
1
LINEAR SPACES
AND OPERATORS

1.1 INTRODUCTION

A major object of study, which runs through all of mathematics, is that of a func-

tion. The origins of the subject of functional analysis can be traced back to a time,

near the beginning of the twentieth century,when mathematicians began to deal

with a whole collection or space of functions, rather than looking at one function

at a time. This idea proved particularly fruitful to those studying differential and

integral equations motivated from problems in physics. It gradually became clear

that the problems were remarkably similar to familiar ones of solving algebraic sys-

tems of equations, but rather than looking for unknown numbers or vectors, they

were looking for unknown elements in a space of functions.

In order to carry out the analysis, they needed notions of distance or length in

spaces of functions and were able to formulate this by imitating the geometry of

finite-dimensional Euclidean spaces using the Lebesgue integral in place of

sums. The type of structure that emerged was later termed Hilbert space, named

after the German mathematician David Hilbert, one of the early pioneers in this

endeavor. It soon became clear that there were other applications, such as Weier-

strass’s theorem on the approximation of continuous functions with polynomials,

which used different types of distances and length. In 1920, the Polish school of

mathematicians, led by Stefan Banach, formulated axioms for a general abstract

structure that applied to various collections of functions and methods of measuring

distance. This is known today as a Banach space.

Mathematicians did not just conceive of a set of functions as a static object but

rather looked at associated dynamic aspects. One often starts with a function and

assigns another function to it. Familiar examples abound in elementary calculus

through the operations of differentiation or integration. In other cases one takes a
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function and assigns a number, or a constant function, such as taking a limit of

a sequence or summing an infinite series. In many applications of mathematics

dealing with quantities changing over time, one has a function at one point of

time and is interested in the resulting function at a future point of time. Another

familiar example, as indicated above, is a system of linear equations. This can be

viewed as a transformation on vectors, which are functions on a finite set. In many

cases, the correspondence is linear (defined below), and the assignment of one func-

tion to another can be expressed through the abstract concept of a linear operator,

which is a particular kind of function defined on one space of functions and taking

values in another.

Through this abstraction, one then had a powerful approach that combined

aspects of analysis, algebra, and geometry. The same techniques could be brought

to bear in diverse settings. Subsequently, applications were found in fields outside

of mathematics and physics. These include probability theory, statistics, economics

and finance, engineering, and many others. As we go along, we will allude to some

of these developments.

Although the subject has evolved considerably, we believe that the main goal of

a first course is to investigate this original abstract scheme, which can be compactly

described as the study of bounded linear operators on normed linear spaces. In this

brief introductory chapter we will summarize the basic facts about linear spaces and

linear operators, somewhat quickly, as we assume that the typical reader has some

knowledge of linear algebra. Most examples will be left to the exercises. The con-

cepts of boundedness and norms are introduced in Chapter 2.

1.2 LINEAR SPACES

1.2.1 Basic Definitions

Throughout the book, we will have occasion to refer to the field of real numbers

or the field of complex numbers. In most cases, our statements will hold for both,

and we will use the symbol F to denote either field. For the occasions when we

definitely need one or the other, we will use R for the reals and C for the complex

numbers.

We use standard notation for elements of C. Given a complex number z ¼ xþ iy

with x; y real, we denote x by Re z, y by Im z, and we let �z ¼ x� iy denote the

complex conjugate of z. The absolute value jzj is given by ðx2 þ y2Þ1=2. We can

write z ¼ jzjei�, where ei� ¼ cosð�Þ þ i sinð�Þ has absolute value 1. This is

known as the polar form of z.

A linear space over the field F is a set X equipped with operations of addition

and scalar multiplication subject to some natural rules. For completeness, we state

these axioms.

Given any x and y in X and a in F , there are elements xþ y and ax in X satisfy-

ing the following:
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Rules of addition:

(i) xþ y ¼ yþ x;

(ii) ðxþ yÞ þ z ¼ xþ ðyþ zÞ;
(iii) there is an element 0 in X such that xþ 0 ¼ x for all x 2 X;

(iv) for each x 2 X, there is an element �x such that xþ ð�xÞ ¼ 0.

Rules of scalar multiplication:

(i) 1x ¼ x;

(ii) aðbxÞ ¼ ðabÞx.

Rules connecting the two operations:

(i) ðaþ bÞx ¼ axþ bx;
(ii) aðxþ yÞ ¼ axþ ay.

We will use the notation x� y to denote xþ ð�yÞ.
Addition and scalar multiplication carry over to operations on sets. Given sub-

sets A and B in a linear space and a scalar a, Aþ B is the set of all elements that can

be written as aþ b for some a 2 A and b 2 B and aA is the set of all elements of the

form aa for some a 2 F and a 2 A. In particular, �1A is denoted by just �A and

Aþ ð�BÞ is denoted by A� B.

Two trivial examples of linear spaces are F itself and the set consisting of the

single element 0. We discuss more pertinent examples in the next section. Of

course, associated with any linear space are several others, namely its linear sub-

spaces defined as follows.

Definition. Let Y be a nonempty subset of the linear space X that is closed under

addition and scalar multiplication. That is, for all x; y 2 Y and a 2 F , the elements

xþ y and ax are in Y . Then, Y becomes a linear space in its own right under the

same operations, and it is called a linear subspace of X. (We will normally drop the

word linear and just use subspace.)

Linear spaces are also commonly known as vector spaces. Accordingly, we will

frequently refer to elements of a linear space as vectors.

We next summarize the concepts of basis and dimension.

Definitions. Given a set B in a linear space, a finite linear combination of elements

of B is an element x of the form

x ¼
Xn

i¼1

aibi;
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where for each i we have ai 2 F and bi 2 B. We refer to the set faig as the coeffi-

cients.

We let spanðBÞ denote the set of all finite linear combinations of elements of B. It

is the smallest subspace containing the set B, in the sense that if Y is a subspace

containing B, then spanðBÞ � Y .

Definition. A set B is said to be a basis for the linear space X if every element in X

can be written uniquely as a finite linear combination of elements of B with nonzero

coefficients. (We need nonzero here to ensure uniqueness, for without it we could

add an unused element with a zero coefficient.)

Definitions. A linear space is finite-dimensional if it has a basis with a finite num-

ber of elements. It is a basic theorem of linear algebra that in a finite-dimensional

space all bases have the same number of elements, which is known as the dimension

of the space.

Definition. A set B in a linear space is said to be linearly independent if no element

in B can be written as a finite linear combination of the others. An equivalent for-

mulation is that if a finite linear combination of elements of B ¼ 0, then all coeffi-

cients must be zero.

Many authors give the definition of a basis in an alternate form, namely, that it is a

linearly independent set B such that spanðBÞ ¼ X. That is, the linear independence

replaces the uniqueness criterion.We invite the reader to show the equivalence of

these two definitions. We prefer to state the definition in the above form, as it is

the way in which we most frequently use the concept of basis; additionally, it ties

in better with the definition of a Schauder basis, which we present in Chapter 2.

1.2.2 Spaces of Functions

The main reason why linear spaces are important in analysis is that the interesting

classes of functions form such an object. To fix the ideas, let S be any set, and let

FðSÞ denote the set of all functions from S to F . By defining f þ g and af in the

obvious way as

ðf þ gÞðsÞ ¼ f ðsÞ þ gðsÞ; ðaf ÞðsÞ ¼ af ðsÞ

for all s 2 S, it is easy to verify that all of the above rules hold, and FðSÞ becomes a

linear space. The 0 element of this space is just the function that assigns 0 to all points.

When S consists of n elements for some finite n, a function on S can be repre-

sented as an ordered n-tuple, and FðSÞ is nothing more than the familiar n-dimen-

sional space consisting of n-dimensional vectors. Here, FðSÞ is denoted by Rn for

real scalars or Cn for complex scalars.

When S is infinite, FðSÞ is too large to be of much interest, and our focus will be on

certain subspaces of FðSÞ. Elementary calculus and analysis courses are filled with
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examples showing that a certain class of functions forms a subspace of FðSÞ for var-
ious S. When S is an interval of the real line, these include bounded functions, con-

tinuous functions, differentiable functions, and polynomial functions, and the list

goes on. When S is the setN of positive integers, our functions are sequences. Inter-

esting subspaces include bounded sequences, convergent sequences, sequences con-

verging to 0, summable sequences, and others. We will investigate many of these

subspaces in more detail in the remaining chapters.

Rarelywill we again have occasion to verify the rules above in order to demonstrate

that we have a linear space. Almost all of the examples we discuss will be subspaces of

FðSÞ for some S, with a couple of variations, which we point out as they arise.

Remark on Notation. To emphasize the functional aspect, we will sometimes

write vectors or sequences with arguments in brackets, as opposed to the more tra-

ditional use of subscripts. So, for example, when talking about several vectors or

sequences, we will often write x ¼ ðxð1Þ; xð2Þ; . . . ; xðnÞÞ and reserve subscripts

to distinguish between different vectors or sequences.

Given s 2 S, we will let ds 2 FðSÞ denote the function that takes the value 1 at

the point s and 0 elsewhere. For a general subset A � S, we will use 1A to denote the

function that takes the value of 1 on A and 0 on the complement of A. (This is often

referred to as the characteristic function of A. Note that this term is used in prob-

ability theory with a completely different meaning.)

1.3 LINEAR OPERATORS

1.3.1 Basic Definitions

If X and Z are two linear spaces, a linear operator from X to Z is a rule T that

associates to each x 2 X a unique element Tx 2 Z such that, for all x; y 2 X and

a 2 F , we have

Tðxþ yÞ ¼ Txþ Ty; TðaxÞ ¼ aTx:

Linear operators are also referred to as linear transformations or linear mappings.

We will use the familiar notation T : X ! Z to denote a mapping from X to Z,

and unless other specified, this notation will imply that the mapping is linear.

For most readers, one of the most familiar examples of a linear operator will

likely be the operation on Rn of multiplying a vector by a matrix. Indeed, all linear

operators on Rn can be so expressed, as we show in Section 1.3.4. Various exam-

ples of operators on sequence spaces appear in Exercises 1.1, 1.3, and 1.4.

1.3.2 Null Spaces and Ranges

To every T : X ! Z we associate two important subspaces. The null space (also

known as the kernel), denoted by NðTÞ, consists of all x 2 X such that Tx ¼ 0.
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The range of T (also known as the image), denoted by RðTÞ, consists of all z 2 Z

such that Tx ¼ z for some x 2 X. These are easily seen to be subspaces of X and Z,

respectively.

By definition, a linear operator T is surjective (onto) if and only if RðTÞ ¼ Z. We

next verify that a linear operator T is injective (one-to-one) if and only if NðTÞ ¼ 0.

It is easily seen that we always have Tð0Þ ¼ 0, so if x is a nonzero vector in NðTÞ,
then Tx ¼ Tð0Þ and the map is not injective. Conversely, if NðTÞ ¼ 0, then by

invoking linearity, we have Tx ¼ Ty if and only if Tðx� yÞ ¼ 0 if and only if

x� y ¼ 0 if and only if x ¼ y:

1.3.3 Equations and Inverses

Many problems that arise in mathematics are of the following type. We are given

T : X ! Z, an element z 2 Z, and we want to find an element x 2 X satisfying the

equation

Tx ¼ z:

Systems of linear equations can be put into this form. Indeed, the beginning of func-

tional analysis, to which we referred to in the introduction, involved problems of

this type with T an integral operator on continuous functions or a differential opera-

tor on differentiable functions.

The first questions one usually asks about such an equation is whether a solution

exists and, if so, whether it is unique. Answers can be easily formulated in terms of

the subspaces of the previous section. A solution exists for a given z if and only if

z 2 RðTÞ; therefore, one exists for all z if and only if RðTÞ ¼ Z. Similarly, if one

exists, it is unique if and only if NðTÞ ¼ 0 since Tx ¼ Ty if and only if

x� y 2 NðTÞ.
If NðTÞ ¼ 0, we can define the inverse transformation T�1 : RðTÞ ! X by set-

ting T�1z equal to the unique x such that Tx ¼ z. It is straightforward to show that

T�1 is linear. In this case, the solution to the above equation is given for all

z 2 RðTÞ by x ¼ T�1ðzÞ. This shows the importance of inverses, and we will deal

much more with this concept in the chapters to follow.

1.3.4 Space of Linear Operators

We now observe one of the variations to which we alluded in Section 1.2 when we

said that nearly all of the linear spaces which we would encounter would be linear

subspaces of FðSÞ. In defining the linear space of functions on S we can allow the

functions to take values in any linear space Z, rather than be restricted to F . The

definitions of addition and scalar multiplication of functions are the same as given,

using the corresponding operations of Z. Additionally, suppose that our domain S is

itself a linear space X. Then, the subset of the space of functions from X to Z con-

sisting of the linear operators is easily seen to be a subspace of all the functions on

X with values in Z.

6 LINEAR SPACES AND OPERATORS



To summarize, given any two linear spaces X and Z, we get a third linear space,

namely, the linear operators from X to Z, with the usual pointwise addition and sca-

lar multiplication inherited from Z. We will denote this space by LðX; ZÞ. When

X ¼ Z, we shorten this to LðXÞ.
Most readers will have previously encountered a version of LðX; ZÞ in the finite-

dimensional case as a space of matrices. Given spaces X with a basis

fb1; b2; . . . ; bng and Z with a basis fc1; c2; . . . ; cmg, any T 2 LðX; ZÞ is determined

by its value on the bj’s. This follows since, for x ¼ Pn
j¼1 ajbj, the linearity of

T (which extends from two to any finite number of terms by induction) shows

that

Tx ¼
Xn

j¼1

aj Tbj:

Now, for each j, we can write

Tbj ¼
Xm

i¼1

ai; j ci

for some unique scalars ai; j. All the information we need about the operator is

encoded by the matrix A, whose entry in the ith row and jth column is ai; j. In

fact, multiplying the column vector ða1; a2; . . . ; anÞ on the left by the matrix A

gives us, as a column vector, the coefficients of Tx with respect to the given

basis of Z. Moreover, the matrix associated with the sum of two operators is the

usual pointwise sum of two matrices, and the matrix associated with aT is that

of T multiplied by the scalar a. So, after choosing the two bases, we can identify

LðX; YÞ as the linear space of all m� n matrices.

1.4 PASSAGE FROM FINITE- TO INFINITE-DIMENSIONAL
SPACES

An example of an n-dimensional function space is FðSÞ in which S ¼ f1; 2; . . . ; ng.
We can take fdi : i ¼ 1; 2; . . . ; ng as a basis since for any f 2 FðSÞ we can write f

uniquely as

f ¼
Xn

i¼1

f ðiÞdi:

This is a special case, and nearly all of the interesting function spaces are infinite-

dimensional in the sense that they do not possess a finite basis. When one passes

to the infinite-dimensional case, several of the conclusions and properties of
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finite-dimensional spaces no longer hold. However, many of these results can be

recovered if one deals with closed linear subspaces and continuous linear opera-

tors, in place of arbitrary linear subspaces and operators, provided that we take

suitable definitions for these terms. Such notions are often not needed in pro-

blems involving finite-dimensional spaces, since the linear structure dominates

in that case. In finite dimensions, linear subspaces are automatically closed and

linear operators are automatically continuous for any reasonable definitions of

these concepts, as we will show later. Therefore, in studying infinite-dimensional

spaces, we must go beyond linear algebra and incorporate topological notions

that allow us to speak of such things as convergence, continuity, and closure.

We will begin to do this in the next chapter.

EXERCISES

In Exercises 1.1 through 1.4, let s denote the linear space consisting of all

sequences.

1.1 Let c00 denote the set of all sequences that have only finitely many nonzero

entries.

(a) Show that c00 is an infinite-dimensional subspace of s. Find a basis.

(b) Show that the mapping T : c00 ! F , given by Tx ¼ P1
i¼1 xðiÞ, is linear.

1.2 For any subset A of positive integers, let sA denote the set of all sequences x

such that xðnÞ ¼ 0 for all n 2 A: Show that sA is a subspace of s.

1.3 Given any y 2 s, define a function My : s ! s by MyðxÞðnÞ ¼ yðnÞxðnÞ:
(a) Show that My is a linear operator.

(b) Describe the spaces NðMyÞ and RðMyÞ.
1.4 Define functions S and T from s to itself by

Sðxð1Þ; xð2Þ; xð3Þ; . . .Þ ¼ ð0; xð1Þ; xð2Þ; . . .Þ;
Tðxð1Þ; xð2Þ; xð3Þ; . . .Þ ¼ ðxð2Þ; xð3Þ; . . .Þ:

(a) Show that S and T are linear operators.

(b) For both S and T , find the null space and range.

(c) Compute the compositions ST and TS.

1.5 Verify the assertion made in Section 1.4 that LðX; ZÞ is a subspace of the space
of all functions from X to Z.

1.6 Consider the space LðX; ZÞ, where X and Z are infinite-dimensional. Which of

the following, if any, are subspaces?

(a) fT : NðTÞ is finite-dimensional g;
(b) fT : RðTÞ is finite-dimensional g.
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1.7 Suppose that for each l in some index set � we are given a subspace Yl of a

linear space X such that for all l; m 2 � either Yl � Ym or Ym � Yl. Show that

[l2� Yl is a subspace of X.

1.8 Let S be an infinite set, and let X be a linear space of functions that includes ds
for all s 2 S. Show that X is infinite-dimensional.

1.9 Show that the two definitions of a basis given in this chapter are equivalent.
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