) //if DIP #0 pressed
 {
 DSK6713_LED_on(); //turn LED #0 ON
 output_left_sample(sine_table[loopindex++]*gain); //output
 if (loopindex >= LOOPLENGTH) loopindex = 0; //reset index
 }
 else DSK6713_LED_off(0); //else turn LED #0 OFF
 } //end of while(1)
} //end of main

 FIGURE 1.2. Sine wave generation program using eight points with DIP switch control
(sine8_LED.c).

is incremented and when its value exceeds the allowable range for the array
(LOOPLENGTH - 1), it is reset to zero.

 Each time the function output_left_sample() , defi ned in source fi le
 C6713dskinit.c , is called to output a sample value, it waits until the codec, initial-
ized by the function comm_poll() to output samples at a rate of 8 kHz, is ready for
the next sample. In this way, once DIP switch #0 has been pressed down it will be
tested at a rate of 8 kHz. The sampling rate at which the codec operates is set by
the program statement

 Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;

 One cycle of the sinusoidal analog output waveform corresponds to eight output
samples and hence the frequency of the sinusoidal analog output waveform is equal
to the codec sampling rate (8 kHz) divided by eight, that is, 1 kHz.

 Programming Examples to Test the DSK Tools 11

 Creating a Project
 This section illustrates how to create a project, adding the necessary fi les to generate
an executable fi le sine8_LED.out . As supplied on the CD, folder sine8_LED con-
tains a suitable project fi le named sine8_LED.pjt . However, for the purposes of
gaining familiarity with CCS, this section will illustrate how to create that project
fi le from scratch.

 1. Delete the existing project fi le sine8_LED.pjt in folder c: \ CCStudio_v3.1 \
 myprojects \ sine8_LED . Do this from outside CCS. Remember, a copy of
the fi le sine8_LED.pjt still exists on the CD.

 2. Launch CCS by double - clicking on its desktop icon.

 3. Create a new project fi le sine8_LED.pjt by selecting Project → New
and typing sine8_LED as the project name, as shown in Figure 1.3 . Set Target
 to TMS320C67XX before clicking on Finish . The new project fi le will be
saved in the folder c: \ CCStudio_v3.1 \ myprojects \ sine8_LED . The .pjt
fi le stores project information on build options, source fi lenames, and
dependencies. The names of the fi les used by a project are displayed in the
 Project View window, which, by default, appears at the left - hand side of the
Code Composer window.

 4. Add the source fi le sine8_LED.c to the project. sine8_LED.c is the top level
C source fi le containing the defi nition of function main() . This source fi le is
stored in the folder sine8_LED and must be added to the project if it is to
be used to generate the executable fi le sine8_LED.out . Select Project → Add
Files to Project and look for Files of Type C Source Files (* .c, * .ccc). Open ,

 FIGURE 1.3. CCS Project Creation window for project sine8_LED .

12 DSP Development System

or double - click on, sine8_LED.c . It should appear in the Project View window
in the Source folder.

 5. Add the source fi le c6713dskinit.c to the project. c6713dskinit.c con-
tains the function defi nitions for a number of low level routines including
 comm._poll() and output_left_sample() . This source fi le is stored in the
folder c: \ CCStudio_v3.1 \ myprojects \ Support . Select Project → Add Files
to Project and look for Files of Type C Source Files (* .c, * .ccc). Open , or
double - click on, c6713dskinit.c . It should appear in the Project View
window in the Source folder.

 6. Add the source fi le vectors__poll.asm to the project. vectors_poll.asm
contains the interrupt service table for the C6713. This source fi le is stored
in the folder c: \ CCStudio_v3.1 \ myprojects \ Support . Select Project → Add
Files to Project and look for Files of Type ASM Source Files (* .a *). Open , or
double - click on, vectors_poll.asm . It should appear in the Project View
window in the Source folder.

 7. Add library support fi les rts6700.lib , dsk6713bsl.lib , and csl6713.lib
 to the project. Three more times, select Project → Add Files to Project and
look for Files of Type Object and Library Files (* .o * , * .l *) The three library
fi les are stored in folders c: \ CCStudio_v3.1 \ c6000 \ cgtools \ lib , c: \
 CCStudio_v3.1 \ c6000 \ dsk6713 \ lib , and c: \ CCStudio_v3.1 \ c6000 \ csl \
 lib , respectively. These are the run - time support (for C67x architecture),
board support (for C6713 DSK), and chip support (for C6713 processor)
library fi les.

 8. Add the linker command fi le c6713dsk.cmd to the project. This fi le is stored
in the folder c: \ CCStudio_v3.1 \ myprojects \ Support . Select Project → Add
Files to Project and look for Files of Type Linker Command File (* .cmd; * .
lcf) . Open, or double - click on, c6713dsk.cmd . It should then appear in the
 Project View window.

 9. No header fi les will be shown in the Project View window at this stage. Select-
ing Project → Scan All File Dependencies will rectify this. You should now be
able to see header fi les c6713dskinit.h , dsk6713.h , and dsk6713_aic23.
h , in the Project View window.

 10. The Project View window in CCS should look as shown in Figure 1.4 . The
GEL fi le dsk6713.gel is added automatically when you create the project.
It initializes the C6713 DSK invoking the board support library to use the
PLL to set the CPU clock to 225 MHz (otherwise the C6713 runs at 50 MHz
by default). Any of the fi les (except the library fi les) listed in the Project
View window can be displayed (and edited) by double - clicking on their
name in the Project View window. You should not add header or include fi les
to the project. They are added to the project automatically when you select
 Scan All File Dependencies . (They are also added when you build the
project.)

 Programming Examples to Test the DSK Tools 13

 Verify from the Project View window that the project (.pjt) fi le, the linker
command (.cmd) fi le, the three library (.lib) fi les, the two C source (.c) fi les, and
the assembly (.asm) fi le have been added to the project.

 Code Generation and Build Options
 The code generation tools underlying CCS, that is, C compiler, assembler, and linker,
have a number of options associated with each of them. These options must be set
appropriately before attempting to build a project. Once set, these options will be
stored in the project fi le.

 Setting Compiler Options
 Select Project → Build Options and click on the Compiler tab. Set the following
options, as shown in Figures 1.5 , 1.6 , and 1.7 . In the Basic category set Target Version
to C671x (- mv6710) . In the Advanced category set Memory Models to Far (– mem_

 FIGURE 1.4. Project View window showing fi les added at step 10.

 FIGURE 1.5. CCS Build Options: Basic compiler settings.

 FIGURE 1.6. CCS Build Options: Advanced compiler settings.

14

 Programming Examples to Test the DSK Tools 15

 FIGURE 1.7. CCS Build Options: Preprocessor compiler settings.

model:data=far) . In the Preprocessor category set Pre - Defi ne Symbol to CHIP_6713
and Include Search Path to c: \ CCStudio_v3.1 \ C6000 \ dsk6713 \ include . Compiler
options are described in more detail in Ref. 28 . Click on OK .

 Setting Linker Options
 Click on the Linker tab in the Build Options window, as shown in Figure 1.8 . The
 Output Filename should default to . \ Debug \ sine8_LED.out based on the name of
the project fi le and the Autoinit Model should default to Run - Time Autoinitializa-
tion . Set the following options (all in the Basic category). Set Library Search Path
to c: \ CCStudio_v3.1 \ C6000 \ dsk6713 \ lib and set Include Libraries to rts6700.lib;
dsk6713bsl.lib;csl6713.lib . The map fi le can provide useful information for debug-
ging (memory locations of functions, etc.). The – c option is used to initialize vari-
ables at run time, and the – o option is to name the linked executable output fi le
 sine8_LED.out . Click on OK .

 Building, Downloading, and Running the Project
 The project sine8_LED can now be built, and the executable fi le sine8_LED.out
can be downloaded to the DSK and run.

16 DSP Development System

 FIGURE 1.8. CCS Build Options: Basic Linker settings.

 1. Build this project as sine8_LED . Select Project → Rebuild All . Or press the
toolbar button with the three downward arrows. This compiles and assembles
all the C fi les using cl6x and assembles the assembly fi le vectors_poll.asm
using asm6x . The resulting object fi les are then linked with the library fi les
using lnk6x . This creates an executable fi le sine8_LED.out that can be loaded
into the C6713 processor and run. Note that the commands for compiling,
assembling, and linking are performed with the Build option. A log fi le cc_
build_Debug.log is created that shows the fi les that are compiled and assem-
bled, along with the compiler options selected. It also lists the support functions
that are used. The building process causes all the dependent fi les to be included
(in case one forgets to scan for all the fi le dependencies). You should see a
number of diagnostic messages, culminating in the message “ Build Complete,
0 Errors, 0 Warnings, 0 Remarks ” appear in an output window in the bottom
left - hand side of the CCS window. It is possible that a warning about the Stack
Size will have appeared. This can be ignored or can be suppressed by uncheck-
ing the Warn About Output Sections option in the Advanced category of
 Linker Build Options . Alternatively, it can be eliminated by setting the Stack

 Programming Examples to Test the DSK Tools 17

Size option in the Advanced category of Linker Build Options to a suitable
value (e.g., 0x1000).

 Connect to the DSK . Select Debug → Connect and check that the symbol in
the bottom left - hand corner of the CCS window indicates connection to the
DSK.

 2. Select File → Load Program in order to load sine8_LED.out . It should be
stored in the folder c: \ CCStudio_v3.1 \ MyProjects \ sine8_LED \ Debug . Select
 Debug → Run . In order to verify that a sinusoidal output waveform with a fre-
quency of 1 kHz is present at both the LINE OUT and HEADPHONE
sockets on the DSK, when DIP switch #0 is pressed down, use an oscilloscope
connected to the LINE OUT socket and a pair of headphones connected to
the HEADPHONE socket.

 Editing Source Files Within CCS
 Carry out the following actions in order to practice editing source fi les.

 1. Halt execution of the program (if it is running) by selecting Debug → Halt .

 2. Double - click on the fi le sine8_LED.c in the Project View window. This should
open a new window in CCS within which the source fi le is displayed and may
be edited.

 3. Delete the semicolon in the program statement

 short gain = 10;

 4. Select Debug → Build to perform an incremental build or use the toolbar
button with the two (not three) downward arrows. The incremental build is
chosen so that only the C source fi le sine8_LED.c is compiled. Using the
Rebuild option (the toolbar button with three downward arrows), fi les com-
piled and/or assembled previously would again go through this unnecessary
process.

 5. Two error messages, highlighted in red, stating

 “ Sine8_LED.c ” , Line 11: error: expected a “ ; ”
 “ Sine8_LED.c ” , Line 23: error: identifi er “ sine_table ” is
undefi ned

should appear in the Build window of CCS (lower left). You may need to
scroll - up the Build window for a better display of these error messages.
Double - click on the fi rst highlighted error message line. This should bring the
cursor to the section of code where the error occurs. Make the appropriate
correction (i.e. replace the semicolon) Build again, Load , and Run the program
and verify your previous results.

18 DSP Development System

 Monitoring the Watch Window
 Ensure that the processor is still running (and that DIP switch #0 is pressed down).
Note the message “ RUNNING ” displayed at the bottom left of CCS. The Watch
window allows you to change the value of a parameter or to monitor a variable:

 1. Select View → Quick Watch . Type gain , then click on Add to Watch . The gain
value of 10 set in the program in Figure 1.2 should appear in the Watch
window.

 2. Change gain from 10 to 30 in the Watch window. Press enter. Verify that the
amplitude of the generated tone has increased (with the processor still running
and DIP switch #0 pressed down). The amplitude of the sine wave should have
increased from approximately 0.9 V p - p to approximately 2.5 V p - p.

 Using a GEL Slider to Control the Gain
 The General Extension Language (GEL) is an interpreted language similar to (a
subset of) C. It allows you to change the value of a variable (e.g., gain) while the
processor is running.

 1. Select File → Load GEL and load the fi le gain.gel (in folder sine8_LED).
Double - click on the fi lename gain.gel in the Project View window to
view it within CCS. The fi le is listed in Figure 1.9 . The format of a slider GEL
function is

 slider param_defi nition(minVal, maxVal, increment,
pageIncrement, paramName)
{
 statements
}

where param_defi nition identifi es the slider and is displayed as the name of
the slider window, minVal is the value assigned to the GEL variable param-
Name when the slider is at its lowest level, maxVal is the value assigned to the

/*gain.gel GEL slider to vary amplitude of sine wave*/
/*generated by program sine8_LED.c*/

menuitem "Sine Gain"

slider Gain(0,30,4,1,gain_parameter) /*incr by 4, up to 30*/
{
 gain = gain_parameter; /*vary gain of sine*/
}

 FIGURE 1.9. Listing of GEL fi le gain.gel .

 Programming Examples to Test the DSK Tools 19

GEL variable paramName when the slider is at its highest level, increment
specifi es the incremental change to the value of the GEL variable paramName
made using the up - or down - arrow keys, and pageIncrement specifi es the
incremental change to the value of the GEL variable paramName made by
clicking in the slider window.

 In the case of gain.gel , the statement

 gain = gain_parameter;

assigns the value of the GEL variable gain_parameter to the variable gain
in program sine8_LED . The line

 menuitem “ Sine Gain ”

sets the text that will appear as an option in the CCS GEL menu when
 gain.gel is loaded.

 2. Select GEL → Sine Gain → Gain . This should bring out the slider window shown
in Figure 1.10 , with the minimum value of 0 set for the gain.

 3. Press the up - arrow key three times to increase the gain value from 0 to 12.
Verify that the peak - to - peak value of the sine wave generated is approxi-
mately 1.05 V. Press the up - arrow key again to continue increasing the slider,
incrementing by 4 each time. The amplitude of the sine wave should be
about 2.5 V p - p with the value of gain set to 30. Clicking in the Gain slider
window above or below the current position of the slider will increment or
decrement its value by 1. The slider can also be dragged up and down.
Changes to the value of gain made using the slider are refl ected in the
 Watch window.

 Figure 1.11 shows several windows within CCS for the project sine8_LED .

 FIGURE 1.10. GEL slider used to vary gain in program sine8_LED.c .

20 DSP Development System

 Changing the Frequency of the Generated Sinusoid
 There are several different ways in which the frequency of the sinusoid generated
by program sine8_LED.c can be altered.

 1. Change the AIC23 codec sampling frequency from 8 kHz to 16 kHz by chang-
ing the line that reads

 Uint32 fs = DSK6713_AIC23_FREQ_8KHZ;

to read

 Uint32 fs = DSK6713_AIC23_FREQ_16KHZ;

Rebuild (use incremental build) the project, load and run the new executable
fi le, and verify that the frequency of the generated sinusoid is 2 kHz. The

 FIGURE 1.11. CCS windows for project sin8_LED , including Watch window and GEL
slider.

 Programming Examples to Test the DSK Tools 21

sampling frequencies supported by the AIC23 codec are 8, 16, 24, 32, 44.1, 48,
and 96 kHz.

 2. Change the number of samples stored in the lookup table to four. By changing
the lines that read

 #defi ne LOOPLENGTH 8
short sine_table[LOOPLENGTH]={0,707,1000,707,0, - 707,0, - 1000,
 - 707};

to read

 #defi ne LOOPLENGTH 4
short sine_table[LOOPLENGTH]={0,1000,0, - 1000};

Verify that the frequency of the sinusoid generated is 2 kHz (assuming an
8 - kHz sampling frequency).

 Remember that the sinusoid is no longer generated if the DIP switch #0 is
not pressed down. A different DIP switch can be used to control whether or
not a sinusoid is generated by changing the value of the parameter passed to
the functions DSK6713_DIP_get(), DSK6713_LED_on(), and DSK6713_

LED_off() . Suitable values are 0, 1, 2, and 3.

 Two sliders can readily be used, one to change the gain and the other to
change the frequency. A different signal frequency can be generated, by changing
the incremental changes applied to the value of loopindex within the C program
(e.g., stepping through every two points in the table). When you exit CCS after you
build a project, all changes made to the project can be saved. You can later return
to the project with the status as you left it before. For example, when returning to
the project, after launching CCS, select Project → Open to open an existing project
such as sine8_LED.pjt (with all the necessary fi les for the project already
added).

 Example 1.2: Generation of Sinusoid and Plotting with CCS (sine8_buf)

 This example generates a sinusoidal analog output signal using eight precalculated
and prestored sample values. However, it differs fundamentally from sine8_LED in
that its operation is based on the use of interrupts. In addition, it uses a buffer to
store the BUFFERLENGTH most recent output samples. It is used to illustrate the
capabilities of CCS for plotting data in both time and frequency domains.

 All the fi les necessary to build and run an executable fi le sine8_BUF.out are
stored in folder sine8_buf . Program fi le sine8_buf.c is listed in Figure 1.12 .
Because a project fi le sine8_buf.pjt is supplied, there is no need to create a new

22 DSP Development System

//sine8_buf.c sine generation with output stored in buffer

#include "DSK6713_AIC23.h" //codec support
Uint32 fs=DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#define DSK6713_AIC23_INPUT_MIC 0x0015
#define DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; // select input
#define LOOPLENGTH 8
#define BUFFERLENGTH 256
int loopindex = 0; //table index
int bufindex = 0; //buffer index
short sine_table[LOOPLENGTH]={0,707,1000,707,0,-707,-1000,-707};
int out_buffer[BUFFERLENGTH]; //output buffer
short gain = 10;
interrupt void c_int11() //interrupt service routine
 short out_sample;

 out_sample = sine_table[loopindex++]*gain;
 output_left_sample(out_sample); //output sample value
 out_buffer[bufindex++] = out_sample; //store in buffer
 if (loopindex >= LOOPLENGTH) loopindex = 0; //check end table
 if (bufindex >= BUFFERLENGTH) bufindex = 0; //check end buffer
 return;
} //return from interrupt

void main()
{
 comm_intr(); //initialise DSK
 while(1); //infinite loop
}

 FIGURE 1.12. Listing of program sine8_buf.c .

project fi le, add fi les to it, or alter compiler and linker build options. In order to
build, download and run program sine8_buf.c .

 1. Close any open projects in CCS.

 2. Open project sine8_buf.pjt by selecting Project → Open and double - clicking
on fi le sine8_buf.pjt in folder sine8_buf . Because this program uses inter-
rupt - driven input/output rather than polling, the fi le vectors_intr.asm is
used in place of vectors_poll.asm . The interrupt service table specifi ed in
 vectors_intr.asm associates the interrupt service routine c_int11() with
hardware interrupt INT11, which is asserted by the AIC23 codec on the DSK
at each sampling instant.

 Within function main() , function comm_intr() is used in place of comm_poll() .
This function is defi ned in fi le c6713dskinit.c and is described in more detail in
Chapter 2 . Essentially, it initializes the DSK hardware, including the AIC23 codec,

 Programming Examples to Test the DSK Tools 23

such that the codec sampling rate is set according to the value of the variable fs
and the codec interrupts the processor at every sampling instant. The statement
 while(1) in function main() creates an infi nite loop, during which the processor
waits for interrupts. On interrupt, execution proceeds to the interrupt service routine
(ISR) c_int11() , which reads a new sample value from the array sine_table and
writes it both to the array out_buffer and to the DAC using function output_
left_sample() . Interrupts are discussed in more detail in Chapter 3 .

 Build this project as sine8_buf . Load and run the executable fi le sine8_buf.
out and verify that a 1 - kHz sinusoid is generated at the LINE OUT and HEAD-
PHONE sockets (as in Example 1.1).

 Graphical Displays in CCS
 The array out_buffer is used to store the BUFFERLENGTH most recently output
sample values. Once program execution has been halted, the data stored in out_
buffer can be displayed graphically in CCS.

 1. Select View → Graph → Time/Frequency and set the Graph Property Dialog
properties as shown in Figure 1.13 a. Figure 1.13 b shows the resultant Graphi-
cal Display window.

 2. Figure 1.14 a shows the Graph Property Dialog window that corresponds to
the frequency domain representation of the contents of out_buffer shown
in Figure 1.14 b. The spike at 1 kHz represents the frequency of the sinusoid
generated by program sine8_buf.c .

 Viewing and Saving Data from Memory into File
 To view the contents of out_buffer , select View → Memory . Specify out_buffer as
the Address and select 32 - bit Signed Integer as the Format , as shown in Figure 1.15 a.
The resultant Memory window is shown in Figure 1.15 b.

 To save the contents of out_buffer to a fi le, select File → Data → Save . Save the
fi le as sine8_buf.dat , selecting data type Integer , in the folder sine8_buf . In the
 Storing Memory into File window, specify out_buffer as the Address and a Length
of 256. The resulting fi le is a text fi le and you can plot this data using other applica-
tions (e.g., MATLAB). Although the values stored in array sine_table and passed
to function output_left_sample() are 16 - bit signed integers, array out_buffer
is declared as type int (32 - bit signed integer) in program sine8_buf.c to allow
for the fact that there is no 16 - bit Signed Integer data type option in the Save Data
facility in CCS.

 Example 1.3: Dot Product of Two Arrays (dotp4)

 This example illustrates the use of breakpoints and single stepping within CCS. In
addition, it illustrates the use of Code Composer ’ s Profi le Clock in order to estimate
the time taken to execute a section of code.

24 DSP Development System

(a)

(b)

 FIGURE 1.13. (a) Graph Property window and (b) Time domain plot of data stored in
 out_buffer .

 Multiply/accumulate is a very important operation in digital signal processing. It
is a fundamental part of digital fi ltering, correlation, and fast Fourier transform
algorithms. Since the multiplication operation is executed so commonly and is
essential for most digital signal processing algorithms, it is important that it executes
in a single instruction cycle. The C6713 and C6416 processors can perform two
multiply/accumulate operations within a single instruction cycle.

 The C source fi le dotp4.c , listed in Figure 1.16 , calculates the dot products of
two arrays of integer values. The fi rst array is initialized using the four values 1, 2,
3, and 4, and the second array using the four values 0, 2, 4, and 6. The dot product
is (1 × 0) + (2 × 2) + (3 × 4) + (4 × 6) = 40.

 Programming Examples to Test the DSK Tools 25

(a)

(b)

 FIGURE 1.14. (a) Graph Property window and (b) Frequency domain plot of data stored
in out_buffer .

 The program can readily be modifi ed to handle larger arrays. No real - time input
or output is used in this example, and so the real - time support fi les c6713dskinit.
c and vectors_intr.asm are not needed.

 Build this project as dotp4 ensuring that the following fi les are included in the
project:

 1. dotp4.c : C source fi le.

 2. 6713dsk.cmd : generic linker command fi le.

 3. rts6700.lib : library fi le.

 The Project View window should appear as shown in Figure 1.17 .

26 DSP Development System

 FIGURE 1.15. (a) Memory window settings and (b) Memory window view of data stored in
 out_buffer .

(a)

(b)

 Implementing a Variable Watch
 1. Select Project → Build Options and verify that the Basic Compiler settings are

as shown in Figure 1.18 . In this example it is important to ensure that the
optimization is disabled (Opt Level None).

 2. Build the project by clicking on the toolbar button with the three downward
arrows (or select Project → Build). Load the executable fi le dotp4.out .

 3. Select View → Quick Watch . Type sum to watch the variable sum , and click on
 Add to Watch . The message “ identifi er not found: sum ” should be displayed in
the Watch window. The variable sum is declared locally in function dotp() and
until that function is called it does not exist.

 4. Set a breakpoint at the line of code

 sum += a[i] * b[i];

by clicking on that line in the source fi le dotp4.c and then either right - clicking
and selecting Toggle Software Breakpoint , or clicking on the Toggle Breakpoint
toolbar button. A red dot should appear to the left of that line of code.

 Programming Examples to Test the DSK Tools 27

//dotp4.c dot product of two vectors

int dotp(short *a, short *b, int ncount); //function prototype
#include <stdio.h> //for printf
#define count 4 //# of data in each array
short x[count] = {1,2,3,4}; //declaration of 1st array
short y[count] = {0,2,4,6}; //declaration of 2nd array

main()
{
 int result = 0; //result sum of products

 result = dotp(x, y, count); //call dotp function
 printf("result = %d (decimal) \n", result); //print result
}

int dotp(short *a, short *b, int ncount) //dot product function
{
 int i;
 int sum = 0;
 for (i = 0; i < ncount; i++)
 sum += a[i] * b[i]; //sum of products
 return(sum); //return sum as result
}

 FIGURE 1.16. Listing of program dotp4.c .

 FIGURE 1.17. Project View window for project dotp4 .

28 DSP Development System

 FIGURE 1.18. Build Options for project dotp4 .

 5. Select Debug → Run (or use the “ running man ” toolbar button). The program
will execute up to, but not including, the line of code at which the breakpoint
has been set. A yellow arrow will appear to the left of that line of code. At
this point, a value of 0 for the variable sum should appear in the Watch window.
 sum is a variable that is local to function dotp() . Now that the function is
being executed, the variable exists and its value can be displayed.

 6. Continue program execution by selecting Debug → Step Into , or by using func-
tion key F11. Continue to single - step and watch the variable sum in the Watch
window change in value through 0, 4, 16, and 40 (See Figure 1.19 .).

 7. Once the value of the variable sum has reached 40, select Debug → Run in order
to complete execution of the program, and verify that the value returned by
function dotp() is displayed as

 result = 40 (decimal)

in the Stdout window. At this point, the message “ identifi er not found: sum ”
should be displayed in the Watch window again, refl ecting the fact that execu-
tion of function dotp() has ended and that the local variable sum no longer
exists.

 Programming Examples to Test the DSK Tools 29

 The printf() function is useful for debugging but its use should be avoided in
real - time programs since it takes over 6000 instruction cycles to execute.

 Animating
 1. Select File → Reload Program to reload the executable fi le dotp4.out (alter-

natively, select Debug → Restart). After the executable fi le is loaded, or follow-
ing restart, the program counter is set to the address labeled c_int00 . This
can be verifi ed by looking at the Disassembly window.

 2. The breakpoint set previously should still be set at the same line of code as
before. Select Debug → Animate and watch the value of the variable sum dis-
played in the Watch window change. The speed of animation can be controlled
by selecting Option → Customize → Animate Speed (by default, the maximum
speed setting of 0 seconds is set).

 Estimating Execution Time for Function dotp() Using the Profi le Clock
 The time taken to execute function dotp() can be estimated using Code
Composer ’ s Profi le Clock .

 FIGURE 1.19. Various windows associated with program dotp4.c .

30 DSP Development System

 1. Open project dotp4.pjt .

 2. Select Project → Build Options . In the Compiler tab in the Basic category set
the Opt Level to none .

 3. Select Project → Build and then File → Load Program in order to create and
load fi le dotp4.out .

 4. Open source fi le dotp4.c and clear all breakpoints. Set breakpoints at the
lines

 result = dotp(x, y, count);

and

 printf(“ result = %d (decimal) \ n ” , result);

 5. Select Profi le → Clock → Enable .

 6. Select Profi le → Clock View . A small clock icon and the number of processor
instruction cycles that the Profi le Clock has counted should appear in the
bottom right - hand corner of the Code Composer window.

 7. Run the program. It should halt at the fi rst breakpoint.

 8. Reset the Profi le Clock by double - clicking on its icon in the bottom right - hand
corner of the Code Composer window.

 9. Run the program. It should stop at the second breakpoint.

 The number of instruction cycles counted by the Profi le Clock between the two
breakpoints, that is, during execution of function dotp() , should be displayed next
to the icon. On a 225 - MHz C6713 processor, each instruction cycle takes 4.44 ns.
Repeat the experiment having set the compiler optimization level to Function (– o2)
and you should see a reduction in the number of instruction cycles used by function
 dotp() by a factor of approximately 2. Using breakpoints and the Profi le Clock can
give an indication of the execution times of sections of program but it does not
always work with higher levels of compiler optimization, for example, File (- o3) .
More detailed profi ling of program execution can be achieved using a simulator.

 1.6 SUPPORT FILES

 The support fi les c6713dskinit.c , vectors_intr.asm or vectors_poll.asm ,
and c6713dsk.cmd are used by nearly all of the examples in this book.

 1.6.1 Initialization/Communication File (c6713dskinit.c)

 Source fi le c6713dskinit.c , supplied on the CD accompanying this book and listed
in Figure 1.20 , contains the defi nitions of a number of functions used to initialize

 Support Files 31

//c6713dskinit.c
//includes functions from TI in the C6713 CSL and C6713DSK BSL

#include "C6713dskinit.h"
#define using_bios
extern Uint32 fs; //sampling frequency
extern Uint16 inputsource; //input source (MIC or LINE)

void c6713_dsk_init() //initialize DSK
{
 DSK6713_init(); //BSL routine to init DSK

 hAIC23_handle=DSK6713_AIC23_openCodec(0, &config);
 DSK6713_AIC23_setFreq(hAIC23_handle, fs); //set sampling rate
 // choose MIC or LINE IN on AIC23
 DSK6713_AIC23_rset(hAIC23_handle, 0x0004, inputsource);
 MCBSP_config(DSK6713_AIC23_DATAHANDLE,&AIC23CfgData);
 MCBSP_start(DSK6713_AIC23_DATAHANDLE, MCBSP_XMIT_START |
 MCBSP_RCV_START | MCBSP_SRGR_START |
 MCBSP_SRGR_FRAMESYNC, 220); //restart data channel
}

void comm_poll() //for communication using polling
{
 poll=1; //1 if using polling
 c6713_dsk_init(); //init DSP and codec
}

void comm_intr() //for communication using interrupt
{
 poll=0; //0 since not polling
 IRQ_globalDisable(); //globally disable interrupts
 c6713_dsk_init(); //init DSP and codec
 CODECEventId=MCBSP_getXmtEventId(DSK6713_AIC23_codecdatahandle);

#ifndef using_bios //if not using DSP/BIOS
 IRQ_setVecs(vectors); //use interrupt vector table
#endif //set up in vectors_intr.asm

 IRQ_map(CODECEventId, 11); //map McBSP1 Xmit to INT11
 IRQ_reset(CODECEventId); //reset codec INT 11
 IRQ_globalEnable(); //globally enable interrupts
 IRQ_nmiEnable(); //enable NMI interrupt
 IRQ_enable(CODECEventId); //enable CODEC eventXmit INT11

 output_sample(0); //start McBSP by outputting a sample
}

void output_sample(int out_data) //output to both channels
{
 short CHANNEL_data;

 AIC_data.uint=0; //clear data structure

 FIGURE 1.20. Listing of support fi le c6713dskinit.c .

32 DSP Development System

 AIC_data.uint=out_data; //write 32-bit data

//The existing interface defaults to right channel.
//To default instead to the left channel and use
//output_sample(short), left and right channels are swapped.
//In main source program use LEFT 0 and RIGHT 1
//(opposite of what is used here)

 CHANNEL_data=AIC_data.channel[RIGHT]; //swap channels
 AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];
 AIC_data.channel[LEFT]=CHANNEL_data;
 // if polling, wait for ready to transmit
 if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
 // write data to AIC23 via MCBSP
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

void output_left_sample(short out_data) //output to left channel
{
 AIC_data.uint=0; //clear data structure
 AIC_data.channel[LEFT]=out_data; //write 16-bit data
 // if polling, wait for ready to transmit
 if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
 // write data to AIC23 via MCBSP
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

void output_right_sample(short out_data)//output to right channel
{
 AIC_data.uint=0; //clear data structure
 AIC_data.channel[RIGHT]=out_data; //write 16-bit data
 // if polling, wait for ready to transmit
 if (poll) while(!MCBSP_xrdy(DSK6713_AIC23_DATAHANDLE));
 // write data to AIC23 via MCBSP
 MCBSP_write(DSK6713_AIC23_DATAHANDLE,AIC_data.uint);
}

Uint32 input_sample() //input from both channels
{
 short CHANNEL_data;

 // if polling, wait for ready to receive
 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
 //read data from AIC23 via MCBSP
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);

 //Swap left and right channels (see comments in output_sample())
 CHANNEL_data=AIC_data.channel[RIGHT]; //swap channels
 AIC_data.channel[RIGHT]=AIC_data.channel[LEFT];
 AIC_data.channel[LEFT]=CHANNEL_data;
 return(AIC_data.uint);
}

FIGURE 1.20. (Continued)

 Support Files 33

short input_left_sample() //input from left channel
{
 // if polling, wait for ready to receive
 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
 //read data from AIC23 via MCBSP
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);
 return(AIC_data.channel[LEFT]); //return left channel data
}
short input_right_sample() //input from right channel
{
 // if polling, wait for ready to receive
 if (poll) while(!MCBSP_rrdy(DSK6713_AIC23_DATAHANDLE));
 //read data from AIC23 via MCBSP
 AIC_data.uint=MCBSP_read(DSK6713_AIC23_DATAHANDLE);
 return(AIC_data.channel[RIGHT]); //return right channel data
}

FIGURE 1.20. (Continued)

the DSK. Calls are made from these functions to lower level functions provided
with CCS in the board support library (BSL) and chip support library (CSL) fi les
 dsk6713bsl.lib and csl6713.lib .

 Functions comm_intr() and comm_poll() initialize communications between
the C6713 processor and the AIC23 codec for either interrupt - driven or polling -
 based input and output. In the case of interrupt - driven input and output, interrupt
#11 (INT11), generated by the codec via the serial port (McBSP), is confi gured and
enabled (selected). The nonmaskable interrupt bit must be enabled as well as the
global interrupt enable (GIE) bit.

 Functions input_sample() , input_left_sample() , input_right_sample() ,
 output_sample() , output_left_sample() , and input_right_sample() are
used to read and write data to and from the codec. In the case of polling - based
input and output, these functions wait until the next sampling instant (determined
by the codec) before reading or writing, using the lower level functions MCBSP_
read() or MCBSP_write() . They do this by polling (testing) the receive ready
(RRDY) or transmit ready (XRDY) bits of the McBSP control register (SPCR).
In the case of interrupt - driven input and output, the processor is interrupted by
the codec at each sampling instant and when either input_sample() or output_
sample() is called from within the interrupt service routine, reading or writing
proceeds without RRDY or XRDY being tested. Interrupts are discussed further
in Chapter 3 .

 1.6.2 Header File (c6713dskinit.h)

 The corresponding header support fi le c6713dskinit.h contains function proto-
types as well as initial settings for the control registers of the AIC23 codec. Nearly

34 DSP Development System

all of the example programs in this book use the same AIC23 control register set-
tings. However, two codec parameters — namely, sampling frequency and selection
of ADC input (LINE IN or MIC IN) — are changed more often, from one program
example to another, and for that reason the following mechanism has been adopted.
During initialization of the DSK (in function dsk_init() , defi ned in fi le
 c6713dskinit.c), the AIC23 codec control registers are initialized using the
 DSK6713_AIC23_Confi g type data structure confi g defi ned in header fi le
 c6713dskinit.h . Immediately following this initialization, two functions DSK6713_
AIC23_setFreq() and DSK6713_AIC23_rset() are called and these set the sam-
pling frequency and select the input source according to the values of the variables
 fs and inputsource . These values are set in the fi rst few lines of every top level
source fi le; for example,

 Uint32 fs = DSK6713_AIC23_FREQ_8KHZ; //set sampling rate
#defi ne DSK6713_AIC23_INPUT_MIC 0x0015
#defi ne DSK6713_AIC23_INPUT_LINE 0x0011
Uint16 inputsource=DSK6713_AIC23_INPUT_MIC; //select input source

 In this way, the sampling frequency and input source can be changed without
having to edit either c6713sdkinit.h or c6713dskinit.c . (See Figure 1.21 .)

 1.6.3 Vector Files (vectors_intr.asm, vectors_poll.asm)

 To make use of interrupt INT11, a branch instruction (jump) to the interrupt service
routine (ISR) c_int11() defi ned in a C program, for example, sine8_buf.c , must
be placed at the appropriate point in the interrupt service table (IST). Assembly
language fi le vectors_intr.asm , which sets up the IST, is listed in Figure 1.22 .
Note the underscore preceding the name of the routine or function being called.
By convention, this indicates a C function.

 For a polling - based program, fi le vectors_poll.asm is used, in place of vectors_
intr.asm . The main difference between these fi les is that there is no branch to c_
int11() in the IST set up by vectors_poll.asm . Common to both fi les is a branch
to c_int00() , the start of a C program, associated with reset. (See Figure 1.23 .)

 1.6.4 Linker Command File (c6713dsk.cmd)

 Linker command fi le C6713dsk.cmd is listed in Figure 1.24 . It specifi es the memory
confi guration of the internal and external memory available on the DSK and the
mapping of sections of code and data to absolute addresses in that memory. For
example, the .text section, produced by the C compiler, is mapped into IRAM,
that is, the internal memory of the C6713 digital signal processor, starting at address
 0x00000220 . The section .vectors created by vectors_intr.asm or by vectors_
poll.asm is mapped into IVECS, that is, internal memory starting at address

 Support Files 35

 FIGURE 1.21. Listing of support header fi le c6713dskinit.h .

/*c6713dskinit.h include file for c6713dskinit.c */

#include "dsk6713.h"\
#include "dsk6713_aic23.h"

#define LEFT 1
#define RIGHT 0

union {
 Uint32 uint;
 short channel[2];
 } AIC_data;

extern far void vectors(); //external function

static Uint32 CODECEventId, poll;

// needed to modify the BSL data channel McBSP configuration
MCBSP_Config AIC23CfgData = {
 MCBSP_FMKS(SPCR, FREE, NO) |
 MCBSP_FMKS(SPCR, SOFT, NO) |
 MCBSP_FMKS(SPCR, FRST, YES) |
 MCBSP_FMKS(SPCR, GRST, YES) |
 MCBSP_FMKS(SPCR, XINTM, XRDY) |
 MCBSP_FMKS(SPCR, XSYNCERR, NO) |
 MCBSP_FMKS(SPCR, XRST, YES) |
 MCBSP_FMKS(SPCR, DLB, OFF) |
 MCBSP_FMKS(SPCR, RJUST, RZF) |
 MCBSP_FMKS(SPCR, CLKSTP, DISABLE) |
 MCBSP_FMKS(SPCR, DXENA, OFF) |
 MCBSP_FMKS(SPCR, RINTM, RRDY) |
 MCBSP_FMKS(SPCR, RSYNCERR, NO) |
 MCBSP_FMKS(SPCR, RRST, YES),

 MCBSP_FMKS(RCR, RPHASE, SINGLE) |
 MCBSP_FMKS(RCR, RFRLEN2, DEFAULT) |
 MCBSP_FMKS(RCR, RWDLEN2, DEFAULT) |
 MCBSP_FMKS(RCR, RCOMPAND, MSB) |
 MCBSP_FMKS(RCR, RFIG, NO) |
 MCBSP_FMKS(RCR, RDATDLY, 0BIT) |
 MCBSP_FMKS(RCR, RFRLEN1, OF(0)) |
 MCBSP_FMKS(RCR, RWDLEN1, 32BIT) |
 MCBSP_FMKS(RCR, RWDREVRS, DISABLE),

 MCBSP_FMKS(XCR, XPHASE, SINGLE) |
 MCBSP_FMKS(XCR, XFRLEN2, DEFAULT) |
 MCBSP_FMKS(XCR, XWDLEN2, DEFAULT) |

36 DSP Development System

 MCBSP_FMKS(XCR, XCOMPAND, MSB) |
 MCBSP_FMKS(XCR, XFIG, NO) |
 MCBSP_FMKS(XCR, XDATDLY, 0BIT) |
 MCBSP_FMKS(XCR, XFRLEN1, OF(0)) |
 MCBSP_FMKS(XCR, XWDLEN1, 32BIT) |
 MCBSP_FMKS(XCR, XWDREVRS, DISABLE),

 MCBSP_FMKS(SRGR, GSYNC, DEFAULT) |
 MCBSP_FMKS(SRGR, CLKSP, DEFAULT) |
 MCBSP_FMKS(SRGR, CLKSM, DEFAULT) |
 MCBSP_FMKS(SRGR, FSGM, DEFAULT) |
 MCBSP_FMKS(SRGR, FPER, DEFAULT) |
 MCBSP_FMKS(SRGR, FWID, DEFAULT) |
 MCBSP_FMKS(SRGR, CLKGDV, DEFAULT),

 MCBSP_MCR_DEFAULT,
 MCBSP_RCER_DEFAULT,
 MCBSP_XCER_DEFAULT,

 MCBSP_FMKS(PCR, XIOEN, SP) |
 MCBSP_FMKS(PCR, RIOEN, SP) |
 MCBSP_FMKS(PCR, FSXM, EXTERNAL) |
 MCBSP_FMKS(PCR, FSRM, EXTERNAL) |
 MCBSP_FMKS(PCR, CLKXM, INPUT) |
 MCBSP_FMKS(PCR, CLKRM, INPUT) |
 MCBSP_FMKS(PCR, CLKSSTAT, DEFAULT) |
 MCBSP_FMKS(PCR, DXSTAT, DEFAULT) |
 MCBSP_FMKS(PCR, FSXP, ACTIVEHIGH) |
 MCBSP_FMKS(PCR, FSRP, ACTIVEHIGH) |
 MCBSP_FMKS(PCR, CLKXP, FALLING) |
 MCBSP_FMKS(PCR, CLKRP, RISING)
};

DSK6713_AIC23_Config config = { \
0x0017, /* Set-Up Reg 0 Left line in volume control */ \
 /* LRS 0 simultaneous l/r volume: disabled */\
 /* LIM 0 left line input mute: disabled */ \
 /* XX 00 reserved */ \
 /* LIV 10111 left line input volume: 0 dB */ \
 \
0x0017, /* Set-Up Reg 1 Right line in volume control */ \
 /* RLS 0 simultaneous r/l volume: disabled */\
 /* RIM 0 right line input mute: disabled */ \
 /* XX 00 reserved */ \
 /* RIV 10111 right line input volume: 0 dB */ \
 \

FIGURE 1.21. (Continued)

 Support Files 37

0x01f9, /* Set-Up Reg 2 Left channel headphone volume */ \
 /* LRS 1 simultaneous l/r volume: enabled */ \
 /* LZC 1 zero-cross detect: enabled */ \
 /* LHV 1111001 left headphone volume: 0 dB */ \
 \
0x01f9, /* Set-Up Reg 3 Right channel headphone volume */ \
 /* RLS 1 simultaneous r/l volume: enabled */ \
 /* RZC 1 zero-cross detect: enabled */ \
 /* RHV 1111001 right headphone volume: 0 dB */ \
 \
0x0015, /* Set-Up Reg 4 Analog audio path control */ \
 /* X 0 reserved */ \
 /* STA 00 sidetone attenuation: -6 dB */ \
 /* STE 0 sidetone: disabled */ \
 /* DAC 1 DAC: selected */ \
 /* BYP 0 bypass: off */ \
 /* INSEL 0 input select for ADC: line */ \
 /* MICM 0 microphone mute: disabled */ \
 /* MICB 1 microphone boost: enabled */ \
 \
0x0000, /* Set-Up Reg 5 Digital audio path control */ \
 /* XXXXX 00000 reserved */ \
 /* DACM 0 DAC soft mute: disabled */ \
 /* DEEMP 00 deemphasis control: disabled */ \
 /* ADCHP 0 ADC high-pass filter: disabled */ \
 \
0x0000, /* Set-Up Reg 6 Power down control */ \
 /* X 0 reserved */ \
 /* OFF 0 device power: on (i.e. not off) */ \
 /* CLK 0 clock: on */ \
 /* OSC 0 oscillator: on */ \
 /* OUT 0 outputs: on */ \
 /* DAC 0 DAC: on */ \
 /* ADC 0 ADC: on */ \
 /* MIC 0 microphone: on */ \
 /* LINE 0 line input: on */ \
 \
0x0043, /* Set-Up Reg 7 Digital audio interface format */ \
 /* XX 00 reserved */ \
 /* MS 1 master/slave mode: master */ \
 /* LRSWAP 0 DAC left/right swap: disabled */ \
 /* LRP 0 DAC lrp: MSB on 1st BCLK */ \
 /* IWL 00 input bit length: 16 bit */ \
 /* FOR 11 data format: DSP format */ \
 \
0x0081, /* Set-Up Reg 8 Sample rate control */ \
 /* X 0 reserved */ \
 /* CLKOUT 1 clock output divider: 2 (MCLK/2) */ \

FIGURE 1.21. (Continued)

38 DSP Development System

 /* CLKIN 0 clock input divider: 2 (MCLK/2) */ \
 /* SR,BOSR 00000 sample rate: ADC 48kHz DAC 48kHz */ \
 /* USB/N 1 clock mode select : USB */ \
 \
0x0001 /* Set-Up Reg 9 Digital interface activation */ \
 /* XX..X 00000000 reserved */ \
 /* ACT 1 active */ \
};

DSK6713_AIC23_CodecHandle hAIC23_handle;

void c6713_dsk_init();
void comm_poll();
void comm_intr();
void output_sample(int);
void output_left_sample(short);
void output_right_sample(short);
Uint32 input_sample();
short input_left_sample();
short input_right_sample();

FIGURE 1.21. (Continued)

 0x00000000 (the interrupt service table). Chapter 2 contains an example illustrating
the use of the pragma directive to create a section named EXT_RAM to be mapped
into external memory starting at address 0x80000000 (SDRAM). Chapter 2 also
contains an example to illustrate the use of the non - volatile fl ash memory that starts
at address 0x90000000 (FLASH). In Chapter 4 , we illustrate the implementation
of a digital fi lter in assembly language using external memory. Chapter 10 contains
two projects that utilize the external memory interface (EMIF) 80 - pin connector
on the DSK, which starts at address 0xA0000000, to interface to external LEDs
and LCDs.

 1.7 ASSIGNMENTS

 1. Modify program sine8_buf.c to generate a sine wave with a frequency of
3000 Hz. Verify your result using an oscilloscope connected to the LINE OUT
socket on the DSK as well as using Code Composer to plot the 32 most
recently output samples in both the time and frequency domains.

 2. Write a polling - based program such that when DIP switch #3 is pressed down,
LED #3 turns on and a 500 - Hz cosine wave is generated for 5 seconds.

 3. Write an interrupt - driven program that maintains a buffer containing the 128
most recent input samples read at a sampling frequency of 16 kHz from the
AIC23 codec, using the MIC IN socket on the DSK. Halt the program and
plot the buffer contents using Code Composer.

 FIGURE 1.22. Listing of vector fi le vectors_intr.asm .

*Vectors_intr.asm Vector file for interrupt INT11
 .global _vectors ;global symbols
 .global _c_int00
 .global _vector1
 .global _vector2
 .global _vector3
 .global _vector4
 .global _vector5
 .global _vector6
 .global _vector7
 .global _vector8
 .global _vector9
 .global _vector10
 .global _c_int11 ;for INT11
 .global _vector12
 .global _vector13
 .global _vector14
 .global _vector15

 .ref _c_int00 ;entry address

VEC_ENTRY .macro addr ;macro for ISR
 STW B0,*--B15\
 MVKL addr,B0
 MVKH addr,B0
 B B0
 LDW *B15++,B0
 NOP 2
 NOP
 NOP
 .endm

_vec_dummy:
 B B3
 NOP 5

 .sect ".vectors" ;aligned IST section
 .align 1024
_vectors:
_vector0: VEC_ENTRY _c_int00 ;RESET
_vector1: VEC_ENTRY _vec_dummy ;NMI
_vector2: VEC_ENTRY _vec_dummy ;RSVD
_vector3: VEC_ENTRY _vec_dummy
_vector4: VEC_ENTRY _vec_dummy
_vector5: VEC_ENTRY _vec_dummy
_vector6: VEC_ENTRY _vec_dummy
_vector7: VEC_ENTRY _vec_dummy
_vector8: VEC_ENTRY _vec_dummy
_vector9: VEC_ENTRY _vec_dummy
_vector10: VEC_ENTRY _vec_dummy
_vector11: VEC_ENTRY _c_int11 ;ISR address
_vector12: VEC_ENTRY _vec_dummy
_vector13: VEC_ENTRY _vec_dummy
_vector14: VEC_ENTRY _vec_dummy
_vector15: VEC_ENTRY _vec_dummy

 Assignments 39

40 DSP Development System

*Vectors_poll.asm Vector file for polling
 .global _vectors
 .global _c_int00
 .global _vector1
 .global _vector2
 .global _vector3
 .global _vector4
 .global _vector5
 .global _vector6
 .global _vector7
 .global _vector8
 .global _vector9
 .global _vector10
 .global _vector11
 .global _vector12
 .global _vector13
 .global _vector14
 .global _vector15

 .ref _c_int00 ;entry address

VEC_ENTRY .macro addr
 STW B0,*--B15
 MVKL addr,B0
 MVKH addr,B0
 B B0
 LDW *B15++,B0
 NOP 2
 NOP
 NOP
 .endm

_vec_dummy:
 B B3
 NOP 5

 .sect ".vectors"
 .align 1024

_vectors:
_vector0: VEC_ENTRY _c_int00 ;RESET
_vector1: VEC_ENTRY _vec_dummy ;NMI
_vector2: VEC_ENTRY _vec_dummy ;RSVD
_vector3: VEC_ENTRY _vec_dummy
_vector4: VEC_ENTRY _vec_dummy
_vector5: VEC_ENTRY _vec_dummy
_vector6: VEC_ENTRY _vec_dummy
_vector7: VEC_ENTRY _vec_dummy
_vector8: VEC_ENTRY _vec_dummy
_vector9: VEC_ENTRY _vec_dummy
_vector10: VEC_ENTRY _vec_dummy
_vector11: VEC_ENTRY _vec_dummy
_vector12: VEC_ENTRY _vec_dummy
_vector13: VEC_ENTRY _vec_dummy
_vector14: VEC_ENTRY _vec_dummy
_vector15: VEC_ENTRY _vec_dummy

 FIGURE 1.23. Listing of vector fi le vectors_poll.asm .

 FIGURE 1.24. Listing of linker command fi le c6713dsk.cmd .

/*C6713dsk.cmd Linker command file*/

MEMORY
{
 IVECS: org=0h, len=0x220
 IRAM: org=0x00000220, len=0x0002FDE0 /*internal memory*/
 SDRAM: org=0x80000000, len=0x01000000 /*external memory*/
 FLASH: org=0x90000000, len=0x00020000 /*flash memory*/
}

SECTIONS
{
 .EXT_RAM :> SDRAM
 .vectors :> IVECS /*in vector file*/
 .text :> IRAM /*Created by C Compiler*/
 .bss :> IRAM
 .cinit :> IRAM
 .stack :> IRAM
 .sysmem :> IRAM
 .const :> IRAM
 .switch :> IRAM
 .far :> IRAM
 .cio :> IRAM
 .csldata :> IRAM
}

 4. Write a program that reads input samples from the left - hand channel of the
AIC23 codec ADC at a sampling frequency of 16 kHz using function input_
left_sample() and, just after it has been read, writes each sample value to
the right - hand channel of the AIC23 codec DAC using function output_
right_sample() . Verify the effective connection of the left - hand channel of
the LINE IN socket to the right - hand channel of the LINE OUT socket using
a signal generator and an oscilloscope. Gradually increase the frequency of
the input signal until the amplitude of the output signal is reduced drastically.
This frequency corresponds to the bandwidth of the DSP system (illustrated
in more detail in Chapter 2).

 REFERENCES

 1. R. Chassaing , DSP Applications Using C and the TMS320C6x DSK , Wiley , Hoboken, NJ ,
 2002 .

 2. R. Chassaing , Digital Signal Processing Laboratory Experiments Using C and the
TMS320C31 DSK , Wiley , Hoboken, NJ , 1999 .

 References 41

42 DSP Development System

 3. R. Chassaing , Digital Signal Processing with C and the TMS320C30 , Wiley , Hoboken NJ ,
 1992 .

 4. R. Chassaing and D. W. Horning , Digital Signal Processing with the TMS320C25 , Wiley ,
 Hoboken NJ , 1990 .

 5. N. Kehtarnavaz and M. Keramat , DSP System Design Using the TMS320C6000 , Prentice
Hall , Upper Saddle River, NJ , 2001 .

 6. N. Kehtarnavaz and B. Simsek , C6x - Based Digital Signal Processing , Prentice Hall ,
 Upper Saddle River, NJ , 2000 .

 7. N. Dahnoun , DSP Implementation Using the TMS320C6x Processors , Prentice Hall ,
 Upper Saddle River, NJ , 2000 .

 8. Steven A. Tretter , Communication System Design Using DSP Algorithms With Labora-
tory Experiments for the TMS320C6701 and TMS320C6711 , Kluwer Academic ,
 New York , 2003 .

 9. J. H. McClellan , R. W. Schafer , and M. A. Yoder , DSP First: A Multimedia Approach ,
 Prentice Hall , Upper Saddle River, NJ , 1998 .

 10. C. Marven and G. Ewers , A Simple Approach to Digital Signal Processing , Wiley ,
 Hoboken NJ , 1996 .

 11. J. Chen and H. V. Sorensen , A Digital Signal Processing Laboratory Using the
TMS320C30 , Prentice Hall , Upper Saddle River, NJ , 1997 .

 12. S. A. Tretter , Communication System Design Using DSP Algorithms , Plenum Press ,
 New York , 1995 .

 13. A. Bateman and W. Yates , Digital Signal Processing Design , Computer Science Press ,
 New York , 1991 .

 14. Y. Dote , Servo Motor and Motion Control Using Digital Signal Processors , Prentice Hall ,
 Upper Saddle River, NJ , 1990 .

 15. J. Eyre , The newest breed trade off speed, energy consumption, and cost to vie for an
ever bigger piece of the action, IEEE Spectrum , June 2001 .

 16. J. M. Rabaey , Ed., VLSI design and implementation fuels the signal - processing revolu-
tion, IEEE Signal Processing , Jan. 1998 .

 17. P. Lapsley , J. Bier , A. Shoham , and E. Lee , DSP Processor Fundamentals: Architectures
and Features , Berkeley Design Technology , Berkeley, CA , 1996 .

 18. R. M. Piedra and A. Fritsh , Digital signal processing comes of age, IEEE Spectrum , May
 1996 .

 19. R. Chassaing , The need for a laboratory component in DSP education: a personal
glimpse, Digital Signal Processing , Jan. 1993 .

 20. R. Chassaing , W. Anakwa , and A. Richardson , Real - time digital signal processing in
education , Proceedings of the 1993 International Conference on Acoustics, Speech and
Signal Processing (ICASSP) , Apr. 1993 .

 21. S. H. Leibson , DSP development software, EDN Magazine , Nov. 8, 1990 .

 22. D. W. Horning , An undergraduate digital signal processing laboratory , Proceedings of
the 1987 ASEE Annual Conference , June 1987 .

 23. TMS320C6000 Programmer ’ s Guide , SPRU198G, Texas Instruments, Dallas, TX,
 2002 .

 24. TMS320C6211 Fixed - Point Digital Signal Processor – TMS320C6711 Floating - Point
Digital Signal Processor , SPRS073C, Texas Instruments, Dallas, TX, 2000 .

 25. TMS320C6000 CPU and Instruction Set Reference Guide , SPRU189F, Texas Instruments,
Dallas, TX, 2000 .

 26. TMS320C6000 Assembly Language Tools User ’ s Guide , SPRU186K, Texas Instruments,
Dallas, TX, 2002 .

 27. TMS320C6000 Peripherals Reference Guide , SPRU190D, Texas Instruments, Dallas,
TX, 2001 .

 28. TMS320C6000 Optimizing C Compiler User ’ s Guide , SPRU187K, Texas Instruments,
Dallas, TX, 2002 .

 29. TMS320C6000 Technical Brief , SPRU197D, Texas Instruments, Dallas, TX, 1999 .

 30. TMS320C64x Technical Overview , SPRU395, Texas Instruments, Dallas, TX, 2000 .

 31. TMS320C6x Peripheral Support Library Programmer ’ s Reference , SPRU273B, Texas
Instruments, Dallas, TX, 1998 .

 32. Code Composer Studio User ’ s Guide , SPRU328B, Texas Instruments, Dallas, TX,
 2000 .

 33. Code Composer Studio Getting Started Guide , SPRU509, Texas Instruments, Dallas,
TX, 2001 .

 34. TMS320C6000 Code Composer Studio Tutorial , SPRU301C, Texas Instruments, Dallas,
TX, 2000 .

 35. TLC320AD535C/I Data Manual Dual Channel Voice/Data Codec , SLAS202A, Texas
Instruments, Dallas, TX, 1999 .

 36. TMS320C6713 Floating - Point Digital Signal Processor , SPRS186L, 2005 .

 37. TMS320C6414T, TMS320C6415T, TMS320C6416T Fixed - Point Digital Signal Processors
(Rev. J) , SPRS226J, 2006 .

 38. TLV320AIC23 Stereo Audio Codec, 8 - to 96 - kHz, with Integrated Headphone Amplifi er
Data Manual, SLWS106G, 2003 .

 39. TMS320C6000 DSP Phase - Locked Loop (PLL) Controller Peripheral Reference Guide,
SPRU233.

 40. Migrating from TMS320C6211/C6711 to TMS320C6713 , SPRA851.

 References 43

44 DSP Development System

 41. How to Begin Development Today with the TMS320C6713 Floating - Point DSP ,
SPRA809.

 42. TMS320C6000 DSP/BIOS User ’ s Guide, SPRU423, 2002 .

 43. TMS320C6000 Optimizing C Compiler Tutorial, SPRU425A, 2002 .

 44. G. R. Gircys , Understanding and Using COFF , O ’ Reilly & Associates , Newton, MA ,
 1988 .

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

