
CHAPTER 1
INTRODUCTION

As human beings, we are passionate about new ideas that promise to transform our lives and
create new opportunities. We also tend to rapidly replace old technologies with new ones. Ours
is a versatile society that runs on tomorrow’s software piled on top of the technology layers of
yesterday and today.

Try to imagine the next breakthrough that will supersede today’s examples of human
ingenuity. Will it be miniature software installed on microwave ovens or refrigerators that monitors
a diet prescribed by a personal nutritionist? Could it be a smart software component that not only
designs itself but also architects its own operating production environment? Or perhaps a virtual
software development platform that enables business and technology personnel to jointly build
applications with goggles and gloves?

These futuristic software concepts would probably contribute yet another layer to our
already complex computing environments, one requiring resources to maintain and budgets to
support. This layer would sit on top of technological artifacts accumulated over the past few
decades that are already difficult to manage.

Not long after the new millennium, discontent over interoperability, reusability, and other
issues drove the software community to come up with the service-oriented architecture (SOA)
paradigm. Even readers who are not familiar with SOA will probably agree that it is rooted in tra-
ditional software development best practices and standards. To fulfill the promise of SOA, superb
governance mechanisms are necessary to break up organizational silos and maximize software
asset reusability. The SOA vision also addresses the challenges of tightly coupled software and
advocates an architecture that relies on the loose coupling of assets. On the financial front, it
tackles budgeting and return-on-investment issues. Another feature that benefits both the techno-
logical and business communities is a reduction of time to market and business agility. Indeed,
the list of advantages continues to grow.

But does the promise of SOA address software diversity issues? Does it offer solutions
to the integration and collaboration hurdles created by the accumulation of generations of het-
erogeneous computing landscapes? Will the SOA vision constitute yet another stratum of ideas
and technologies that will be buried beneath future innovations? Will SOA be remembered as a
hollow buzzword that failed to solve one of the most frustrating technological issues of our time?
Or will it serve as an inspiration for generations to come?

It is possible that SOA may fail to deliver on its promise, but if it does, we, business
and IT personnel, must shoulder some of the blame. SOA may turn out to be little more than a
technological fire drill if we are ambivalent about the roles and responsibilities of legacy software
in our existing and future organizational strategies; if we fail to tie together past, present, and future
software development initiatives; and if we disregard the contributions of previous generations
of architectures to today’s business operations. Indeed, the idea of properly bridging new and old
software technologies is a novel one. But what about establishing a more holistic view of the
technological inventory that we have been building up for years? Can we treat all our software

1

CO
PYRIG

HTED
 M

ATERIA
L

2 Ch. 1 Introduction

assets equally in terms of their analysis, design, and architectural value propositions? Can we
understand their collaborative contribution to our environment without being too concerned about
their underlying languages and implementation detail? Can we name these assets services? Can
we conceive of them as service-oriented entities? Are they not built on similar SOA strategies
and principles?

This book introduces service-oriented modeling mechanisms that will enable us to con-
ceive software products that we have been constructing, acquiring, and integrating during the past
few decades as service-oriented constituents. These entities—either legacy applications written in
languages such as COBOL, PL1, Visual Basic, Java, C++, C#, or diverse empowering platforms
and middleware—should all take part in an SOA modeling framework. Most important, they
should be treated equally in the face of analysis, design, and architectural initiatives, and should
simply be recognized as services.

A new SOA modeling language will be unveiled in this book that is not based on any
particular programming language paradigm, constrained by language structure barriers, or limited
to a language syntax. As a result of this universal language, the modeling process becomes more
accessible to both the business and technology communities. This SOA modeling approach is well
suited to provide tactical, short-term solutions to enterprise concerns, yet it furnishes strategic
remedies to persistent organizational problems. So what is service-oriented modeling?

Service-oriented modeling is a software development practice that employs modeling disci-
plines and language to provide strategic and tactical solutions to enterprise problems. This
anthropomorphic modeling paradigm advocates a holistic view of the analysis, design, and
architecture of all organizational software entities, conceiving them as service-oriented assets,
namely services.

SERVICE-ORIENTED MODELING: WHAT IS IT ABOUT?
Modeling activities are typically embedded in the planning phase of almost any project or soft-
ware development initiative that an organization conducts. The modeling paradigm embodies
the analysis, design, and architectural disciplines that are being pursued during a given project.
These major modeling efforts should not center only on design and architectural artifacts such
as diagrams, charts, or blueprints. Indeed, modeling deliverables is a big part of a modeling
process. But the service-oriented modeling venture is chiefly about simulating the real world. It
is also about visualizing the final software product and envisioning the coexistence of services
in an interoperable computing environment. Therefore, the service-oriented modeling paradigm
advocates first creating a small replica of the “big thing” to represent its key characteristics and
behavior—in other words, plan small, dream big; test small, execute big!

A VIRTUAL WORLD. How is it possible to simulate such a business and technological environ-
ment that offers solutions to organizational business and technology problems? “Simulating” does
not necessarily mean starting with the construction of a software executable. It does not imply
instantly embarking on an implementation initiative to produce source code and build components
and services. The service-oriented modeling process begins with the construction of a miniature
replica on paper. This may involve modeling teams in whiteboard analysis, design, and architec-
ture sessions, or even the employment of software modeling tools that can visually illustrate the
solutions arrived at. Thus, the simulation process entails the creation of a virtual world in which
software constituents interface and collaborate to provide a viable remedy to an organizational
concern.

A STRATEGIC ENDEAVOR GUIDED BY MODELING DISCIPLINES. Creating a miniature mockup
of a final software product and its supporting environment can obviously reduce investment risk
by ensuring the success of the impending software construction initiative. This can be achieved

Service-Oriented Modeling: What Is It About? 3

by employing analysis, design, and architectural disciplines that are driven by a modeling strategy
that fosters asset reusability, a high return on investment, and a persuasive value proposition for
the organization.

Service-oriented modeling disciplines enable us to focus on modeling strategies rather
than being concerned with source code and detailed programming algorithms. By employing this
modeling paradigm we raise the bar from the granular constructs of our applications, yet we must
accommodate the language requirements of the underpinning platforms. We focus on identifying
high-level business and technological asset reusability and consolidation opportunities, but we
must also foster the reuse of software building blocks such as components and libraries. We
rigorously search for interoperability solutions that can bridge heterogeneous technological envi-
ronments, but we also concentrate on integration and message exchange implementation detail.

A LEARNING AND VALIDATION PROCESS. By producing a small version of the final artifact
we are also engaging in a learning and verification process. This activity characteristically would
enable us to validate the hypothesis that we have made about a software product’s capability and
its ability to operate flawlessly later on in a production environment. We are also being given
the opportunity to inspect key aspects of software behavior, examine the relationships between
software components, and even understand their internal and external structures. We are involved
in a software assessment process that validates the business and technological motivation behind
the construction of our tangible services.

To better understand the key characteristics of a future software product and its environ-
ment, the assessment effort typically leads to a proof-of-concept, a smaller construction project
that concludes the service-oriented modeling initiative. This small-scale software executable, if

Furnishes Modeling
 Disciplines that

Provide

Modeling Standards

Modeling Process

Modeling Best Practices Offers a
Language that

Provides

Is About

Behavior, Structure, and Relationship Inspection

Construction of a Virtual Computing World

Feasibility and Capability Analysis

Simulation

Motivation Assessment

Hypothesis Verification Service-Oriented
Modeling

Contributes
to

Alignment of Business and IT Organizations

Loosening Structure of Silo Organizations

Strategic and Tactical Organizational Solutions

Reduction of Time-to-Market

Software Asset Reusability Enhancement

Loosely-Coupled Computing Environment

Software Assets Consolidation

Expenditure Reduction

Simple Vocabulary and Taxonomy
Intuitive Syntax

Universal Terminology

EXHIBIT 1.1 ESSENCE OF THE SERVICE-ORIENTED MODELING PARADIGM

4 Ch. 1 Introduction

approved and agreed on, can later serve as the foundation for the ultimate service construction
process.

EVERYBODY’S LANGUAGE: A UNIVERSAL LANGUAGE FOR BUSINESS AND TECHNOLOGY. We
are often driven by tactical decisions to alleviate organizational concerns and to provide rapid
solutions to problems that arise. The proposed service-oriented modeling language is designed to
ease time to market by strengthening the ties between business and technology organizations. This
can accelerate the delivery process of software assets to the production environment. Furthermore,
the service-oriented modeling language can also be employed to fill in communication gaps and
enhance alignment between the problem and solution domain bodies.

To achieve these goals, the service-oriented modeling language offers an intuitive syntax,
a simple vocabulary, and a taxonomy that can be well understood and easily employed by various
business and technology stakeholders during service life cycle phases and projects. The language
can be utilized not only by professional modelers, architects, or developers, but by managers,
business executives, business analysts, business architects, and even project administrators.

Exhibit 1.1 depicts the service-oriented modeling activities, language, disciplines, and
benefits.

DRIVING PRINCIPLES OF SERVICE-ORIENTED MODELING
Service-oriented modeling principles capitalize on devised SOA standards already in use by orga-
nizations and professionals. These are best practices that are designed to foster strategic solutions
to address enterprise concerns, and to overcome the shortsightedness that is frequently attributed
to organizational tactical decisions. The following modeling principles promote business agility,
software asset reuse, loosely coupled service-oriented environments, and a universal modeling
language that can address software interoperability challenges:

• Virtualization
• Metamorphosis
• Literate modeling

VIRTUALIZATION. Modeling software is essentially a process of manipulating intangible enti-
ties. These are typically nonphysical assets that reside in peoples’ minds or appear on paper.
An effective modeling process should be as visual as possible, enabling business and technology
personnel to view software elements as if they were concrete assets.

The virtuality and reality aspects of our surroundings have been debated by numerous
philosophers going back to the eighteenth century. The traditional assertions that “everything has
a reality and a virtuality” or “everything other than what is virtual is reality” are in agreement with
sociologist, philosopher, and information technology pioneer Ted Nelson’s claim that virtuality is
the focal point of software design.1 He further argued that virtuality is about designing software
conceptual structure and feel.2

The visual aspect of the service-oriented modeling paradigm is driven by the construction
of a virtual world in which elements seem almost as tangible as real physical objects. This
world that we create to simulate reality is made up of two major elements: (1) the landscape
that “glues” all pieces together; meaning the environment that empowers and executes services
and (2) the services that communicate, interact, and exchange information to provide business
value. Moreover, a virtual world can effectively simulate a heterogeneous computing landscape by
treating software assets as equal partners in a modeling endeavor. This effect is called federated
modeling.

Driving Principles of Service-Oriented Modeling 5

The visualization process that we pursue enables us to model relationships, structures, and
behaviors of services that would provide satisfying solutions to organizational problems. These
goals can be achieved by fostering asset reusability, promoting a loosely coupled computing
environment, and resolving interoperability challenges across organizations.

METAMORPHOSIS. The business environment that we all share is a dynamic market that keeps
evolving and changing direction and also influences technological trends and application develop-
ment. This vibrant business landscape often dictates alterations to a service’s behavior, structure,
and relationship to its environment during its life span. These modifications typically start at a
service’s inception, when it manifests as an intangible entity—an idea—and then continue as
the service evolves into a physical software asset that executes business functionality in pro-
duction. This transformation process is the essence of the metamorphosis paradigm driven by
service-oriented modeling disciplines that ensure software elasticity, and ultimately, business
agility.

But the transformation process does not stop with the deployment of services to production.
Imagine how frequently a valuable application is involved in multiple project iterations that lead
to software upgrades. Think about the myriad instances of a service finding its way back to the
drawing board to be redesigned and then ferried back to the production environment again. This
is typical of the software development life cycle, during which software products are upgraded,
enhanced, and redistributed.

LITERATE MODELING. Should a programming language offer a simple syntax that is easy to
understand, and is intuitive and readable? Or should it offer formal grammar, rules, and symbols
that only developers can handle? Should a programming language be based on machine-readable
source code that is easy to debug and optimize? Or should it be considered a scientific artifact,
a mathematical formula that only experts on the subject can deliver?

This long-running debate is believed to have begun in the early 1980s and encompasses two
major approaches to software development that have major ramifications for the service-oriented
modeling paradigm. The first was introduced by Donald Knuth’s theory of “literate programming”
in which he argues: “I believe that the time is ripe for significantly better documentation of
programs, and that we can best achieve this by considering programs to be works of literature.
Hence, my title: ‘Literate Programming’.”

The second approach was introduced by Edsger Dijkstra in his 1988 article “On the Cruelty
of Really Teaching Computer Science,” in which he claims that programming is merely a branch
of mathematics.3 He writes: “Hence, computing science is—and will always be—concerned with
interplay between mechanized and human symbol manipulation, usually referred to as ‘computing’
and ‘programming’ respectively.”

This debate further informs the discussion about the modeling paradigm. Should service-
oriented modeling be founded on a specific programming platform structure that only developers
and modelers can utilize? Or should modeling disciplines offer universal and easy to understand
notations that are independent of language? Should a service-oriented modeling approach be tied
to fashionable technologies? Or should a modeling language offer tools to design and architect
multiple generations of legacy platforms, applications, and middleware?

The service-oriented anthropomorphic modeling approach provides easy mechanisms to
address analysis, design, and architectural challenges and perceives software assets as hav-
ing human characteristics. In the virtual world that we are commissioned to create, services
“interact,” “behave,” “exchange information,” and “collaborate;” they are “retired,” “promoted,”
“demoted,” and “orchestrated.” Inanimate software entities are often treated as though they had

6 Ch. 1 Introduction

human qualities. This “literate modeling” approach obviously enhances the strategies that are
pursued during business initiatives and projects.

ORGANIZATIONAL SERVICE-ORIENTED SOFTWARE ASSETS
The service-oriented modeling paradigm regards all organizational software assets as candidates
for modeling activities. We not only conceive them as our service-oriented modeling elements,
meaning services , but we also evaluate them based on their contribution to a service-oriented
environment, in terms of integration, collaboration, reusability, and consumption capabilities.
These assets are also subjected to the modeling discipline activities depicted throughout this
book. They are the enduring artifacts of the service-oriented modeling process and are regarded
as units of concern, discovery, analysis, design, and architecture in a business initiative or a
service-oriented project. Exhibit 1.2 illustrates the various service-oriented software assets that
can be involved in providing solutions to organizational concerns: concepts, foundation software,
legacy software, repositories, and utility software.

ORGANIZATIONAL CONCEPTS. Business or technical concepts embody an organization’s for-
malized ideas, which are regarded as components of propositions to organizational concerns.
These abstractions typically capture enterprise problems and offer remedies to alleviate nega-
tive effects on business execution. Concepts characteristically offer direction and strategy to the
service-oriented analysis, discovery, design, and architectural disciplines. They also contribute to
the establishment of a common organizational business and technical terminology that can be
employed to fill in the communication gaps between business and information technology (IT)
organizations. Agriculture Community Center, Business Community, and Pals’ Community are
examples of concepts that identify the financial prospects and marketing targets of a business goal.
Here, the Community business concern is the driving aspect behind a particular organization’s
culture and strategy.

FOUNDATION SOFTWARE. Organizational empowering middleware and platform products are
the basic software ingredients of the service-oriented modeling practice. Middleware products
offer integration, hosting, and network environment support, including message orchestration
and routing, data transformation, protocol conversion, and searching and binding capabilities.
This software asset category may include application servers, portal products, software proxies,

Software Assets

Foundation
Software

Legacy
Software

Repositories Utility
Software

Concepts

EXHIBIT 1.2 ORGANIZATIONAL SERVICE-ORIENTED SOFTWARE ASSETS

Service-Oriented Modeling Process Stakeholders 7

SOA intermediaries, gateways, universal description, discovery and integration (UDDI) registries,
and even content management systems. Message-oriented middleware (MOM) technologies are
also regarded as middleware, which may include traditional message buses or enterprise ser-
vice buses (ESBs). Conversely, software platforms are akin to frameworks that enable lan-
guages to run. This category may also include operating systems, runtime libraries, and virtual
machines.

LEGACY SOFTWARE. “Legacy” refers to existing software assets that are regarded as applica-
tions. These include business and technology software executables that already operate in the
production environment. The term “legacy” also includes deployed organizational services such
as Web services and even services that are running on a mainframe or other platforms and do
not comply with Web service technologies and standards. Third-party vendor applications, ser-
vice consumers, and partner services that operate outside of an organization are also conceived
as legacy software assets. Customer Profile Service, Accounts Payable Application, or Trading
Consumer are examples of existing and operating legacy software products, offered by third-party
vendors or custom built by an organization’s internal development personnel.

REPOSITORIES. Repositories play a major role in most service-oriented modeling activities.
This software category is characteristically provided by third-party vendor products that require
organizational adoption and integration policies. These are software entities that offer storage
facilities, such as relational databases, data warehouse repositories, and various database storage
management products, such as data optimization and replication. The repository category can
also include data-about-data, meaning repositories that do not necessarily store the actual data
but describe it. These are known as meta-data repositories. We employ these storage facilities
for a variety of management and data organization purposes. For example, meta-data repositories
are used for governance rules, service life cycle management, security policies, search categories,
and document management.

SOFTWARE UTILITIES. Utility executables are typically regarded as nontransactional software
assets employed to facilitate flawless system operations in a production environment. These
utilities chiefly offer performance-monitoring services, enforce service-level agreements (SLAs)
between consumer and producers, track security infringements, and provide alert mechanisms in
case of contract violations or system intrusions. Moreover, software utilities also provide provi-
sioning and asset portfolio management facilities and even message mediation policy management
between message exchange parties.

SERVICE-ORIENTED MODELING PROCESS STAKEHOLDERS
The service-oriented modeling process is characteristically overseen by SOA governance and
SOA Center of Excellence enterprise bodies that provide best practices, standards, guidance, and
assistance to service-oriented modeling activities. Moreover, the modeling process involves two
major stakeholders, the problem and the solution domain organizations, typically managed by
business and IT personnel that partner in an array of business and technological initiatives, such
as a small project or a large service life cycle venture that may include a number of smaller
projects.

The involvement of two major stakeholder groups is anticipated, each of which rep-
resents a different perspective; they are both vital contributors to a service-oriented modeling
effort. In addition, they must collaborate and jointly facilitate alignment between business and
IT organizations. Exhibit 1.3 illustrates these two major views that collaboratively contribute to
the service-oriented modeling process: the business view and the technological view. Note the
overseeing governance and Center of Excellence bodies that drive modeling activities.

8 Ch. 1 Introduction

Business
Modeling
View

Technological
Modeling

View

Service-Oriented Modeling Process

SOA Governance and Center of Excellence

EXHIBIT 1.3 SERVICE-ORIENTED MODELING PERSPECTIVES

BUSINESS STAKEHOLDERS MODELING VIEW. This perspective represents business personnel
who not only understand the financial implications of a project or a larger business initiative
but have mastered the various business processes of an organization. They typically elaborate
on the problem domain, present business requirements, and propose business solutions. Business
professionals, however, should be equal participants in the discovery, analysis, design, and archi-
tecture modeling sessions. They should be familiar with the service-oriented modeling language
and able to provide valuable input to the resulting modeling artifacts. The business organization
can be represented by product managers, business managers, financial analysts, business analysts,
business architects, business modelers, and even top-level executives, such as chief information
officers (CIOs) or chief technology officers (CTOs).

TECHNOLOGY STAKEHOLDERS MODELING VIEW. The IT organization is intrinsically engaged
in the technological aspects of the service-oriented modeling process. IT personnel contribute
both to the analysis and design aspects of services and to the various architecture modeling
activities. These functions include the establishment of asset integration strategies, consumption
and reusability analysis, and service deployment planning. The IT organization must also ensure
alignment with the organizational business model, business strategies, and business requirements.
The technology perspective should be represented by technical management, technical architects,
system analysts, developers, service modelers, data modelers and database architects.

MODELING SERVICES INTRODUCTION: A METAMORPHOSIS EMBODIMENT
One of the most common questions people ask themselves when they are commissioned to pro-
vide a solution to an organizational problem is “What should be modeled?” The modeling world
constitutes a blend of old and new software assets, ideas, formulated concepts, processes, and even
people. Typically a remedy is being sought to an organizational concern that involves a thorough
analysis of the existing physical operating environments and also requires the integration of new
propositions to form viable business and technological solutions. This brings us to the understand-
ing that service-oriented assets—whether they are abstractions, legacy applications, middleware,
or software platforms—must be both conceived as services and categorized according to their
role in the modeling process.

Which standard should be used to classify modeling services? The answer to this question
is rooted in the necessity to establish a modeling language—a vocabulary—along with disciplines

Modeling Services Introduction: A Metamorphosis Embodiment 9

Conceptual
Service

Design
Service

Analysis
Service

EXHIBIT 1.4 MODELING SERVICES

that can be utilized to implement service-oriented modeling tasks. Thus, the service-oriented mod-
eling paradigm treats services according to their life cycle state and their corresponding disciplines.
We thus propose three distinct categories: conceptual service, analysis service, and design ser-
vice (see Exhibit 1.4). Consequently, the conceptual service originates during the service-oriented
conceptualization phase; the analysis service is treated during the service-oriented discovery and
analysis process, and the design service is employed during the service-oriented design stage. The
driving disciplines behind these modeling processes are further discussed in the Service-Oriented
Modeling Disciplines: Introduction section of this chapter.

CONCEPTUAL SERVICE: AN ABSTRACTION. A modeling process must offer a communication
language, provide a distinct vocabulary that different stakeholders can use to collaborate and
interface, to establish an organizational taxonomy that can be easily learned and enhanced as
time goes by, and to support a terminology that depicts business and technological abstractions.
These generalized idioms embody the requirements to provide solutions to an enterprise concern
while reflecting the approach to solving a problem. We conceive these abstractions as concep-
tual services that are an essential deliverable in the service-oriented conceptualization phase. For
example, the data aggregator concept can be regarded as a conceptual solution that aims to solve
information collection problems that occur in an enterprise Web portal. The commission calcula-
tor is another conceptual service that exemplifies an essential solution to a business requirement
to enable commission calculations for stockbrokers in an equity trading system.

Where does a conceptual service originate from? An undocumented idea or an informal
enterprise proposal to solve a problem can be established as a conceptual service. These con-
cepts can simply be expressed in meetings or whiteboard design sessions. A business process
can also be regarded as a conceptual service candidate. A more formalized process, however,
that takes place during service conceptualization facilitates the identification of new concepts
derived from business and technological requirements (see Chapters 4 and 5 for a complete
service conceptualization process).

Consider the following major attributes of a conceptual service: It

• Embodies business or technical context.
• Must be elastic enough to accommodate future business changes.
• Should focus on a solution rather than propose remedies to a wide range of problems,

and should avoid business or technological context ambiguity.
• Corresponds to a business or technological requirement and depicts a coherent proposition.
• Represents a business or technological abstraction that can be added to an organization’s

language dictionary.
• Contributes to an organizational business or technological taxonomy.

10 Ch. 1 Introduction

ANALYSIS SERVICE: A UNIT OF ANALYSIS. A modeling process must offer a platform on which
solution propositions to organizational concerns are verified for their viability and capacity to solve
problems; enable proper validation of the assumptions that business and technology personnel
make to address business requirements; and permit further analysis of the supporting services that
take part in a solution, a project, or a business initiative. During the service-oriented discovery and
analysis phase, we are allowed to test service collaboration and conduct further experiments in
the search for the best possible offered resolution. An analysis service is the vehicle that enables
us to reexamine these preliminary proposed remedies that were brought to the table in the first
place.

But where does an analysis service originate from? The rule of thumb suggests that all
services that participate in the analysis process should be regarded as analysis entities. In other
words, all service-oriented assets are conceived of as units of analysis because of their involvement
in a solution proposition during the analysis phase. To read more about the service-oriented
discovery and analysis process, refer to the Service-Oriented Modeling Disciplines: Introduction
section in this chapter, or the service-oriented discovery and analysis method discussed in Chapters
6, 7, and 8.

Consider the following major attributes of an analysis service. It

• Represents tangible (legacy software) or intangible (abstraction) service-oriented assets
that participate in a solution.

• Can be associated with business or technical context.
• Must present a lucid internal structure.
• Should be composed of service-oriented software assets that can be decomposed during

the service-oriented analysis modeling process to achieve a loose-coupling architectural
effect.

• Or, should have a flexible internal structure that would allow aggregation of external
services during the analysis modeling process.

DESIGN SERVICE: A LOGICAL SOLUTION PROVIDER AND A CONTRACTUAL ENTITY. All
service-oriented assets that take part in a design process can be regarded as design services. A design
service is a modeling element that enables us to visualize and plan future service behavior, structure,
and peer relationships in a production environment. This service-oriented design asset, whose
collaborators are peer services and consumers—bound by a stipulated contract—participates in
a group effort to provide a viable design solution to a business or technological problem. To
achieve this goal, we primarily focus on the message and information exchange capabilities of a
service. This would contribute to its future capacity to interact and collaborate with its surrounding
environment, and most important, to its ability to abide by the service level agreement (SLA) that
it is committed to. This scheme is called a logical solution , and the design service that participates
in this venture is known as logical solution provider .

A design service must also be a part of a service orchestration initiative, during which
we coordinate and synchronize service functionality to enable flawless message exchange and
efficient transaction execution. This logical design effort would ensure the quality of service
offerings and contribute to the creation of a harmonized interactive environment.

Consider the following major attributes of a design service; it

• Can be associated with business or technical context.
• Can represent a tangible (legacy software) or an intangible (abstraction) service-oriented

asset.
• Should be interfaceable, containing one or more interfaces to be utilized by potential

consumers.

Modeling Services Introduction: A Metamorphosis Embodiment 11

• Is bound by a service-oriented contract that depicts its interfaces and other important
requirements, such as accessibility, consumption, reusability, and security.

• Must participate in an orchestration design initiative.

SOLUTION SERVICE: PHYSICAL SOFTWARE ASSET. A solution service is a tangible software
asset, constructed by business and technology development teams, that has concluded its devel-
opment life cycle and is deployed and integrated in a production environment. This asset may
be a custom-built software product designed in house, an acquired third-party vendor solution
package, or a component custom built by an outsourcing firm. It is the ultimate deliverable of a
software development process. Regardless of its origin, we typically employ a solution service to
participate in a business or a technological solution devised by the service-oriented modeling prac-
tice. The following section, which elaborates on the aspects of service-oriented metamorphosis,
describes in detail the role of a solution service in the service-oriented modeling process.

SERVICE-ORIENTED MODELING DISCIPLINES DRIVE SERVICE METAMORPHOSIS. During the
service-oriented modeling process, a service’s state changes from intangible to physical. This
transformation is driven by the service-oriented disciplines that we are commissioned to pursue.
The normal course of evolution starts at a service’s inception, during which a service emerges
as a concept, continues through its analysis and design phases, and finally evolves as a solu-
tion service—a physical executable. By and large, this path is implemented with newly created
services.

But can a physical solution service transform back into its previous intangible state? The
necessity to iterate through service modeling cycles leads to the conclusion that a service, no
matter how physical and established it is, will likely revert to an intangible state down the road.
Subsequently, it will find its way back to the production environment to continue carrying out
its operation. This path is not uncharacteristic of a software product. In fact, we often find that a
service is “cloned” and simultaneously appears in two environments: in a production environment
to ensure business or technological continuity, and in a design environment in which it is being
examined for future enhancements.

Our service-oriented modeling practice advocates the transformation of a service from
one state to another to maximize analysis, design, and architectural flexibility. This modeling
elasticity often facilitates business agility, due to the service metamorphosis model. Exhibit 1.5
illustrates this concept. It depicts a service-oriented asset that undergoes four transformations:

Conceptual
Service

Design
Service

Solution
Service

Analysis
Service

EXHIBIT 1.5 SERVICE-ORIENTED METAMORPHOSIS SCENARIOS

12 Ch. 1 Introduction

from a conceptual service to analysis, to design, and finally to solution service. Note that a
solution service can also revert to the conceptual, analysis, and design service states.

From Solution Back to Conceptual Service. Under what circumstances should a solution ser-
vice be transformed from its physical state back to an intangible formation—a conceptual service?
The scenario, under which it may be required to treat a concrete service as an abstraction, is char-
acteristically related to service redesign initiatives driven by changing business or technological
requirements. Imagine a customer support service that must undergo functionality modification
in light of a newly introduced electronic bill-payment feature. Or a fundamental change to a
business model of an equity trading firm whose mission is to launch a new fixed-income line
of products. Obviously, these reengineering efforts would require design and architecture teams
to identify new concepts and expand on the existing ones. These efforts pertain to small- or
large-scale projects.

Thus, the urge to reevaluate a concept on which a solution service is based is a substantial
undertaking for any organization; a concrete service that must undergo a “surgery” of this nature
is in essence set to restart its development life cycle. This reincarnation would also require
reevaluation of the service’s initial technology or an implementation that it is founded on.

Exhibit 1.6 depicts the four major reasons why a solution service may devolve into a con-
ceptual service: modification to business or technological requirements, modification to business
model and mission, concept reevaluation, and restructuring and reengineering.

From Solution Back to Analysis Service. Service reengineering initiatives do not always require
the transformation of a solution service to its initial state—conceptual service. In many instances,
the physical service’s conceptual foundation may be sound enough and will not require altering
the concepts it presents. However, if a solution service that executes a business or technological
solution requires a functionality reevaluation, we should consider reverting it to its analysis state.

Why would an organization reexamine the performance inadequacies of a solution ser-
vice? The chief reason is related to a particular service operation or another as well as to the
collaborative efforts of services to provide a solution. For example, imagine the dissatisfaction

Conceptual
Service

Solution
Service

Restructuring and
Reengineering

Modification to
Business or Technological

Requirements

Concept
Reevaluation

Modification to
Business Model

and Mission

EXHIBIT 1.6 SOLUTION TO CONCEPT TRANSFORMATION

Modeling Services Introduction: A Metamorphosis Embodiment 13

Analysis
Service

Solution
Service

Solution Reevaluation

Granularity
Alignment

Functionality Redundancy
Reduction

Reusability
Enhancement

EXHIBIT 1.7 SOLUTION TO ANALYSIS SERVICE TRANSFORMATION

that can be caused to a banking institution consumer who receives a monthly statement that
includes savings and checking account information but excludes trading account transactions.
Larger-scale business initiatives can also spur solution reevaluation through pursuing analysis
activities. These activities can be triggered by events such as a business expansion requiring
additional functionality, application decommissioning, or even a merger or acquisition.

Other driving aspects behind the transformation of a solution service to an analysis asset
are related to reusability enhancement, reduction of functionality redundancy, and even perfor-
mance improvement. We can achieve these goals by reexamining a solution service’s internal and
external structures and validating its granularity. Granularity pertains to the level of business or
technological functionality and the number of processes executed by a service. A coarse-grained
service contains a large number of pursued activities. Conversely, a smaller-scale service that
offers fewer processes is known as a fine-grained entity. Thus, reanalyzing service granularity
would enable us to fine-tune its size and the scale of its functionality.

Exhibit 1.7 illustrates the four major reasons for the transformation of a solution service
into an analysis entity: (1) granularity alignment, (2) reusability enhancement, (3) functionality
redundancy reduction, and (4) solution reevaluation.

From Solution to Design Service. A solution service should be reverted back to its design state
if a contract with its corresponding consumer is about to be modified. More specifically, this
transformation should take place if requirements dictate modification to a service’s collabora-
tion, interaction, and integration with its peer services and subscribing consumers. This alteration
of service behavior obviously can influence the coexistence conditions in a service community.
“Behavior,” for that matter, is associated with business or technical functionality activities man-
aged and executed during transactions. This includes frequency of message delivery, coordination
of message transmissions, reaction to message requests and responses, management of service
availability, and even the method by which a service manages allowable consumption rates.

The following three major conditions suggest redesign of a solution service:

1. Changes in associations between services due to message exchange route alterations, the
consolidation or decommission of a service that may affect the operating environment,

14 Ch. 1 Introduction

Design
Service

Solution
Service

Transaction Remodeling

Revision to
Service Visibility and

Accessibility

Modification to
External Structure and

Packaging

Alteration to Service
Relationship

Service-Consumer
Contract Changes

EXHIBIT 1.8 SOLUTION TO DESIGN TRANSFORMATION

and the addition of a service that delivers new functionality. These aspects may influence
a service’s accessibility and visibility in the environment in which it operates.

2. Changes that influence external service structures and a packaging solution that is deployed
to production. External structures pertain to an overall logical composition of a solution in
which services are arranged in certain formations (patterns) to achieve a design strategy,
such as interoperability, reusability, asset consolidation, and loose coupling. This stylized
arrangement of solution services is discussed in greater detail in Chapter 13.

3. Changes to business or technological functionality that triggers transaction redesign or
enhancements, which characteristically would require reorchestration of transaction activ-
ities. Orchestration is typically affiliated with the overall workflow of message exchange
between consumers and services. This includes coordination of message exchange oper-
ations and synchronization of message request and response activities.

Exhibit 1.8 illustrates the major conditions that lead to the redesign of solution service:
revision to service visibility and accessibility, modification to external structure and packaging,
contract changes, alteration to service relationship, and transaction remodeling.

SERVICE-ORIENTED MODELING DISCIPLINES: INTRODUCTION
A modeling discipline is a field of knowledge that offers best practices, standards, and policies
to facilitate service-oriented development activities during a service’s life cycle. We typically
practice modeling disciplines prior to a service’s construction and deployment to a production
environment. We follow modeling discipline policies to avoid premature commitments to large
budget allocations and lengthy service development periods. Modeling disciplines also enable
us to analyze business and technological solution propositions formulated in a project inception
phase to satisfy business and technological requirements.

Service-oriented modeling disciplines identify the core processes in which business and
IT personnel must be engaged when producing design and architectural artifacts. These may
include a variety of project deliverables, such as diagrams, charts, and documents. In addition,
we are commissioned to prepare a working prototype, a software executable that implements some
business or technological functionality regarded as a core challenge of the modeling process; this

Service-Oriented Modeling Disciplines: Introduction 15

Service-Oriented
Conceptualization

Service-Oriented
Discovery

and
Analysis

Service-Oriented
Business

Integration

Service-Oriented
Design

Conceptual
Architecture

Service-Oriented Modeling Disciplines

Logical
Architecture

EXHIBIT 1.9 SERVICE-ORIENTED MODELING DISCIPLINES

is known as proof-of-concept. These deliverables will be handed to the service construction and
deployment teams later on in the service-oriented development life cycle. (The service life cycle
is described in detail in Chapters 2 and 3.)

What are these modeling disciplines that must be rigorously followed throughout the ser-
vice development life cycle? Service-oriented modeling disciplines intrinsically focus on six areas
of expertise, as depicted in Exhibit 1.9: (1) service-oriented conceptualization, (2) service-oriented
discovery and analysis, (3) service-oriented business integration, (4) service-oriented design, (5)
conceptual architecture, and (6) logical architecture. These disciplines are preliminarily presented
in the sections that follow and are discussed in detail throughout the book (see Chapters 4
through 16).

SERVICE-ORIENTED CONCEPTUALIZATION. The service-oriented modeling process starts from
the service conceptualization phase in which the driving concepts behind future solution services
are identified. But here the focus is not on concrete software implementation. What is required
is to establish a set of abstractions, a general terminology that offers solutions to business or
technological requirements. It is important to remember that the conceptualization discipline
advocates following a concept discovery methodology and process that ultimately yields intangible
service-oriented assets known as conceptual services .

Exhibit 1.10 illustrates the two major milestones in the service conceptualization process:
attribution analysis and conceptual service identification . (For more about the service-oriented
conceptualization process, refer to Chapters 4 and 5, which provide a step-by-step activity guide
and a set of deliverables recommended by this discipline.)

Attribution Analysis. To be able to efficiently ascertain concepts, it is necessary to scrupulously
study business requirements, problem domain statements, and product specification documents
to facilitate remedies to business or technological concerns. This inspection process requires that
we identify the various attributes that a software product must possess. Hence, the attribution
analysis process yields a set of core attributes that will be utilized to identify conceptual services.

Conceptual Services Identification. As a part of the conceptual services identification process
it is necessary to

1. Ascertain conceptual services by utilizing the core attributes set that is established in
the attribution analysis phase. This derivation process also facilitates the establishment

16 Ch. 1 Introduction

Service-Oriented Conceptualization Activities

Attribution
Analysis

Conceptual
Service

Identification

EXHIBIT 1.10 SERVICE-ORIENTED CONCEPTUAL MODELING PROCESS

of service taxonomies that can serve as organizational common language and glossary to
enable future service categorization activities.

2. Find out how concepts are related to each other in terms of their business context and
the process they embody. This concept association activity would enable us to understand
service commonalities, analyze dissimilarities, and even foster reusability strategies early
in the game.

3. Identify conceptual service internal and external structures. The most rudimentary forma-
tion is the atomic structure, which presents an indivisible conceptual service. The internal
structure pertains to containment aspects of a conceptual service and its capacity to aggre-
gate other concepts named composite structure. Conversely, the external service structure
identifies formation of service groups known as the service cluster .

SERVICE-ORIENTED DISCOVERY AND ANALYSIS. The service discovery and analysis process
is yet another discipline that enables us to continue identifying services that can contribute to a
business or technological solution. We pursue this goal by analyzing the business and technological
propositions presented thus far. More important, service-oriented analysis best practices advocate
that we verify that the proposed service abstractions—the conceptual services devised in the
conceptualization phase—do indeed provide a viable and valuable solution to the arising business
or technological problems.

But the conceptual services that we have discovered so far may not provide a complete
remedy to an organizational concern. Therefore, the general rule of thumb should be to continue
to inspect existing legacy software assets and examine their capability to augment the solution
that is being proposed. To accomplish this task, all service-oriented assets that participate in a
solution are regarded as analysis services and engage in three service-oriented discovery and
analysis activities, as depicted in Exhibit 1.11: service typing and profiling, service analysis, and
service analysis modeling. Chapters 6, 7, and 8 discuss these processes in detail and elaborate on
various discovery and analysis best practices.

Service Typing and Profiling. To be able to efficiently manage an organizational service port-
folio and identify a service’s potential contribution to a solution—either a conceptual or a legacy
asset—we should be engaged in a service classification process. This service typing activity

Service-Oriented Modeling Disciplines: Introduction 17

Service-Oriented Discovery and Analysis Activities

Service Typing
and

Profiling

Service
Analysis

Service
Analysis
Modeling

EXHIBIT 1.11 SERVICE-ORIENTED DISCOVERY AND ANALYSIS MODELING PROCESS

enables us to label a service based on its organizational identity and business or technological
context, its internal structure, and its origin. The information that is collected by this process will
facilitate the establishment of a service profile that can be utilized in future projects and business
ventures.

Service Analysis. The service-oriented analysis process is the next activity that we need to
pursue. Here we determine whether a service is viable to participate in the solution proposition.
To accomplish this task we start with a service granularity assessment that reveals the business
and technological functionality that each participating service contributes to the solution. We then
continue with an analysis process that both validates the practicality of our services and explores
service reusability, loose coupling, and asset consolidation opportunities.

Service Analysis Modeling. The analysis modeling activity concludes the service-oriented dis-
covery and analysis process. The provided language is employed to facilitate a service analysis
proposition diagram that captures aggregated and distributed service formations and identifies a
collaborative service process scheme that proposes a solution to a problem that is being addressed.
This modeling process fosters reuse of organizational software assets by utilizing enterprise legacy
software and even organizational concepts represented by conceptual services.

SERVICE-ORIENTED BUSINESS INTEGRATION. A service-oriented business integration process
is a discipline that should be practiced continuously throughout the service development life
cycle. This is an ongoing activity that assures a close tie between the business and technology
organizations. Most important, it fosters alignment between technological direction and an enter-
prise’s business model and business strategy. But how can services be integrated with business
imperatives? What does it mean to “align” an organizational technology strategy with business
necessities? The answers to these questions have been studied by various institutions, and the
conclusions were straightforward: To enable efficient integration between business and technology
initiatives, enterprise business architecture practices must exist.

What is business architecture and how can it facilitate service-oriented business integration
activities? Business architecture is simply organizational best practices and standards that describe
what type of firm-wide architectures must exist for an enterprise to promote its business and

18 Ch. 1 Introduction

Service-Oriented Business Integration Activities

Contextual
Business

Integration

Structural
Business

Integration

Business
Integration
Modeling

EXHIBIT 1.12 SERVICE-ORIENTED BUSINESS INTEGRATION MODELING PROCESS

increase revenue. It is “architecture about architectures.” This is a business framework that not
only depicts high-level business requirements but also identifies business functions, activities,
and processes, along with business domains such as lines of business, geographic locations, and
management control structure.

Exhibit 1.12 illustrates the three major activities that make up the service-oriented business
integration process: contextual business integration, structural business integration, and business
integration modeling. We regard all service-oriented assets that participate in a business integration
venture as analysis services. Readers can learn more about these mechanisms and their best
practices in Chapters 9, 10, and 11, which elaborate on service-oriented business integration
process and modeling techniques.

Contextual and Structural Business Integration. The service-oriented business integration dis-
cipline advocates that we integrate our discovered services with two distinct views of our
organizational business architecture: (1) a contextual perspective, in which we align our ser-
vices with the enterprise business model and business strategies and (2) a structural perspective,
which typically depicts the various business domains, such as lines of business and organizations,
and business federation structures, such as geographic locations and management control.

Business Integration Modeling. Finally, the service-oriented business integration discipline
offers an integration language that can facilitate various views of service alignment with business
architecture perspectives. Here, the services that integrate with business domains are aligned with
lines of business, business organizations, existing business products, enterprise business model,
and business strategies.

SERVICE-ORIENTED DESIGN. The service-oriented design discipline is a logical perspective of
the modeling process. It represents a wireframe version of the solution that is being proposed.
“Wireframe” means simply connecting the dots by planning the message and information exchange
flow between services and their corresponding consumers—this is typically dictated by the con-
tracts that these involved parties committed to. The design modeling discipline also facilitates the
establishment of logical relationship, interface, interaction, collaboration, and structural aspects
of the participating consumers and services in the final design artifacts. Here, the focus is on the

Service-Oriented Modeling Disciplines: Introduction 19

Service-Oriented Design Activities

Service
Relationship

Modeling

Logical
Structure
Modeling

Service
Behavioral
Modeling

EXHIBIT 1.13 SERVICE-ORIENTED DESIGN MODELING DISCIPLINE PROCESS

capacity of services and consumers to comply with the SLA established prior to the modeling
phase.

Exhibit 1.13 illustrates the three major service-oriented design modeling activities that
establish the relationship, structure, and behavioral logical design aspects: service relationship
modeling , logical structure modeling , and service behavioral modeling . These service-oriented
design modeling aspects are discussed primarily in Chapters 12, 13, and 14. There readers will find
the modeling implementation detail and best practices that will guide their service design phase.

Service Relationship Modeling. One of the most important aspects of the service-oriented design
discipline is the various associations that a service maintains with its peer services and consumers.
The major best practices and standards offered by the design modeling discipline address the
following service relationship design concerns:

• How can we efficiently coordinate message and information exchange between consumers
and services?

• How can we manage public exposure of services and yet grant safe access to subscribed
consumers?

• Can we isolate services by limiting their visibility?
• How can we design an overall relationship view of our participating service-oriented

assets?

Logical Structure Modeling. Remember, the relationship aspect of our service-oriented design,
discussed previously, does not address an overall view of all the services and consumers that par-
ticipate in a solution. Therefore, besides the service association discovery activity, it is also neces-
sary to represent the solution that is being proposed from a structural perspective. Specifically, this
effort pertains to building a logical formation, a design composition in which services are “glued”
together to form a packaged structure that proposes a design modeling strategy. This approach
pertains to service reusability, loose coupling, and solutions to interoperability challenges.

Service Behavioral Modeling. The service-oriented design discipline advocates that we also
view a service and consumer interaction from a behavioral perspective; meaning the logical

20 Ch. 1 Introduction

design paradigm must also present business and technical functionality that services offer to their
subscribed consumers. Therefore, the design modeling discipline advocates that such a perspective
should be described by a transaction context. A transaction embodies service functionality, activ-
ities, message coordination, and interaction. These aspects are managed by message orchestration
between service-oriented assets.

CONCEPTUAL AND LOGICAL ARCHITECTURE. What does it mean to architect a service-oriented
environment? What are the major activities advocated by the service architecture modeling dis-
cipline? The service architecture process not only relies on conceptualization, analysis, business
integration, and design artifacts; it also combines all the deliverables to create a service and
consumer community. A service-oriented ecosystem is established in which services, consumers,
and their empowering platforms can coexist, collaborate, and interface to provide viable busi-
ness and technology solutions. Yes, we are engaged in an architectural endeavor that simulates a
deployment environment, a production landscape that fosters our business model and strategies.
We no longer address internal service structures, we merely tackle interaction and collaboration
challenges between packaged solutions. This process offers two major architecture modeling dis-
ciplines, as depicted in Exhibit 1.14: the conceptual and the logical. For additional information,
refer to Chapters 15 and 16, which provide in-depth service architecture modeling mechanisms
and best practices.

Conceptual Architecture Modeling. The underlying physical construct of an architectural blue-
print must be a sound technological environment that complies with architecture strategies, best
practices, and standards. But even before the tangible aspects of a proposed architecture can be
addressed, a strategy and a general direction must be devised that provide guidance for future
technological implementation. The service-oriented conceptual architecture process is designed to
undertake such tasks. This activity can assist in the discovery of the main architecture concepts
that can drive future development and production projects.

The architecture abstraction discovery process can even start at the inception phase of a
given project and continue throughout the development life cycle. Here, architecture abstractions
are discovered that describe the technological environment. It is simply a matter of generalizing
technology needs to facilitate an implementation plan for the future production landscape. These

Service Architecture Activities

Conceptual
Architecture

Modeling

Logical
Architecture

Modeling

EXHIBIT 1.14 SERVICE ARCHITECTURE MODELING DISCIPLINE PROCESS

Modeling Environments 21

architecture imperatives may include service-oriented assets, such as third-party vendor products,
existing services, middleware, and software platforms.

Logical Architecture Modeling. The other important driving aspect of the service-oriented
architecture modeling discipline is a logical architecture perspective in which asset utilization,
consumption, reusability, interoperability, and loose coupling best practices are being addressed.
This process is chiefly concerned with the logical aspect of the production environment, in
which service-oriented assets (services, legacy applications, language platforms, and middleware)
must coexist and collaborate. Therefore, an asset utilization diagram provides detailed interaction
between the deployed software packages and further elaborates on consumption and reusability
requirements of a logical architecture.

MODELING ENVIRONMENTS
A modeling environment is not necessarily a physical location where the service-oriented model-
ing process takes place. In fact, it is a management framework that not only facilitates practicing
service-oriented modeling disciplines, but also leads to recruiting personnel with the right exper-
tise to manage the modeling process. To better understand a modeling environment, remember that
each modeling discipline cannot be practiced in a vacuum. Surroundings are the major contributors
to modeling activities. These may include modeling facilities such as software modeling tools,
training aids, available documentation, and even a laboratory to test modeling assumptions.

Thus, a modeling environment is about the four Ps: people, planning, process, and policies.
People denotes the personnel involved in guiding and enforcing modeling disciplines. These are
typically the organizational center of excellence group or the SOA governance organization. In
addition, business and technology personnel are also a part of the modeling efforts. The planning
identifies the strategic or tactical aspects of the process and the required deliverables of the
corresponding modeling discipline. These can include project plans, strategy documents, design
and architectural blueprints, and diagrams. The process aspect is related to the sequence of
activities that business and technology personnel pursue to achieve modeling goals. In addition,
the policies pertain to how a solution can be proposed in the environmental framework. This
reflects the management perspective, checks and balances, control of a modeling environment,
and modeling discipline best practices and standards.

The service-oriented modeling paradigm supports three major modeling environments:
conceptual , analysis , and logical , as depicted in Exhibit 1.15. Note that each of these frameworks

Conceptual
Environment

Analysis
Environment

Logical
Environment

Service
Conceptualization

Discipline

Service
Discovery

and
Analysis
Discipline

Service
Design

Discipline

Conceptual
Architecture
Discipline

Business
Integration
Discipline

Logical
Architecture
Discipline

EXHIBIT 1.15 MODELING ENVIRONMENTS AND THEIR CORRESPONDING DISCIPLINES

22 Ch. 1 Introduction

also facilitates their corresponding modeling discipline activities. For example, the conceptual
modeling environment provides a supporting framework for the discovery of conceptual services
when one pursues the service conceptualization discipline. In the same fashion, the analysis
environment facilitates all service discovery and analysis and business integration discipline
tasks.

CONCEPTUAL ENVIRONMENT. An established methodology that can facilitate the formaliza-
tion of undocumented ideas and propose solutions to enterprise concerns is a necessity for most
organizations. A conceptual environment provides a management framework that promotes proper
analysis of the problem domain and business and technical requirements and also assists with doc-
umenting solution propositions. This framework intrinsically drives two major service-oriented
modeling initiatives that are pursued at different times during the service life cycle: constituting
enterprise conceptual services during the service-oriented conceptualization phase, and establish-
ing architectural concepts devised during the conceptual architecture process. The major activities
that a conceptual environment can assist with include:

• Facilitating the studies of the organizational business model, business strategies, and
problem domain. This effort includes inspecting the state of business, business analysis,
and business activities.

• Involving business and technology personnel in whiteboard and conceptualization sessions
to formalize ideas and establish organizational concepts. This may include generaliza-
tion of problems, abstraction identification, and consolidation of ideas that emerge from
various organizational sources, such as people, business processes, and existing docu-
mentation.

• Helping business and service-oriented architects, modelers, and developers to establish
enterprise conceptual services.

• Facilitating the conceptual architecture process, in which technological abstractions are
identified and categorized.

• Enabling the constitution of an organizational service-oriented taxonomy consisting of
conceptual services and architectural concepts and managed by an asset portfolio manager
software package.

ANALYSIS ENVIRONMENT. The analysis environment facilitates the transformation of a service
from its initial conceptual state to an analysis service for further inspection and categorization.
This process is pursued to encourage discovery and profiling activities of services that may
participate in a service-oriented solution. The analysis environment framework also provides a
platform for analysis modeling, allowing architects, asset portfolio managers, business archi-
tects, business analysts, and developers to conduct sessions that yield an analysis proposition
model.

In addition, the analysis environment management framework supports analysis activi-
ties throughout the service-oriented business integration phase, during which business integration
modeling disciplines are applied. This alignment activity requires the collaboration of business
and IT personnel to identify proper service integration opportunities and to establish a business
integration model that depicts the alignment scheme between services and business domains.

Consider the following analysis environment facilitation activities:

• Fostering research initiatives that identify analysis modeling and visualization tools.
• Assisting with asset portfolio analysis to identify service-oriented asset candidates that

can participate in a solution. This activity typically involves portfolio managers, product
managers, business analysts, and architects.

Service-Oriented Modeling Framework 23

• Coordinating analysis sessions to enable analysis operations such as service decomposi-
tion, aggregation, and unification.

• Facilitating analysis modeling sessions to devise an analysis proposition. These activities
yield a service-oriented analysis model that can be further utilized in the design and
architecture phases.

• Encouraging alignment of business and technology strategies that can facilitate proper
service-oriented business integration.

LOGICAL ENVIRONMENT. A logical environment supports the transformation of analysis ser-
vices into more tangible assets called design services. This environment also depicts a visual
view of the logical landscape in which service relationship, structures, and behaviors illustrate
a wireframe solution to an organizational concern. Moreover, on the service architecture front,
the logical environment framework facilitates the creation of a logical architecture that depicts
an integrated service-oriented ecosystem where packaged services collaborate to provide a viable
solution. This includes the following activities:

• Conducting service-oriented design and architecture training sessions to promote best
practices and standards

• Encouraging research integrated development environments (IDEs) that offer service rela-
tionship establishment capabilities, service structure modeling, and transaction modeling

• Utilizing software tools to enable efficient message orchestration and expression of logic
flow

• Providing laboratory facilities so that a proof-of-concept can be conducted to examine
the proposed service ecosystem

• Facilitating the establishment of contracts between consumers and their corresponding
services

SERVICE-ORIENTED MODELING FRAMEWORK
Before moving on to the chapters that describe in detail the modeling disciplines and their activi-
ties, let us take an overall view of the service-oriented modeling framework. This work structure
is chiefly a high-level map depicting the various components that contribute to a successful
service-oriented modeling approach. It illustrates the major elements that identify the “what to
do” aspects of a service development scheme. These are the modeling pillars that will enable a
practitioner to craft an effective project plan and to identify the milestones of a service-oriented
initiative—either a small- or large-scale business or a technological venture.

Exhibit 1.16 depicts the four sections of the modeling framework that identify the general
direction and the corresponding units of work that make up a service-oriented modeling strategy:
practices , environments , disciplines , and artifacts . Remember, these elements uncover the context
of a modeling occupation and do not necessarily describe the process or the sequence of activities
needed to fulfill modeling goals. These should be ironed out during the project plan that typically
sets initiative boundaries, timeframe, responsibilities and accountabilities, and achievable project
milestones.

MODELING PRACTICES. A framework practice describes an occupation, a major function that
should be pursued to drive modeling activities. The practitioners, for that matter, are the busi-
ness and technology personnel engaged in analysis, design, and architectural aspects of services.
They also offer vital input into the management process of the modeling efforts. A collabora-
tive approach to furnishing solutions in the business and technology–specific area of expertise
would yield successful modeling artifacts. The typical participants who address the concerns of

24 Ch. 1 Introduction

EXHIBIT 1.16 SERVICE-ORIENTED MODELING FRAMEWORK

a framework practice are business and technology managers, service-oriented strategists, asset
portfolio managers, business analysts, business architects, technical architects, developers, and,
of course, software modelers, such as service and database modelers.

This service-oriented modeling framework identifies two major modeling practices that
drive and influence all modeling activities during a project or any business initiatives: abstraction
and realization.

ABSTRACTION PRACTICE. What are the major modeling concerns addressed by the abstraction
practice? Why is such a practice vital to any modeling effort? Every software development initia-
tive will reveal new ideas and establish the driving concepts that the project and its deliverables
will be founded on. Remember, the major concerns of the abstraction practice, on the one hand,
revolve around the discovery aspects of services, and on the other, depict an architectural envi-
ronment based on abstractions. These two major activities may not take place in any sequence,
but they are well embedded in the abstraction practice activities category. The major questions
that are typically asked by those engaging in the abstraction practice are

• What are the major business concerns that drive this initiative?
• What do the business or technological requirements recommend?
• What services do we actually build?
• What assets do we reengineer?
• What kind of metaphors do we use to describe our services?
• How do we conceptualize our architectural environment?
• How do we identify our service architecture needs and landscape?
• Which personnel are involved?

Service-Oriented Modeling Framework 25

Separating Concerns and Generalizing Problems. The service-oriented abstraction practice
enables practitioners to generalize private instances of organizational problems and ignore, for
the time being, implementation details of the current services and the supporting technological
environment. They will be able to break down organizational concerns into more manageable
abstracted areas of interests. This process is known as separation of concerns. Practitioners will
also be encouraged to inspect the problem domain and understand the “big picture” scenario by
analyzing the business imperative, the business model of their organization, and the strategies
designed to generate revenue for the organization.

Employing a Horizontal Modeling View. The abstraction practice, also known as horizon-
tal practice, typically engages the cross-organization stakeholders that represent various silo
operations in the enterprise to collaborate on service-oriented modeling activities. Imagine how
beneficial it would be to involve representatives from different lines of business to discuss how
they can collaborate to foster asset reusability opportunities and to encourage reduction of func-
tionality redundancy and consolidation of future assets. They should also be able to identify
mutual organizational concerns and propose remedies that can be reused across the enterprise.
Imagine how advantageous it would be if these business and technological practitioners partner
to meet service interoperability challenges and to enable a holistic view of all modeling assets
regardless of their origin, geographic location, or empowering technologies.

Visualizing Abstraction Practice Process and Artifacts. Can the abstraction practice enable one
to visualize the activities and deliverables involved? Can concepts be visible? Indeed, concepts
are invisible entities. They originate from peoples’ ideas and propositions. But the abstraction
process should be mechanical and well formulated, driven by a well-defined process and should
employ tools to enable visualization of intangible software assets. By “mechanical,” we mean that
the abstraction process employs conceptualization best practices that yield conceptual services,
which, despite their intangibility, are treated like the other valuable assets in an organization.

Employing Corresponding Service-Oriented Modeling Disciplines. To ensure the success of
the service-oriented modeling process, modeling practices must be guided and enforced by mod-
eling disciplines. They were previously introduced in the Service-Oriented Modeling Disciplines:
Introduction section, and they are discussed in further detail in Chapters 4 through 16. But these
disciplines cannot operate in a vacuum. They require one to create the proper modeling environ-
ment. What are the corresponding disciplines of the abstraction practice? Take a second look at
Exhibit 1.16. The depicted abstraction practice spans two modeling environments:

• Conceptual environment. As previously discussed in the section on service-oriented
modeling environments, this supporting landscape facilitates two distinct disciplines that
are chiefly concerned with the service-oriented conceptualization process. These are the
best practices and standards that assist with the “how to do” aspects of a conceptual
environment: First, the service-oriented conceptualization discipline facilitates the identi-
fication of conceptual services and establishment of organizational taxonomies. Second,
the conceptual architecture discipline provides guidance for the discovery of technolog-
ical abstractions that describe architectural imperatives and service-oriented assets, such
as services, middleware, and platforms.

• Analysis environment. Remember, some activities that are pursued in the analysis envi-
ronment are also regarded as a part of the abstraction practice, as is noted in Exhibit 1.16.
The abstraction practice advocates that we pursue conceptualization activities and that
we also identify, type, profile, and evaluate services by complying with service-oriented
discovery and analysis disciplines, which are facilitated by the analysis environment. Fur-
thermore, some of the service-oriented business integration discipline activities also fall

26 Ch. 1 Introduction

within the abstraction practice domain. Here we are commissioned to align our services
with business strategies and structures such as geographic locations and even management
structure.

REALIZATION PRACTICE. The realization practice typically starts when the abstraction practice
runs its course, during which most ideas have been formalized and established as organizational
concepts. These abstractions then transform into more tangible software entities that are regarded
as logical units of analysis. The realization practice addresses these tangibility aspects that are
articulated by the logical design of services, such as message exchange patterns, business or
technological functionality, service structure, and the overall workflow and process orchestration.
The questions that are typically asked during the realization process are:

• What is the process of transforming an analysis service to a design service?
• What does a logical design process entail?; What is a logical architecture?
• Who is involved?

The realization practice obviously overlaps with the abstraction practice because of some
process commonalities that are typically pursued in both domains. This pertains to activities that
are managed during the service-oriented discovery and analysis phase and business integration.

Creating a Virtual World. The ultimate goal of the realization practice is to transform intan-
gible entities into more concrete software assets. However, this process should stop short of the
construction of physical services. This practice is not about source-code building and deployment
to production. Its main charter is to depict a virtual world of software assets that simulates a
prospective technological solution that may be materialized by the end of the service life cycle.
This is a virtual world in which services not only interact and collaborate to achieve a defined
goal but also provide a supporting environment that empowers the business and technological
functionality.

Centering on the Solutions. Modeling shortsightedness can only hamper the efforts to find a
conclusive resolution to a business or technological concern. But along with recognizing what
the large-scale problems are, we must first pinpoint the burning issues facing an organization.
Furthermore, to be able to focus on a particular solution, business or technological requirements
should be the driving motivation behind any modeling activity. In particular, these imperatives
should guide modeling practitioners to tackle vital aspects of a solution and avoid propositions
to a wide range area of concerns.

Employing Corresponding Service-Oriented Modeling Disciplines. The realization process sup-
ports two major modeling environments: analysis and design. As discussed previously, some
analysis activities are pursued during the abstraction process, but they are also common to the
realization practice. Therefore, the modeling analysis environment and its corresponding dis-
ciplines are regarded as shared modeling aspects for both modeling practices. The abstraction
practice accentuates the discovery and establishment of services, while the realization practice
yields design services that resemble a more concrete world.

• Analysis environment. The analysis environment facilitates analysis activities by em-
ploying the service-oriented discovery and analysis discipline. The realization practice,
however, focuses more on the analysis modeling part of this discipline, in which an
analysis proposition is crafted. (Again, the discovery activities are more of a concern
to the abstraction practice that was discussed previously.) Moreover, the analysis envi-
ronment enables the service-oriented business integration activities in which services are

Summary 27

aligned with business imperatives. Here the realization practice is concerned more with the
business integration-modeling portion and less with the discovery of business alignment
perspectives.

• Logical environment. The logical environment facilitates two disciplines that contribute
to the design and architecture logical foundation: service-oriented design and logical
architecture. These disciplines contribute the most to the formation of a virtual world that
mimics the service ecosystem that we are about to construct.

PHYSICAL ENVIRONMENT. Service-oriented modeling activities can always be repeated to per-
fect the resulting artifacts that the modeling disciplines require for delivery. This perpetual process
is called iteration . Iterating through the various disciplines should promote one major modeling
agenda: to transform services from their intangible state to concrete entities. There are two major
physical artifacts that make up a physical environment:

1. Deployable service-oriented software assets that should be integrated with a production
environment. (These tangible entities are called solution services.)

2. A physical architecture that emerges from our logical architecture. This concrete architec-
ture depicts an integrated and configurable production environment that typically consists
of infrastructure, networks, management facilities such as monitoring and security, and,
of course, solution services.

SUMMARY
The service-oriented modeling driving principles are virtualization, metamorphosis, and literate
modeling.

Enterprise concepts, foundation software (such as middleware and language platforms),
legacy software (such as applications and services), repositories, and utility software—are all
conceived as organizational service-oriented software assets.

The service-oriented modeling process stakeholders are business and technology personnel
that equally share the burden of software development in the organization. They also present two
service-oriented modeling perspectives: business and technological views.

The service-oriented paradigm recognizes three distinct modeling services: conceptual,
analysis, and design. They contribute to the establishment of a physical solution service.

There are six modeling disciples that drive service development efforts: conceptualiza-
tion, discovery and analysis, business integration, design, conceptual architecture, and logical
architecture.

The service-oriented paradigm supports three modeling environments: conceptual, analy-
sis, and logical.

The service-oriented modeling framework identifies the “what to do” aspects of a service
development environment.

Endnotes

1. Journal of Digital Information , Vol. 5, Issue 1, Article No. 298, July 16, 2004.

2. www.en.wikipedia.org/wiki/Virtuality

3. Edsger W. Dijkstra, “On the Cruelty of Really Teaching Computer Science”, December 1988, p. 16. (http://www.
cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF)

