CHAPTER 1

INTRODUCTION

The purpose of this book is 10 intraduce methods For the sofution of a general type of param-
eler estimnalion problem oficn mel in applied science and engineering. In these disciplines,
observations are usually not the quantities 0 he measured themselves but are relaied Lo these
guangties. Throughout the baolk, it will be assumed thai this relation is a known function
umd that the guantities to be measured are parameters of this function. Thus, parameter
estimation is the computation of numerical values for the parameters from the available
chservatons. For cxample, 1f observations bave been made of the rudioactive decay of
a compound, the function 15 a multiexponential decay funciion of time. The parameters
are the umiplitndes and the decay constants of the exponential components. The parameter
estimation problem is hers: computing the amplitudes ond the decay constants from the
observations.

Applied scientists and engineers agree that most observalions contain errors, Clearly,
the description of observations as function valees for known values of the independeat
viriable, catled measurement points, is incomplete. It a particular experiment is repeated
under the same conditions, the resulting sets of ohservations witl, as a rule, differ from
gxperiment to experiment. These unpredictable Muctuations of the observations are sonic-
times called nonsystemaiic errors. An effective way of describing the fiuctuations is by
means of statistics. This implies that observations are modeled ag stochastic vanables. The
function values are ihe expectations of these stochastc observations. The fluctuation is the
deviation of an observation from s expectation. The function of the observaiions vsed 1o
compute the parameters is called estimator. Since the observations are stochasiic variables.
50 15 the estimnator. Therefore, the estimator bas an expectation and a standwrd deviadon.



2 PITAQDUCTION

Une particular ouicome of the estimator is called estimate. An estimate is 2 number. The
standard deviation of the estimator defines and quantifies its precision. It is a measure of
the magnitude of the nonsystematic error of the estimator caused by the fluctuations of the
ohservations. The estimartor is said to be more precise as its standarg deviation is smaller,
The deviation of the expectation of the estintator fromt the hypothetical true vatue of the
parameter is catled the bias of the estimator. The bioas of the estimator defines and quanti-
fies its accuracy. Itis a measure Of the systematic error of the estimator as a result of the
fluctuations of the observations. The estimaror is 2aid o be more accurate as its bias is
absolotely smaller. IF the fluctuations of the aobservations would be absent. (he estimator
would produce exact values for the parameters,

A completely different source of emor are modeling errors.  1f the expression jor the
expectations of the observations and the fupciion used by the experimenter are different
parametric families of functions, this witl dead to systematie errors in the estimated parame-
ters. Forexample, if the expectations of observalions mate are the sum of 3 multiexponential
function and a constant representing background radiation while the function used by the
cxperimenter s only the muliiexponentiai function, the parameters of a wrong hnction wilt
be estimated. Modeling errors are not to be considered systematic errors in the observa-
tions. They are caused by the experimenter. On the other hand. i 2 background is coutinelv
inchided in the model although it is known that there is no background present, the model
is correct but the background parameter is equal to zero and superfluous. This is an exam-
pie of everparameterization. Overparameterization increases the siandard deviation of the
estimates of the remaining parameters, which, in our example, are the amplitades and the
decay constants.

The tesminolegy thus introduced enables us 10 give the following overview of the book.

In Chapter 2, we discuss parametric models of observations, After a short introduciion
int Section 2. §, this dizcussion siarts in Section 2.2 with determimstic (that 35, nobsiatistical)
parametric models. This is followed, in Section 2.3, by an analysis of traditional parameier
estimation methods which are based on the assumption that such deterministic observations
really exist. This analysis reveals the need for the statistical parametric models introdiced
in Section 2.4, Tn the same seciion, the term expectation model i3 inteaduced for the para-
metric function that describes the expectations of the observations.

Describing observations as siochastic variables iraplies that they are defined by proba-
bility {density) functions. These are the subject of Chapler 3. Afier a short introduction
in Section 3.1, we dufine in Section 3.2 some preliminary noticns such as the covarlance
mairix of a set of stochastic variabley and the Fisher score vector. Theu, inthe Sections 3.3—
3.5, three imporiant joint distributions of sets of observations are defined and discussed:
the multivariate normal, the Poisson, and the multinomial distribution. These belong to
an importaut geperal ctass called exponential Families of distributions. This class is io-
treduced in Section 3.6, Exponential familizs will be used theoughout the book and will
lead te considerable generalizarions and simplifications. Statistical propertics of the Fisher
score vector are discussed in Section 3.7, In Section 3.8, complex stochastic variables are
introduced. These are tmportant in 2 number of disciplines in applied science dealing with
complex parameiers or complex observations. As an importand example, the joint normal
distribution of real and complex stochastic vaciables 15 discussed in Section 3.9,

Accuracy and precision of parameter estimators are the subjects of Chapter 4. 1t is
essential (o know (o what extent observations reduce the uncertainty abont the hypothet-



ical true valoe of a parameter. If we make snitable assumiptions about the distribution of
the observattons, this reduction of uncertainty can be quantified vsing the concept Fisher
information. After a short introduction in Section 4.1 snd a review of relevant estimation
terminology and properties of covariance matrices in Sections 4.2 and 4.3, we introduge this
concept in Section 4.4 in the form of the Fisher information matrix. The Fisher information
maurix depends on the disinibuiion of ihe observations. As esamples, the expressions for
the Fisher information matrix are derived for observations that are normally, Poisson, or
multinomially distriboted or have a distribution that is an exponeniial family. The inflow
ol Fisher infermation—that is, the contribution of each additional observation to the Fisher
information matrix— i3 also addressed.

The iaverse of the Fisher information matrix is called Craroér -Rao lower bound motrix.
Under general conditions, unbiased but otherwise unspecified estimators cannol have a
variance smaller than the corresponding diagonal element of the Cramér-Rao lower bound
matrix. Like the Fisher informalion matrix. rhe Cramér—Rao lower bound matrix is a key
notion in measurement since it specifies a bound to the precision of unbiased pacameter
measurement. This is the reason why, in Sections 4.5 and 4.6, we present a detuiled aceount
of the Cramér—Rao lower bound moatrix and its propertics. Also, in Section 4,7, we derive
expressions for the Fisher information matrix and the Cramér—Rao lower bound marrix
for comptex parameters. They simplify applicatons of these roncepts in measurement of
complex quantities. In Section 4.8, an expression for ihe Cramé&r—Rao lower bound matrix
for exponential family distributed observations is derived. Generally. the Cramér—Rao lower
bound matrix exists only if the corresponding Fisher information matrix is nonsingular.
Then, the parameters are called idensifiable. ldewifiability is discussed in Section 4.9,

The various expressions [or the Cramér-Rao lower bound matrix emerging in this chap-
ter show that this bound is typically 2 function of vartables that may, within certain bounds,
be freely chosen by the experimenter. An example are the measurement poinis. This offers
the opportunity o select these free vartables so that the bound is influenced in a desired
way. This techmgue, called experimental design, s introduced and explained in Section
410, An example is the minimization of the Cramé—Rao lower bound on the variance
with which 1 particular parameter may be estimated. Even if such an optimal design tself
15 not used, il may act as a refetence 1o which the nonoptimal experimental desi gn used or
preferred by the experimenter may be compared,

The Cramér-Rao lowers bound presents a limit to the precision of unbiased estimators. It
does not indicate how to find estimators that are procise, in the sense of having a precision
more oF less comparable (0 the Crumer-Rao lower bound. Also, it does not informn ahout
inaccuracy, that is, bias. These questians are addressed in Chapter 5, devoted to precise and
accunie estimation.

After a short introduction in Section 5.1, maximuim likelihood estimators ure introduced
1n Secdion 5.2, Under general conditions, these have artractive properties described in Sec-
tion 5.3, Forus, the most imporiant of these is that, typically, the variance of the maximum
likelihood esttmator attains the Cramér-Rao Jower bound if the number of shservations
used is large enough. Theretore, under this condition, ithe maxinum likelihood estimasar
may be rightly called imost precise. The maximum liketihood estimators of the parumeters
of the expectation madel for normalty, Poissan, and multinomially distributed shservations
are derived and discussed in Sections 5.4-5.6, and those for exponential family distributed
observations are covered in Section 5.7 Earlier in shis chapter, we presented an ex ample of
a multiexponential decay model with and without wn additional parameter representing the
background ar, equivalently, with a background pacameter different from or equal to zero.



4 INTRODLCTION

In Section 3.8, a statistical test is presented erabling the experimenter (o conclude from the
available observations if there is reasom to reject constraints on the parameters such as an
equality to zero. This tesr, the likelihood ratio rest, is subsequently specialized o testing if
the expectation model used must be rejected. For exponential families of distributions. a
simple general expression is derived for the lkelihiood ratio used in the tatier test.

For normally distributed observations, the maximum likelihood estimator is equivalent
to the weighted least squares estimator with the elements of the inverse of the covariance
matrix of the observations as weights. However, in practice, the least squares estimaror
is widely applied to observations of any distribution. This is an additional reason why, in
Sections 5.9-5,19, cxicnsive attention is paid to it. After an introduction to least squares
estimation i Section 5.9, we discusg in Section 5.10 nonlinear least squares estimation.
This is least squares estimation applied to expectation models that are nonfinear in one or
more of their parameters. Typically, nonlinear least squares estimators are not closed-form
and require iterative numerical reatment. Sections 5.11-3.19 Jeal with various aspects
of linear least squares estimation. This is least sguares estimation applied to expectation
models that are linear in all parameters, An essential difference with nonlinear feast squares
is that the estimator is now a closed-form expression. In Section 5.12, we first present
the general solution for weighted linear least squares estinistion with arbitrary weighting
matrix. The most important properties of this estimator are that it is unbiased and hinear ia
the observations. Then, the weighting matrix is presented that for any distribution of the
observations yields the most precise weighted linear Jeast squares estimator. [t is called the
best linear unbiased estimator. Chapter 5 is concinded by introducing recursive linear teast
squares estimaltors, These updaie the value of the estimates of the parameters with each
additional observation. Two differeat versions of this estimator are presented in Section
5.18 and Section 5.19, respectively. The first i3 an ordinary least squares estimator, that is,
its weighling mairix is the identisy matrix. The second is suitable for tracking time varving
parameters since the weighting matrix is chosen so that ohservations influence the estimates
more as ll‘lt’.‘y arg more recent.

In the hnal chapter, Chapter 6, we explain principles and use of iterative numerical
funciion optimization methods relevant to the estimators or experimental designs described
in this book. The estimators reguire either the log-likelihood function to be maximized oz
the least squares criterion to be minimized. The experitnental designs require the Cramér—
Rao lower bound matrix te be optimized in the sense of a chosen optimality criterion. These
optimization problems have in common that their sohation is typically not ciesed-form and
has to be computed iteraiivedy.

After a shori introduction in Section 6.1, key notions in nunerical function optimization
are introduced in Section 6.2, These are: the objective function, which is the function o
be optimized; the gradient vector, which is the vecior of first-order partial derivatives of the
objective function; und the Hessian matrix, which is the matrix of second-order derivatives
with respect to the independent variables, In the optimization problems in this book, the
chjective lncitons are the tog-Tikelihood function or the least squares criterion as a funetion
of the parameters. or the optimality criterion for the experimenial design as a fupciion of
free experimenial variables. Furthernmiore, the concept ascent {descent) direction of a vector
is defined, Finally, the concepis exact observations, reference log-likelihood function, and
veference least squares criterion are introduced in Section 6.2, These facilitare software
testisng.

Section 6.3 is devoted to the stegpest descent {ascent) method. This is a general function
minimization {maxinization) method. Tt iz not specialized to optimizing Jeast squares



criteria or log-likalihood functions. The method converges under general conditions, but its
rate of convergence snay be insufficient. ‘This is improved by the Newton method discussed
tn Section 6.4, This is alsp 2 general fupction optimization method, but the conditions under
which if converges are less general than those for the steepest descent method.

In Secdon 6.5, the Fisher scoring methed is introduced.  Iis iteration step is an ap-
proximation to the Newtou step for maximizing log-likelihood functions of parameters of
eapectation models, Theretore, the Fisher scoring method is a specialized method.

In Section 6.6, an expression is derived for the Newton step for maximizing the log-
liketihood function for normally distributed observations. Because of the particular form
of the fog-likelihood fonction concerned, this step is also the Newton siep for minimizing
the nonlinear least sguares criferion for observations of any disiribution,

From the Newton step for normal observations, 2 much simpler approXirnate step may
be derived. The method using this step is called Ganss—-Newton method and is the subject
of Sectivn 6.7. The Newton sicps for maximizing the Poisson and the multinemisl log-
Hkelihaod functions are discussed in Section 6.8 and Section 6.9, respectively, In Section
6.10, an exprossion is derived for the Newion step for maximizing the log-likelthood function
if the distribution of the observations is an exponential tamily.

From the Newion step for maximizing the log-likelihood function for exponential fam-
ilies of distribusions, a much simpler approximate slep may be derived thal is used by Lhe
generalized Gaoss—Newton method. This method is the subject of Secrion 6,1, Tn Section
0.12, the iteratively reweighted least squares methad is described und it is shown that it is
identical to the generalized Gouss—Newton method and the Fisher scoring method if the
distrtbution of the ohservations 18 a linear exponential family.

Like the Newton method, ihe Gauss-Newton method solves a system of linear equations
for the step in each iteration. The Levenberg-Marquardi method, discussed in Section
6.£3, iz 4 version of the Gauss—MNewton method that can cope wilh (near-Jsingularity of
these equations that could accur during the iteration process.

Section 6.14 is 4 summary of the numerical optimization wethods Jiscussed.

Finally, Section 6.15 is devoted to parameter estimation methodology, A number of
intermediate steps are recommended in the process starting with choosing a statistical model
of the observations and ending with actually estimating the parameters from experimental
observations.






