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Introduction and Revision of Some
Statistical Ideas

Now here, you see it takes all the running you can do, to keep in the
same place.

Through the Looking Glass, LEWIS CARROLL

This chapter provides a quick revision of some basic ideas of statistics necessary
for process control. These include dot diagrams, probability distributions, mean,
variance, standard deviation, properties of averages, the central limit theorem, and
the normal, Poisson, and binomial distributions.

1.1 NECESSITY FOR PROCESS CONTROL

If you have a house, you know that you must work hard to keep it habitable—the
tiles on the roof, the paint on the walls, the washing machine, the refrigerator, the
television, all need attention from time to time. A car, a friendship, and our own
bodies must similarly be continually nurtured or they will not remain in shape very
long. The same is true for industrial processes. If left to themselves, machines do not
stay adjusted, components wear out, and managers and operators forget, miscom-
municate, and change jobs. Thus a stable stationary state is an unnatural one and its
approximate achievement requires a hard and continuous fight. Both process mon-
itoring and process adjustment can help achieve this. Both are likely to be needed.

1.2 SPC AND EPC

Some 80 years ago Walter Shewhart introduced statistical process control (SPC)
using charts. These quality control charts have been widely applied, especially in
the parts industries, such as automobile manufacture, and have resulted in dramatic
savings and important improvements in quality of products. Control charts are
devices used to monitor quality characteristics and so keep them as close as possible
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2 INTRODUCTION AND REVISION OF SOME STATISTICAL IDEAS

to their target values for indefinite periods of time. Shewhart control charts used
in SPC combine two separate ideas:

(a) The concept of charting and studying serial data to point to abnormal oper-
ation of the process

(b) The idea that control limit lines about the target can tell us when deviations
are large enough to warrant seeking “assignable causes” of trouble that might
then be eliminated

These ideas are concerned with monitoring (“debugging”) the process. They origi-
nated in the parts industries where the objective was to reproduce individual items
as accurately as possible. If you are making a particular part for an automobile,
you would like the dimensions for each item to be nearly constant. It would be
nice if this could be achieved by carefully adjusting the machine, once and for all,
and letting it run. Unfortunately, this would rarely, if ever, result in the production
of a uniform product. Extraordinary precautions are needed in practice to ensure
that quality characteristics do not change or drift away from their target values.

By contrast, the process industries are often concerned with adjusting the pro-
cess. They use techniques of engineering process control (EPC) to maintain close
to target such responses as percentage conversion of chemicals and measures of
purity that if uncontrolled might very easily drift away from the target values. Con-
trol is affected by automatically manipulating some compensating variable(s) using
a system of feedback and/or feedforward control. Frequently, the only noncapital
cost of such automatic process adjustment is the cost of being off target. This is
different from the typical situation in the parts industry where other costs such as
those induced by stopping a machine or the replacement of a tool often dominate.

Thus, if you had asked a statistical quality control practitioner and a control
engineer what they meant when they spoke of process control, you would likely
have received very different answers. On the one hand, the quality control practi-
tioner would have talked about the uses of control charts for process monitoring. On
the other hand, the control engineer would talk about such things as feedback con-
trol and automatic controllers for process adjustment. In the past, the differences
between these two approaches have sometimes led to “turf wars” and acrimony
between the groups practicing SPC and EPC. This was unfortunate because both
ideas are important with long and distinguished records of practical achievement.
They have a synergistic relationship and serious inefficiency can occur when these
tools are not used together and appropriately coordinated. Automatic feedback
control has sometimes been applied without removing major process “bugs” that
could have been detected and eliminated with SPC methods. On the other hand,
SPC control charts, intended to monitor the process, have sometimes been used for
adjustment of the process (i.e., to perform feedback control); when used for this
purpose, these charts can be very inefficient.

The sharply drawn lines dividing the parts industries and the process industries
have begun to disappear. One reason is that some processes are hybrids, having
certain aspects of the parts industry and others of the chemical industry. Another
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reason is that conglomerate companies, in which both kinds of manufacture occur,
are now much more common. A third reason is that, because of the “quality revo-
lution,” a greater awareness of the importance of control has led each industry to
adopt some control technologies of the other.

We begin by presenting a summary of some ideas1 in statistics that are used in
Chapter 2 for underpinning standard quality control methods for SPC. Experience
with these methods has shown that in some applications they did not work very
well. They are here regarded as providing a first approximation. To overcome these
difficulties, a second approximation is developed in this book that shows the need
for combining some ideas of process adjustment and process monitoring.

1.3 PROCESS MONITORING WITHOUT A MODEL

Anyone who has anything to do with a process or system knows about Murphy’s
law: “Anything that can go wrong will go wrong.” So quality control and improve-
ment are not easy. How can we learn to nullify Murphy’s tricks and to deempower
him? Figure 1.1 shows a graph where a measured process characteristic is plotted
against time in what is called a run chart. Even when the process is in a state of
ideal operation, we can expect variation about the target value T . Such variation
is often referred to as noise and is said to be due to common causes (see Deming,
1986).

When at some point there is a large deviation from target, which sticks out from
the noise, as in Figure 1.1, you naturally ask the question, “What happened there?”

Technically you would say that this deviation is probably a special cause: a
change not due to noise that may help to discover its cause. Simple questions like
“When did it occur?” and “Was anything special going on at that time?” can help
to do this. If you can determine the reason for the special cause, it becomes an
assignable cause, and you may be able to arrange that this defect can be removed
and can never happen again. If you wanted to be more certain that the deviation
was truly exceptional, you could look through past records to determine how often
a deviation as large as this one had occurred before. Inspection of these records
might show periods in which the process had been slightly high and periods where
it had been slightly low. In this case you might choose to use the deviation from
a local average to decide any action you might take.

T

What happened ?

FIGURE 1.1 Values of a measured characteristic in state of ideal operation with suspicious
observation.

1These ideas were developed, in particular, in Box et al. (1976).
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y = f1 (x1, x2, . . ., xn     ) + f2 (xn+1, xn+2, . . .     )

Known Unknown (noise)

FIGURE 1.2 Ideal operation of quality control chart to move previously unknown source of trouble
xn+1 (special cause) from unknown to known.

1.4 DETECTING A SIGNAL IN NOISE

The intended mode of operation of a standard quality control chart is illustrated
in Figure 1.2. The deviation y from the target is here represented as a func-
tion of a number of known operating variables x1, x2, . . . , xn and a number of
unknown factors xn+1, xn+2, . . . that together constitute the noise. A sufficiently
extreme deviation can point to the existence of an assignable cause xn+1 that, as in
Figure 1.2, may be moved from the unknown to the known. This kind of operation
is called process monitoring or more colloquially continuous “debugging” of the
process. This can have three desirable results:

(a) Sources of trouble may be identified and permanently eliminated.

(b) It may be possible to fix the newly found factor at its best level and so
improve the process.

(c) The level of the residual noise will be reduced somewhat, making it easier
to discover other assignable causes.

So a general definition of a quality control chart for monitoring would be that
it is an efficient way of looking for signals in noise. But sometimes it is hard to
distinguish between what might be noise and what might be a signal and so two
questions come up: How big does a deviation need to be before we consider it too
large to be easily explained as “noise” and a deviation from what?

Since process monitoring is or should be an efficient way of finding a signal in
noise, the way to proceed depends on the nature of the signal and the nature of the
noise. Assume for the moment that the signal consists of a single extreme value
like that in Figure 1.1, which we will call a “spike.” In this chapter we discuss
three important distributions that might, in different conditions, represent the noise.
These distributions are called the normal distribution, the binomial distribution, and
the Poisson distribution. These have been used, respectively, for measurement data,
data about proportions, and data about frequencies.

1.5 MEASUREMENT DATA

Suppose that we had data for the diameter, in micrometers, of holes from a drilling
operation and the first 10 values were 94, 90, 94, 89, 100, 96, 97, 96, 92, and 98.
These are plotted in Figure 1.3.
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FIGURE 1.3 Diameter of holes, in micrometers, from drilling operation.

The data vary on both sides of the target value T , which is equal to 95 and is
indicated by the central straight line. One way in which these 10 values can be
appreciated in relation to each other is by means of a dot diagram, which consists
of a horizontal scale with dots representing observations as in Figure 1.3a. But
now imagine a dot diagram for, say, 200 observations obtained in this way with
the dots piled one on top of the other. Then you would most likely obtain a diagram
that looked like Figure 1.3b. Furthermore, you can imagine that if the number of
observations were extremely large (theoretically infinite) then this diagram might
be represented by a smooth curve like that in Figure 1.3c. This would be called
the “population” distribution of the hole diameters and its mean would be denoted
by the Greek letter μ (mu).

A quantity that has a distribution is called a random variable. Now suppose you
knew this distribution and you wanted to know what proportion of the diameters
were smaller than 90 μm (the shaded part of the distribution in Figure 1.3c).
Then the answer to the problem would be obtained by finding out how large the
shaded area was in relation to the total area. Or, alternatively, if you had scaled
the distribution so that the area under the curve was 1, then the shaded area would
give the probability of diameters of the holes being less than 90.

In this example say that the mean μ of the distribution is 96. In practice, you
would not know this. However, you would know the average, 94.6, of the sample
of 10 values that we will indicate by y (y bar). If you assumed that you had a
random sample of 10 taken from the whole population, then y would provide an
estimate of μ.

Exercise 1.1 How could you use the diagram in Figure 1.3c to find out the chance
of a hole being between 90 and 100 μm in diameter?

1.6 TWO IMPORTANT CHARACTERISTICS OF A PROBABILITY
DISTRIBUTION

The mean μ is a measure of location, which determines where the distribution is
centered. The standard deviation σ (Greek sigma) is a measure of dispersion, which
determines how widely the distribution is spread. Another important measure of
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FIGURE 1.4 Distributions with means μ = 25, 60 and standard deviations σ = 2.5, 5.

spread is the variance σ 2, the square of the standard deviation. For illustration
Figure 1.4 shows distributions with different locations and spreads with μ = 25,
60 and with σ = 2.5, 5.

1.7 NORMAL DISTRIBUTION

A distribution that has often been used to represent the population distribution is the
normal distribution, shown in Figure 1.5. This is a symmetric distribution defined
by two constants or “parameters”: its mean μ and its variance σ 2 or equivalently its
standard deviation σ . For the normal distribution σ , as is illustrated in Figure 1.5,
is the distance from the point of inflection of the curve to the mean μ. The point of
inflection, in the figure, is the point where the gradient (slope) of the curve stops
increasing and starts decreasing.

Exercise 1.2 What are the variances of the distributions in Figure 1.4?

1.8 NORMAL DISTRIBUTION DEFINED BY μ AND σ

An important characteristic of distributions2 is the so-called central limit effect.
It turns out that, regardless of the shape of the distribution of the original

2Except for distributions that are mathematical curiosities.
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FIGURE 1.5 Mean (measure of location), standard deviation (measure of spread), and point of inflec-
tion of normal curve.

independent3 measurements, the shape of the distribution of averages looks more
and more like that of a normal distribution as the sample size increases. This
central limit effect is illustrated in Appendix 1A. Because of this effect, it would
often be safe to assume, even for samples of size n = 4, that the distribution of
sample averages was very approximately normal.

A second important fact is that, whatever the distribution of the data having
variance σ 2, the variance of averages of n independent observations is σ 2/n.

1.9 PROBABILITIES ASSOCIATED WITH NORMAL DISTRIBUTION

Look at the normal distribution in Figure 1.6. The unshaded area, within the range
of μ ± σ , represents a proportion 0.683 of the total area under the curve. Thus
the chance of a quantity that is normally distributed lying within plus or minus
one standard deviation of its mean is 68.3%, or about two-thirds. Equivalently,
the probability of such a quantity falling outside these limits is 31.7%, or about
one-third.

The unshaded and lightly shaded areas within the range μ ± 2σ together rep-
resent a proportion 0.954 of the total area under the curve. So the chance for a
quantity that is normally distributed lying within two standard deviations of the
mean is 95.4%, or about 19

20 . Equivalently, the probability of such a quantity falling
outside these limits is 4.6%, or about 1

20 .
Finally, the proportion of the distribution within the range μ ± 3σ represents

0.9973 of the total area. The chance of lying within three standard deviations of the
mean is 99.73%, or about 399

400 . Equivalently, the probability of falling outside these

3That is, observations where each data value does not affect the probability distribution of any of the
others.
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FIGURE 1.6 Normal distribution showing limits for μ ± σ , μ ± 2σ , and μ ± 3σ .

limits is 0.27%, or about 1
400 . But notice that in order to make use of these facts

we would need to know the mean μ and the standard deviation σ or in practice
how to estimate them. In a quality control chart the limits at ±2σ are sometimes
called warning limits and the limits at ±3σ are called action limits.

1.10 ESTIMATING MEAN AND STANDARD DEVIATION FROM DATA

The data from the drilling operation may be used to exemplify the calculation of
the sample mean y and sample standard deviation s:

Hole number 1 2 3 4 5 6 7 8 9 10
Hole diameter, μm 94 90 94 89 100 96 97 96 92 98

The average y of the sample data supplies an estimate of the mean μ of the
hypothetical large distribution of values from which it is imagined to be drawn:

μ̂ = y = 1

10
(94 + 90 + 94 + 89 + 100 + 96 + 97 + 96 + 92 + 98) = 94.6

where, here and throughout this book, the “hat” (applied in this case to μ) means
“an estimate of.”

The standard deviation σ measures the root-mean-square deviation of the data
from its mean and is an important measure of spread whether or not the data are
normally distributed. Thus,

σ =
√

1

n

∑
(y − μ)2

where here the symbol � (capital Greek sigma) indicates a sum taken over the
whole population.
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The sum of squared deviations from the sample mean, 94.6, in this example is

(−0.6)2 + (−4.6)2 + (−0.6)2 + (−5.6)2 + (5.4)2 + · · · + (−3.4)2 = 115.2

By substituting that sample mean for the true mean in this expression we have
cheated a bit, but it can be shown that this can be exactly allowed for by dividing
the sum of squares not by n = 10 but by n − 1 = 9. Thus the sample standard
deviation, the estimate σ̂ = s of σ obtained entirely from the sample data itself, is

σ̂ = s =
√

115.2

9
= 3.58

and the corresponding sample variance is

σ̂
2 = 12.8

If, in general, we denote a sample of n data values by y1, y2, y3, . . . , yn, then the
sample mean is given as

y = 1

n

n∑
i=1

yi

where the index i varies from 1 to n. So, the operation to obtain the sample standard
deviation can be written as

σ̂ = s =
√∑n

i=1 (yi − y)2

n − 1

An equivalent formula for the sum of squares
∑

(y − y)2 is
∑

y2 − ny2.

Exercise 1.3a Obtain the sample mean and sample standard deviation for the
following data: 6, 4, 3, 8, 4.

1.11 COMBINING ESTIMATES OF σ 2

Suppose you have three separate estimates of the same variance σ 2 based on n1, n2,
and n3 observations. Then the combined estimate σ̂

2
G (say) would be

σ̂
2
G = (n1 − 1) σ̂

2
1 + (n2 − 1) σ̂

2
2 + (n3 − 1) σ̂

2
3

(n1 − 1) + (n2 − 1) + (n3 − 1)

or alternatively

σ̂
2
G =

∑n1
i=1 (yi − y1)

2 + ∑n2
j=1 (yj − y2)

2 + ∑n3
k=1 (yk − y3)

2

n1 + n2 + n3 − 3
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Using these ideas, Shewhart produced control charts for data that appear as mea-
surements. We discuss such charts in Section 2.1.

Exercise 1.3b List any assumptions which have been made in Sections 1.5–1.11.

1.12 DATA ON FREQUENCIES (EVENTS): POISSON DISTRIBUTION

Sometimes you need to consider the frequency of events, for example, the number
of injuries per week occurring at a particular workplace. If some rather unlikely
assumptions were true, the frequencies of no event, one event, two events, and so
on, occurring in a week would have a distribution called the Poisson distribution.
One important assumption would be that the probability of an injury in any small
interval of time (say 1 min) was constant. We later discuss the difficulties that
occur when this and other assumptions are not true.

1.12.1 Calculations for Poisson Distribution

On the Poisson assumption, the chance of 0, 1, 2, 3, . . . , y, . . . injuries occurring
in any given week is

Pr(y) = e−μμy/y! (1.1)

where μ is the mean number of injuries per week and y! is the factorial y × (y −
1) × (y − 2) × · · · × 2 × 1.

For example, if the mean number of injuries was 2.1 a week, then knowing
only this mean you could find the probability (proportion of weeks) in which there
should be no injuries, one injury, two injuries, and so on. Thus:

Number of injuries, y 0 1 2 3 4 5 6
Probability of y injuries in any given week 0.12 0.26 0.27 0.19 0.10 0.04 0.01

These form the probability distribution plotted in Figure 1.7a. Thus, on the Poisson
assumption, in a hundred weeks you would expect that there would be about 12
weeks (100 × 0.12) with no injuries, 26 weeks (100 × 0.26) with one injury, 27
weeks (100 × 0.27) with two injuries, and so on. As a second example, if the
mean number μ of injuries were 10 per week, the appropriate Poisson distribution
would be that shown in Figure 1.7b.

Exercise 1.4 If the mean number μ of injuries per week were 10:

(a) Calculate the probabilities for 0, 1, 2, . . . , 20 injuries in any given week.
(b) Do your results agree with Figure 1.7b?
(c) Calculate the probability that there would be less than five accidents.
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FIGURE 1.7 Poisson probability distribution: (a) μ = 2.1; (b) μ = 10.

1.12.2 Mean of Poisson Distribution

The mean μ (the point of balance) of this distribution, which takes values y =
0, 1, 2, 3, . . . with probability Pr(y), is given by summing the product Pr(y) · y,
that is,

μ =
∑

Pr(y) · y (1.2)

Look again at the Poisson distribution in Figure 1.7a generated from Equation
(1.1). The mean for this distribution is, according to Equation (1.2),

μ = (0.12 × 0) + (0.26 × 1) + (0.27 × 2) + (0.19 × 3) + (0.10 × 4)

+ (0.04 × 5) + · · · = 2.1
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As expected the calculation says that the mean is equal to μ = 2.1, the value used
to generate it. In general we call the mean a measure of location since it tells us,
for example, that the y’s are distributed about 2.1 and not somewhere else.

1.12.3 Variance of Poisson Distribution

The variance of a Poisson distribution with mean μ is the mean value of the squares
of the deviations y − μ. Thus

σ 2 =
∑

Pr(y)(y − μ)2 (1.3)

Accordingly, the variance in this Poisson example can be calculated as

σ 2 = 0.12 × (0 − 2.1)2 + 0.26 × (1 − 2.1)2 + 0.27 × (2 − 2.1)2 + · · · = 2.1

This illustrates the remarkable and seductive fact that, on the assumption that the
number of weekly events follows the Poisson distribution, the variance σ 2 would be
exactly equal to the mean μ. Thus, if the assumptions were true, you would need
to know just one number, namely, the mean μ of a Poisson distribution, and you
would know everything about the distribution.

Exercise 1.5 Use Equation (1.3) to show that the standard deviation of the dis-
tribution in Figure 1.7b is

√
10.

1.13 NORMAL APPROXIMATION TO POISSON DISTRIBUTION

Figure 1.8a shows a Poisson distribution with mean 20.6 and hence, on the Pois-
son assumption, with standard deviation

√
20.6 = 4.54. Figure 1.8b shows a normal

distribution with the same mean and standard deviation as the Poisson. As you can
see by looking at Figures 1.8a and 1.8b, the shape of the Poisson distribution
approximates the normal distribution with the same mean, and the standard devi-
ation the square root of the mean. It turns out that if μ = 12 or more the Poisson
distribution is well approximated by the normal distribution. So if μ > 12 and the
Poisson assumptions were true you could use the normal distribution with mean μ

and standard deviation
√

μ to approximate the Poisson distribution.

1.14 DATA ON PROPORTION DEFECTIVE: BINOMIAL
DISTRIBUTION

Sometimes it is the proportion of manufactured articles that contain some defect
that is of interest. For example, condoms are sometimes tested by inflating a number
of randomly chosen test specimens to a very high fixed pressure and noting the
proportion p that burst.
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FIGURE 1.8 (a) Poisson distribution with mean 20.6 representing probabilities of different fre-
quencies of accident. (b) Approximating normal distribution with mean 20.6 and standard deviation√

20.6 = 4.54.

1.14.1 Calculations for Binomial Distribution

If we test n items, then, again, on some rather unlikely assumptions and, in par-
ticular, the assumption that p remains fixed, the binomial distribution tells you the
proportion of times that you should get 0, 1, 2, . . . , y, . . . , n defectives.

For a probability p and a sample of size n the chance of exactly y failures is

Pr(y) = n!

y!(n − y)!
pyqn−y where q = 1 − p (1.4)

For example, suppose you had a biased penny with the property that it came
down heads with probability p = 0.8 (and hence tails with a probability q = 0.2)
and suppose you made n = 5 throws. Then knowing only p and using Equation
(1.4) you could find the chance of getting 0 heads, 1 head, 2 heads, . . . ., 5 heads
as follows:

Number of heads, y 0 1 2 3 4 5
Pr(y) 0.0003 0.0064 0.0512 0.2048 0.4096 0.3276
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FIGURE 1.9 Binomial distribution for different choices of p: (a) p = 0.8, n = 5; (b) p = 0.5, n = 5
(distribution for fair penny).

where, for example,

Pr(y = 3) = 5!

3!2!
0.83 × 0.22 = 0.2048

The binomial probability distribution for this biased penny is shown in
Figure 1.9a. For a fair penny, with p = 0.5, the corresponding probability
distribution is shown in Figure 1.9b.

Exercise 1.6 Calculate Pr(y) where y is the number of heads for n = 5 throws of
the fair coin for y = 0, 1, 2, 3, 4, 5. Do your calculations produce the distribution
in Figure 1.9b?

1.14.2 Mean and Variance of Binomial Distribution

For the binomial distribution the number of defectives from a sample of n has
mean np and variance npq. Thus the proportion y/n of the defectives has mean p

and variance pq/n.

Exercise 1.7 Carry through the calculations to obtain the means and variances
for the binomial distributions in Figures 1.9a and 1.9b. What do you find? Do the
values agree with the expressions μ = np and σ 2 = npq?

1.15 NORMAL APPROXIMATION TO BINOMIAL DISTRIBUTION

As with the Poisson distribution, the binomial distribution may be approximated
by a normal distribution if n is moderately large and p is not small. A general rule
is that you should not use a normal approximation if n < 12(1 − p)/p.
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FIGURE 1A.1 (a) Skewed distribution for y. (b) Distribution of average y of 10 observations ran-
domly sampled from skewed distribution. (c) Distribution of number of pips from single throw of fair
dice. Distribution of average of (d) 2, (e) 3, (f ) 5, and (g) 10 throws.

APPENDIX 1A: CENTRAL LIMIT EFFECT

From Figure 1A.1 you see that the distribution of an average is to be more nearly
normal than the “parent” distribution from which the data are drawn. Why should
random errors tend to have a distribution that is approximated by the normal rather
than by some other distribution? An important rationale relies on the central limit
effect.

If the overall error e is an aggregate of a number of component errors, e =
e1 + e2 + · · · + em, such as sampling errors, measurement errors, or manufacturing
variation, in which no one component dominates, then almost irrespective of the
distribution of the individual components, the distribution of the aggregated error
e will tend to the normal as the number of components gets larger.
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x

y r

FIGURE 1A.2 Illustration of Clark Maxwell’s derivation of normal distribution.

A Remarkable Argument

Clark Maxwell was concerned with proving that the velocities of individual molec-
ular particles must be normally distributed. We will illustrate this argument but,
for simplicity, will change the context a little and pose the problem in terms of a
sharpshooter firing at a target. Suppose that neither the sharpshooter nor the rifle
has biases of any kind. Then, looking at Figure 1A.2, the following two postulates
seem reasonable:

1. The probability of a shot hitting the target at any distance r from the bull’s-eye
is the same for every point at the same distance r . That is, the probability is
constant on every circumference of radius r centered at the bull’s-eye.

2. The probability of the horizontal coordinate x having any particular value is
completely independent of the probability of the vertical coordinate y having
any particular value.

The remarkable fact is that, as soon as these two postulates are admitted, x and y

must be individually normally distributed.
For those interested in mathematical matters, a very rough sketch of the proof

is as follows: From postulate 1, the probability distribution of x and y must be of
the form

p(x, y) = p(r2) = p(x2 + y2)
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But from postulate 2,

p(x, y) = p(x) · p(y)

The only function for which p (x) · p(y) = p (x2 + y2) is the exponential function,
so that p(y) must be of the form aeby2

, where a is a positive constant and b is a
negative constant. Likewise for p(x), so that

p(x, y) = p(x)p(y) = a2eb(x2+y2)

But the probability becomes less as x and y get larger, so that b must be negative.
If we call it −c2, then p(y) = ae−c2y2

.
If the reader will graph this function for any values of a and c, a normal curve

will be obtained of the shape we have already seen in Figures 1.4 and in 1.5.
The constants may be expressed in a more commonly used form as follows.

The constant c is conveniently reexpressed in terms of the standard deviation σ ,
that is, the root-mean-square error of y. It can be shown that this requires that
c2 = 1/2σ 2. Also, since y must be somewhere, the constant a must be chosen to
make the total area (probability) under the curve equal to 1. This requires that
a = 1/

√
2πσ 2. Finally, the data can be centered about some mean μ other than

zero by substituting y − μ for y. Putting all this together we obtain the general
form of the normal distribution:

p(y) = 1√
2πσ 2

e−(y−μ)2/2σ 2

The normal distribution is important not only because it is a probability curve
that frequently approximates the distribution of random errors but also because it
provides, as we have seen, an approximation for other distributions such as the
Poisson and the binomial.

Problems

1.1 What do you understand by “synergistic control”?

1.2 What is meant by white noise and statistically independent?

1.3 How could you tell that, to an adequate approximation, a given model
explains the data?

1.4 Show how process monitoring can gradually eliminate lurking variables?

1.5 Suppose that the number of errors per page in a certain book can be modeled
by a Poisson distribution with mean μ = 1.2. Find the probability that a
page chosen at random will contain:

(a) At least one error
(b) One error
(c) Two errors
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1.6 The following data represent the number of calls entering into a phone
server per minute for 25 periods of 1 min. Assume the data can be modeled
by the Poisson distribution with mean 18 phone calls per minute. Plot
the data with warning and action limits. Do you suspect the means have
changed? Why?

Period 1 2 3 4 5 6 7 8 9 10 11 12 13
Calls 18 17 18 22 15 13 15 15 19 19 11 17 13

Period 14 15 16 17 18 19 20 21 22 23 24 25
Calls 21 21 19 23 19 27 19 25 17 26 25 22

1.7 A microchip manufacturer has data following the Poisson distribution for
the number of defects per microchip. If the mean number of defects per
microchip is 0.2, how many microchips with (a) 0 defects, (b) 1 defect,
and (c) two or more defects can you expect in 1000 microchips?

1.8 Assume that the proportion of defective items produced by a stable process
is p = 0.01. A monitoring scheme samples eight items every 2 h and
declares the process in control only if no defective items are found.

(a) Calculate the probability of declaring the process in control the next
sampling period.

(b) What is the probability of observing exactly one defective item the
next sampling period?

(c) What is the probability of finding two defective items the next sam-
pling period?

1.9 The percentage of registered voters in favor of certain candidate is about
40%. Assuming that the binomial model approximates the distribution of
the number of voters in a sample of 10 in favor of the candidate, what
is the probability that (a) less than 3 were in favor of the candidate and
(b) between 6 and 9 voters, inclusive, were in favor of the candidate?

1.10 Suppose the concentration of a certain substance is approximately normal
with mean μ = 99.2 and standard deviation σ = 0.2. What is the chance
of observing a concentration (a) less than 99, (b) bigger than 99.7, and
(c) between 99.2 and 99.9?

1.11 A random variable has a normal distribution with mean 60 and a standard
deviation of 5. What is the probability of observing values (a) less than 50,
(b) between 55 and 75, and (c) greater than 62.
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1.12 (a) Use the normal distribution to approximate the probability that a
Poisson variable with mean 35 exceeds 30.

(b) Use a calculator or a computer and calculate the mentioned proba-
bility using Equation (1.1).

1.13 (a) Use the normal distribution to approximate the probability that a
Poisson variable with mean 80 is less than 90.

(b) Use a calculator or a computer and calculate the mentioned proba-
bility using Equation (1.1).

1.14 (a) Use the normal distribution to approximate the probability that a
binomial variable with p = 0.6 and n = 15 is less than 13.

(b) Use a calculator or a computer and calculate the mentioned proba-
bility using Equation (1.4).

1.15 (a) Use the normal distribution to approximate the probability that a
binomial variable with p = 0.3 and n = 15 is less than 22.

(b) Use a calculator or a computer and calculate the mentioned proba-
bility using Equation (1.4).




