Chapter 1

Software Architecture
and Quality

Lawrence Bernstein
Stevens Institute of Technology

This chapter of the book illustrates Barry Boehm’s many contributions to the technolo-
gies of software design, software quality, software project risk assessment, and software
architecture.

Article 1-1. Software Design and Structuring

When I first read Barry Boehm’s “Software Design and Structuring” in the 1970s I sent it
to my colleagues and said this article was fundamental to our work. Today I assign it to
my students. It remains relevant today despite several sea changes in software engineer-
ing technology. Barry lays the foundation for software architecture as well as the frame-
work for quantitative analysis in software engineering. In the second paragraph in this ar-
ticle, he explains the need for data-driven conclusions when he cites the analysis of 220
types of software errors and finds that . . . if more time had been spent on validating the
design . . . prior to coding many of the conceptual errors would not have been committed
to code.” This finding is as true today as it was in 1975 and is only one of the many semi-
nal ideas supported by data that Barry promoted.

Barry explains the application domains for bottom-up, top-down, and structured pro-
gramming. The analysis approach explained in the article’s appendix is a landmark use of
risk analysis applied to software engineering tradeoffs. This approach can be found in
most reputable software engineering textbooks.

Barry anticipates the current software engineering enthusiasm for model-driven design
in this article, including the idea of continuous user involvement, a tenet of modern agile
methods. He anticipates the Unified Modeling Language that is now the lingua franca of
software architecture, but he wisely avoids advocating for automatic code generation,
long a software engineering dream that so far has become a nightmare.

Software architects must read and understand Barry’s findings, including the appendix,
and apply them to their current and future software projects. Anything less is malpractice.

Article 1-2. Quantitative Evaluation of Software Quality

“Quantitative Evaluation of Software Quality,” which constitutes the second article, is
coauthored by Barry and others from TRW. It lays out the application of quality theory
for software engineers and includes an extensive set of data with detailed analysis.

Software Engineering. Edited by Richard W. Selby 1
Copyright © 2007 IEEE Computer Society

2 Chapter 1 Software Architecture and Quality

Barry introduces the need for testable requirements. This concept is difficult to articu-
late and has proven elusive. This article identifies and evaluates many software metrics. It
urges software engineers to set explicit and measurable quality objectives. It recommends
that they be prioritized and compared with similar metrics from other companies. It points
out that design and code inspections are a valuable practice. Studies in the 1980s at Bell
Laboratories, followed by university and IBM research, validated his early insights.

The authors recognize that the article provides a “. . . framework for assessing the of-
ten slippery issues associated with software quality. . . .” This framework has led to the
evolution of several good software engineering processes now universally practiced.

Now, before reading further, skip to Barry’s conclusions in his article and read them
carefully. You will be drawn to read the analysis supporting his findings.

Article 1-3. Lessons Learned on an Early Application Generator

In 1996, Barry wrote about his early career as a rocket scientist. His story is compelling
and reflects a common experience of software people pioneering software control of
weapons and space systems. He explains that domain engineering is critical to establish-
ing validated and quantifiable requirements. His observation about software product line
architecting is frequently rediscovered. I first observed software product line approaches
in practice in NASA’s Apollo program and emulated them at Bell Laboratories as soft-
ware began to dominate the many product and services businesses of the Bell System.
When I visited Japan to see their software factories, I saw similar software product lines
at Hitachi.

In the 1950s, before the idea of software engineering was born, Barry met early and of-
ten with his customers. This idea, captured in the phrase “management by walking
around,” has been embedded in the 1990s theory of agile programming.

Barry shows the effectiveness of using an application platform with many control pa-
rameters to execute rocket simulations. He advises using general-purpose and portable
languages rather than a tailored language to avoid project dead ends. The article is a won-
derful tour of our collective past with many insights posted along the way. By reading this
article, you can learn to avoid software pitfalls without having to experience them and
learn from the school of hard knocks. This is the essence of education.

Article 1-4. COTS Integration: Plug and Pray?

Commercial off the shelf (COTS) became the watchword in the 1990s without a critical
understanding of its implications. Barry and Chris Abts studied the use of COTS in real
projects and defined the conditions that lead to success and those that do not. This article
is on COTS integration. They cite the danger that “COTS vendors do not change features
... inresponse ... to individual user needs.” Large projects relying on COTS to reduce
their costs and schedules often fall into these common traps: licensing constraints, high
fees, poor computer resource use, lagging behind vendor upgrades, and little control over
product life. When a software product will be widely deployed, the COTS fees can some-
times consume the product’s profits. COTS use can make it difficult to converge on a rea-
sonable software architecture by trapping developers into fragile and immutable software
structures. The authors urge the use of Architecture Review Boards to avoid structural
problems and ease the integration of COTS with custom-built modules in a system.

Article 1-5. Software Defect Reduction Top 10 List
In 2001, Barry collaborates with Vic Basili to transform the software engineering industry
“from a fad-based practice to an engineering-based practice.” They reported the top-10

Chapter 1 Software Architecture and Quality 3

steps that reduce defects. Professional software engineers would profit from this 2001
Computer article, as would all software engineering and computer science students. In

brief:

. Developers take 100 times less effort to find and fix a problem than one reported

by a customer.

2. Half of software project work is wasted on unnecessary rework.

10.

Twenty percent of defects account for 80% of the rework.

. Twenty percent of modules account for 80% of the defects and half the modules

have no defects.
Ninety percent of downtime comes from 10% of the defects.

Peer reviews catch 60% of the defects. This finding confirms Boehm’s foresight
concerning the effectiveness of inspections.

Directed reviews are 35% more effective than nondirected ones.
Discipline can reduce defects by 75%.

High-dependability modules cost twice as much to produce as low-dependability
ones.

Half of all user programs contain nontrivial defects.

Article 1-6. COTS-Based Systems Top 10 List

In this 2001 article, Barry again collaborates with Vic Basili to hypothesize a set of deci-
sion criteria to evaluate your COTS strategy. They point out that empirical data on COTS
adoption strategies are limited because of the immaturity of the approach. They offer their
list as a starting point for formalizing the criteria for project adoption of COTS products
within an architecture. I found the most interesting hypothesis to be that half the features
in large COTS software products are never used. These features take up space and can
slow the execution of the COTS integrated software product. Barry warned us against
such “gold plating” in the 1970s. Turn to the article to read the rest of the list.

BARRY HAS IMPACT

Barry’s contributions to the education of software engineers are legendary. He influences
the daily activities of thousands of software engineers worldwide.

Article 1-1

Software Design and Structuring

Barry W. Boehm

INTRODUCTION

In 1974, the major leverage point in the software process is at the software design and
structuring stage. This stage begins with a statement of software requirements. Properly
done, the software design and structuring process can identify the weak spots and mis-
matches in the requirements statement that are the main sources of unresponsiveness of
delivered software. Once these weak spots slip by the design phase, they will generally
stay until during or after delivery, where only costly retrofits can make the software re-
sponsive to operational needs.

The software design and structuring phase ends with a detailed specification of the
code that is to be produced, a plan for testing the code, and a draft set of users’ manu-
als describing how the product is going to be used. Software costs and problems result
from allowing coding to begin on a piece of software before its design aspects have
been thoroughly worked out, verified, and validated. Figure 1 illustrates this quite well.
It summarizes an analysis of 220 types of software errors found during a large, general-
ly good (on-cost, on-schedule delivery) TRW software project [19,20]. The great ma-
jority of the types of errors found in testing the code had originated in the design phase.
Even more significantly, the design errors are generally not found until later in the test
process. Of the 54% of the error types that were typically not found until during or af-
ter the acceptance test phase, only 9% were coding errors. The other 45% were design
errors.

A particularly important stage is design verification and validation. Many of the design
errors could have been caught before the coding phase by using better design-review pro-
cedures or better tools for design consistency checking, some of which are now under de-
velopment at TRW [20,21].

Table 1 provides another perspective on the importance of thorough software design
specification and review. It shows data collected on a 24 ODD instruction Navy com-
mand and control software project that was analyzed for the CCIP-85 study [22]. Here,
conceptual errors accounted for 61% of the total number of errors detected.

The most significant correlation, though, is the following. On the “Executive” compo-
nents of the project, only 37% of the time was spent on analysis and design, and the ratio

From E. Horowitz (Ed.), Practical Strategies for Developing Large Software Systems, Addison-Wesley, 1975,
103-128. © 1975 Addison-Wesley. Reprinted by permission.

Software Engineering. Edited by Richard W. Selby 5
Copyright © 2007 IEEE Computer Society

6 Chapter 1 Software Architecture and Quality

Errors found during or
after acceptance test

Figure 1. Software error sources.

of conceptual to clerical errors was 4:1. The other two components of the project spent
54% and 59% of their time in analysis and design; their ratios of conceptual errors to cler-
ical errors were 0.6 and 0.5.

Some of the difference is probably due to the fact that executive software is conceptu-
ally more difficult. However, there can be little doubt that if more time had been spent on
validating the design of the executive prior to coding, many of the conceptual errors
would not have been committed to code. Similarly, better design tools and techniques

Table 1. Distribution of software error causes

Hardware Executive User programs Total
Causes of error diagnostics (%) (%) (%) (%)
Unexpected side effects of changes 5 25 10 19
Logical flaws in design
Original design 5 10 2 8
Changes 5 15 8 12
Inconsistencies between design
and implementation 5 30 10 22
Total: conceptual errors 20 80 30 61
Clerical errors 40 20 50 28
Inconsistencies in hardware 40 — 20 11
100 100 100 100
Total errors detected in 3 year sample 36 108 18 162
Number of instructions 4K 10K 10K 24K

% Analysis and design 59 37 54

1-1 Software Design and Structuring 7

should catch or avoid many of the design errors early without increasing the cost of the
design phase.

An increasing number of techniques for improving the design process are now becom-
ing available. It is becoming harder and harder to sort out just what each technique does
and does not provide.

This article provides a classification of software design and structuring techniques into
a few main categories that can currently be considered as software design alternatives.
For each alternative, it presents a short description and a balance sheet indicating the ad-
vantages and difficulties in using the technique.

In an overall comparison of the alternative techniques, none of them provides positive
assurance of satisfying all the criteria, but each criterion is satisfied by at least one of the
techniques. This would lead one to believe that an appropriate synthesis of the techniques
might prove successful.

The following major design and structuring alternatives will be described and evaluat-
ed: bottom-up, top-down stub, top-down/problem statement, structured programming,
and model-driven design.

Most software design and structuring techniques fall generally within one of these cat-
egories. Some other variations exist, such as iterative multilevel modeling and prototyp-
ing; these will be discussed below in the context of the other concepts.

BOTTOM-UP

The typical bottom-up software development begins with the development of several
computational routines whose function is considered important to the application. Some-
times, the process involves modification of related previously existing computational rou-
tines in an attempt to avoid duplication of effort (Phase I in Figure 2).

Test Driver Executive

Computational
Control

1/0 Control Phase IIl i Test Driver

I/0O Components Computational Components

Phase |

Figure 2. Typical bottom-up approach.

8 Chapter 1 Software Architecture and Quality

Once these are developed, the need is seen for a test driver to support testing of the
modules and their interfaces, a control program to determine the sequence in which the
computational routines are called, and some input—output routines to service both. These
are then built in Phase II.

Once they are built, the need is seen for an input—output control capability to sequence
the input and output routines, perform initializations, conversions, error checks, and so on.
Also needed is an executive to moderate the interfaces between the input—output sector and
the computational sector, and a test driver to test the entire system. These are then built, and
the entire system is tested and subsequently modified as errors are detected in Phase II1.

Advantages

High-risk Components. These are low-level component tasks for which there is a high
risk as to whether or not they can be performed as specified; for example, processing
sensor data in real time and automating human discrimination functions. They are
well handled since the bottom-up process generally begins by concentrating on them.

Reusable Modules. Being component oriented, the bottom-up approach tends to do
well here, but often at the expense of other considerations.

Disadvantages

Integration, Verification, and Validation. These tend to be very costly because of the
lack of early attention to interface problems and overall system requirements.

Visibility and Tracking. Tracking the progress of individual components is straightfor-
ward, but the lack of well-defined overall user requirements and system interfaces
makes overall visibility difficult.

Maintainability. Often, different assumptions made during the development of individ-
ual bottom-level components lead to a higher-level control structure and a data
structure that are simply “kludged-up” to make the components work together in
their current form. Such constructs are very difficult to modify to meet changing re-
quirements.

User and Data Structuring Issues. The lack of early attention to overall system re-
quirements mentioned above and the generally “kludged-up” data structures are the
sources of these difficulties.

TOP-DOWN STUB

The top-down/stub approach, as described in References 1 and 2, proceeds as follows.
The designer begins by determining what overall functions will be performed by the soft-
ware system, in what order, and under what conditions. He then proceeds to develop a
working top-level computer program, containing all the logic controlling the sequencing
between functions, but inserting dummy programs or “stubs” for the functions. He then
proceeds to test this top-level program thoroughly before proceeding to the next step.

The succeeding steps consist of fleshing out the stubs into a lower-level sequence of
control logic, computation, and subfunctions, each of which is again represented by a
stub. Each subprogram is developed to replace a stub; it can be tested immediately, not

1-1 Software Design and Structuring 9

only by itself, but also as a part of the software subsystem and system it joins by replacing
the stub.

The top-down/stub approach to software design is often enhanced by several optional
aids. One is the HIPO (hierarchical input—process—output) technique [3], which provides
designs with a standard way to represent the inputs, processes, and outputs of each mod-
ule and the module’s relationship to the overall control hierarchy. Currently, no automat-
ed aids are available for developing or checking HIPO descriptions. Another is the walk-
through, an element of “egoless programming” [4,5] in which the designer—programmer
presents his design and its underlying rationale to his team leader and a group of peers to
eliminate as many bugs as possible before coding begins. Another is the chief program-
mer team [6], a management approach in which a single individual (aided by a backup)
produces the bulk of the design, writes a good deal of the code, and reviews all of it per-
sonally. Another is structured programming, to be discussed in more detail later.

In top-down/stub design, changes to the software are first worked out at the highest
level affected, and then propagated downward as appropriate. The process thus concludes
with not only a completed design but a completed and tested program, in which the lower
levels of the control structure were not designed until the upper levels were programmed
and tested.

Advantages

Early Integration. Committing the top-level design early to testable code focuses at-
tention on interface problems at a stage at which they are relatively easy to resolve.
(It also creates a useful additional deterrent to arbitrary changes of scope.)

Parallel Testing. Testing can proceed much faster when one can immediately test the
program at the unit, subsystem, and system levels. (Experience has shown that one
must prepare to handle an overload of test shots at this stage while somehow pre-
serving good turnaround time.)

Visibility and Tracking. The well-defined interfaces and stub organization make it rel-
atively easy to track progress and isolate trouble spots.

Maintainability. Traceability from high level requirements to low level code is main-
tained at least partially through the hierarchical control structure.

Disadvantages

High-Risk Components. Proceeding in strictly top-down fashion can lead to a large in-
vestment in top-level structure before discovering that a low-level component can-
not do its job, for example, to process inputs in real time or to automatically dis-
criminate friend from foe, at which point one must virtually start another top-down
design from scratch.

Common or Reusable Components. Particularly when several designers are involved,
people have found that several branches of the control hierarchy terminate with a
requirement for a similar capability, say, for sorting, but that a great deal of rework
must be done at the higher levels to accommodate the requirement with a single
routine.

Machine dependence. As it begins by developing an executing version of the top-level
control structure, the top-down/stub approach unfortunately commits the project to

10 Chapter 1 Software Architecture and Quality

a specific hardware system right away before the hardware implications of various
design decisions are completely understood. One may avoid this difficulty by using
the top-down/ stub approach more as a programming technique than as the com-
plete design process.

User and Data-Structuring Issues. The top-down/stub approach is a formalism for or-
ganizing a program’s control structure. If the user’s requirements are poorly under-
stood, or if the data structure implications are not also considered in advance, the
delivered software may be unresponsive or hard to maintain. With an experienced,
thoughtful designer, these will generally not be problems. But if considered as a
“cookbook” approach by inexperienced designers, the top-down/stub approach can
lead to problems; one group using it for the first time had an 83% overrun on a job
budgeted at 450 man-hours.

TOP-DOWN PROBLEM STATEMENT

Several variants exist on the problem statement approach but, in general, each attempts to
define a special problem domain and establish for it a set of constructs and capabilities for
expressing, analyzing, and ideally generating programs within the problem domain. In the
domain of business system problems, ISDOS and its Problem Statement Language epito-
mize the problem statement approach [7]; a good review of business problem statement
languages is Reference 8.

Another variant involves the use of iteratively refined simulations as successive prob-
lem statements that drive program design and development, as in Iterative Multilevel
Modeling [9], SODAS [10], and DES [11]. Another is Glaser’s LOGOS approach, cen-
tered around the problem domain of computer operating systems [12].

In the ballistic missile defense problem area, TRW has evolved a set of problem state-
ment capabilities currently being used in the design and development of the large Site De-
fense of Minuteman (SDM) software project. These capabilities allow a designer to spec-
ify a top-down control structure via a hierarchical set of functional sequence diagrams
(FSDs). The FSDs are specially structured time-sequenced flow charts whose elements
may be expanded into attribute descriptions via a functional properties matrix, which may
identify the various categories of activity (data handling, control, report, test, etc.) as a
function of mode (preoperational, operational, or postoperational). Another associated de-
sign and data-structuring construct is the N-square chart, which indicates the flow of data
to and from the component elements of the system.

Another design and development aid on the SDM project is a process construction lan-
guage. This language is designed to be able to drive both a simulation of the SDM system
and the building of the program itself. Thus, in one mode, the command “PERFORM
RADAR SCHEDULING .. .” will call out a simulation of the radar-scheduling activity;
in the other mode, the actual radar-scheduling code will be assembled for execution.

Advantages

Early Integration. This is provided by the emphasis on early specification of the se-
quence of functions and their interactions via data, and of a simulation model of the
system to be developed.

Data Structuring. Most of these approaches provide explicit capabilities for assessing
data implications and some degree of data structuring.

1-1 Software Design and Structuring 11

Maintainability. In general, the problem statement provides very good traceability
from requirements to code, and a natural way of specifying modifications.

Visibility and Tracking. The problem statement provides a well-understood context
within which software development can be monitored.

Disadvantages

Limited Applications Context. The price generally paid for the implicit contextual
framework provided by the problem statement approach is a restriction of the prob-
lem domain for which such a framework is relevant. Specifying BMD software via
ISDOS would be extremely awkward, as would the use of FSDs to specify a per-
sonnel—payroll data processing system.

Machine-dependent Support Software. Although the problem statements are generally
machine dependent, at the present time the programs that operate on them generally
are not.

STRUCTURED PROGRAMMING

Structured programming [13,14] is strictly more of a program-organization discipline
than a design technique, but it can be used to significantly enhance most of the available
design techniques. It is basically a set of standards for organizing the control structure of a
set of computer programs. The key ideas in structured programming are:

1. Only “‘proper programs” having one flow of control in and out of each unit should
be developed.

2. Only three basic control structures are allowed: DOWHILE, IFTHENELSE, and
SEQUENCE. These three structures are sufficient to express any proper program
[15]. Two additional structures are optional: the DOUNTIL and the CASE.

3. Programs are organized according to a hierarchical, modular block structure.

4. Additional standards are imposed on the size of modules and the formatting of in-
structions, declarations, program commentary, and so on.

Advantages

The modularity, standard control structure, and format conventions of structured pro-
gramming generally make programs easier to understand. Organizing programs in this
way also generally requires more careful thought; this leads to many advantages, particu-
larly in reducing the incidence of errors. Also, the structuring and limited number of logic
components makes it easier to develop automated software development, test, and docu-
mentation tools. Enforcing any sort of programming standard generally leads to fewer in-
terface problems. These factors combine to produce the following main advantages:

® Visibility and tracking
® Maintainability
® Testing and reliability

Support of early integration

12 Chapter 1 Software Architecture and Quality
Disadvantages

Asynchronous Control and Error Exits. The natural way to handle these types of pro-
gram controls involves the use of nonproper program logic. To express an interrupt
capability with structured programming, for example, would require IFTHENELSE
for each type of interrupt after every statement in the program.

Common or Reusable Components. Structured programming strictly leads to the use of
duplicated segments of in-line code to handle many functions usually performed by
common multipurpose components.

User and Data-structuring Issues. Structured programming does not address these. It
is strictly a formalism for organizing the control aspects of a program.

Table 2 summarizes and extends the balance sheets given on the previous pages. For
each of the approaches described, it provides an assessment for each of several software
criteria or characteristics. Most of the ratings are straightforward; the “caution” rating im-
plies either that the approach can lead the designer astray under some conditions, or that
the approach says virtually nothing about how to achieve the characteristic.

As seen in the table, none of the techniques described provide positive assurance of
satisfying all the criteria, but each criterion is satisfied at least to the “good” level by one
of the approaches. This would lead one to believe that an appropriate synthesis of the
techniques might prove successful. The concept of model-driven design evolving at TRW
gives promise to providing such a synthesis. A rating of the near-term objectives for mod-
el-driven design is given in the rightmost column. The concept is summarized below.

MODEL-DRIVEN DESIGN

Model-driven software design (see Figure 3) begins with two models that are independent
of the specific software capabilities to be designed. One is a “process model” of the software
design and development process, best illustrated by such documents as the recent TRW

Table 2. Comparison of alternative design techniques

Top-down/
Top-down/ problem Structured Model
Bottom-up stub statement ~ programming driven
Universality VG VG C G G
User RQTS refinement P C G C G
Design validation P G G G VG
Early integration P VG VG G VG
Data structuring C C G C G
High-risk components VG C G C VG
Machine independence C P C VG VG
Reusable modules VG C G C G
Efficiency C C G C G
V & V assurance P G G G G
Maintainability P G VG VG VG
Visibility and tracking P VG VG G VG

VG = very good, G = good, C = caution, P = problem source.

1-1 Software Design and Structuring 13

Procedures

Y
Functional Model

Checklists

\
Complete
Functional Model

V&V

SRR oo Functional
Baseline

g
-}

Top-Level System Model

Cost
Data

» WBS Performance Data Base Control

V&V

rmoOZ wumOOITT
rMmMUOZ »OM——ImMUOITT

| RN .
Cost Cost, Risk High Prototype or
Data Analysis Detailed Analysis

Allocated
Baseline

Low

Figure 3. Model-driven software design.

Software Development and Configuration Management Manual [16]. The other is a “prop-
erties manual” of the characteristics of a good software product, best illustrated by such doc-
uments as the recent TRW report for NBS on characteristics of quality software [17].

The process model specifies the overall sequence of activities, which begins with the
specification of another model, this time a specific-project-oriented model of the func-
tions to be performed by the software. This model is checked for completeness via check-
lists derived from the properties model, using techniques along the lines of the re-
quirements/properties matrix formalism being developed at TRW [18]. Additional
walkthroughs or protocols are worked out with the prospective user to provide design ver-
ification and validation (V & V) followed by an official system requirements review and
establishment of a functional baseline for the system.

The resulting functional model is then used to generate a top-level system model with
four complementary components:

1. A model of the overall control structure, using an enhanced version of Functional
Sequence Diagrams

14 Chapter 1 Software Architecture and Quality

2. A model of the database, using the N-square formalism and additional data struc-
ture models appropriate to the application (batch, online, real-time random/se-
quence access, etc.)

3. A model of system performance or processing efficiency (generally a rough analyt-
ic model will do at this stage, but more detail may be appropriate for performance-
critical systems)

4. A rough model of the work breakdown structure (WBS), cost, and schedule re-
quired to develop the software, based on experimental data that form a part of the
process model

After these models are checked for consistency, the WBS and performance models are
exercised to determine whether there are any high-risk components within the software to
be developed. If not, the design can proceed top-down. If so, however, some detailed sim-
ulation or bottom-level prototyping is needed to determine the right approach to be taken
for the critical components. A good conceptual model for this process is given by statisti-
cal theory; an example is given in the appendix, which shows how this kind of risk analy-
sis helps determine the appropriate sequence of design activities in a system involving
real-time sensor data processing.

It is important that such risk analysis and design sequence activities include strong par-
ticipation from the user, as both the risk assessments and the resulting design decisions
generally involve assumptions about the user’s needs and priorities. Thus, even though
the system design phase is culminated by a thorough systems design review by the user,
this fact should not lead either the user or the developer to succumb to the temptation to
avoid user-developed interaction during this or other design phases. In fact, many suc-
cessful software projects owe a good deal of their success to having been designed by a
joint user-developer team, an option that deserves consideration for the future govern-
ment software procurements.

The preliminary software design (see Figure 4) begins with a thorough description of
the information-processing system to be developed (the allocated baseline) and an under-
standing of the residual risks involved in developing it. Sometimes, these risks are ex-
tremely low, in which case the allocated baseline can indeed be a basis for a firm determi-
nation of the resources required to complete the project, for example, a fixed-price-type
contract. However, in most cases even the detailed analysis or prototyping activities de-
scribed above will not eliminate a good deal of cost uncertainty that can only be resolved
by proceeding to the next step or preliminary software design.

Often, then, the preliminary design step will involve a continuing refinement of the cost
and risk models, and their supporting WBS and performance models. These are developed
in conjunction with a top-down refinement of the models of the data and control structures.
This process generally begins with a more detailed layout of the data structure, which then
provides a general context for the refinement of the control structure. For large projects, the
latter process can be assisted by a machine-readable but machine-independent description of
the inputs and outputs of each module, along the lines of the HIPO technique but extended
to accommodate automated consistency checking of the attributes of the inputs and outputs.

The preliminary design phase, and the detailed design phase to follow, are similarly
characterized by:

® Continuous user involvement
® Explicit planning for and performance of design verification and validation activities

1-1 Software Design and Structuring 15

Low

Intermediate-Level System Model

WBS Performance Data Base Control

Risk Analysis, V & V, Iteration

P
P R
R)
I R e :
E A R
S Detailed System Model T
S |
V&V E
M S
(6]
[E’ Y Y g
L Experience II)Z)raft User Build-to Spec D
ocuments E
L

/ \i

Test Plan A Standards

9]
o]
o3
9

Figure 4. Model-driven software—preliminary and detailed design.

® Explicit consideration of risk and uncertainty resolution

® Thorough reviews to assure firm resolution of issues in each phase before proceed-
ing to the next

The detailed design phase concludes not only with a build-to coding specification, but
also a thorough test plan and draft user’s manuals so that the user has an accurate picture
of how the product will work.

Some additional points on model-driven preliminary and detailed design are:

® In order that user considerations rather than hardware constraints continue to be the
major detriment of the design, a commitment to a specific hardware configuration
should be delayed until as late as possible.

® At some point, the result of a risk analysis may be to factor the development into
two or more phased-development activities (five “loops” in the TRW Site Defense
project), in which the actual performance in the earlier developments can be used to
guide the design of successive development portions.

16 Chapter 1 Software Architecture and Quality
Advantages

Emphasizes Design Validation. Model-driven design makes explicit provisions for de-
sign test planning and performance before proceeding to subsequent phases. The
several models provide reference information that can be used to support design
consistency and completeness checking.

Emphasizes Early Integration. Greater assurance of design integrity at early stages of
development results from the formulation and cross-checking of successively more
detailed models of control structure, data structure, performance, and work break-
down structure.

Avoids Premature Hardware Commitment. Model-driven design is basically a “soft-
ware-first” approach. The performance model and optional prototyping activities
provide the capability of resolving many of the hardware—software tradeoff issues
before committing the project to a particular hardware configuration.

Explicit Risk Analysis for Design Decision. In general, the objective of model-driven
design is to avoid building up a large inventory of code or detailed design specifica-
tions when there is a high risk that they may have to be scrapped as nonresponsive
or expensively retrofitted. The explicit assessments of risk and the options to pro-
ceed in high-risk situations via higher-level design analysis or quick disposable pro-
totypes both support this objective.

No Major Weak Spots. Although model-driven design has been synthesized from other
design approaches to fulfill this objective, its full performance in practice has yet to
be demonstrated. Currently, the Site Defense project at TRW is the closest approxi-
mation to complete model-driven design and, though performance to date is highly
satisfactory, it has not reached its culmination. The major potential problem area is
that inexperienced or model-happy designers will use model building as an alterna-
tive to thinking about and resolving design development issues, rather than a means
to stimulate thinking about and resolving such issues. Thus, “model-driven soft-
ware development” should admit to both of the following interpretations:

® The software development activities are driven by the formulation, analysis, and
iterations of preliminary models.

® The model development activities are driven by the overall objective of produc-
ing a cost-effective software product.

Disadvantages

Exists Only for Limited Problem Domains. At the current time, the model-driven approach
can be applied to real-time software projects with characteristics somewhat similar to
ballistic missile defense. Some additional capabilities in the performance and data
modeling areas in particular need to be provided to make it generally applicable.
Extension Requires New Developments. The main capabilities needed to provide gen-
eral model-driven facilities are:
® A language for expressing software requirements design specifications, and per-
formance characteristics for simulation

® A set of formal and automated aids for checking the completeness and consisten-
cy of software requirements and designs

® A set of capabilities for top-down data structuring

1-1 Software Design and Structuring 17

Requirements/Design/Simulation Language. A language is needed for specifying the
components and characteristics of software systems in ways that support perfor-
mance analysis and automated aids to consistency checking and traceability of re-
quirements into design and code specifications, completeness checklists, and, most
importantly, a clean and common understanding among the software builders,
buyers, and users of what is to be built. Components of such a language would in-
clude:

® Precise terminology (Are response time, reaction time, turnaround time, port-to-
port time, and delay time the same or different concepts?)

® A taxonomy of elementary information-processing functions (send, receive,
store, query, sort, process, tally, etc.)

® A means of describing performance or specifying a performance or specifying a
performance model

® Facilities to characterize software via inputs and outputs, via properties, or via
data structures and dynamics

Requirements Analysis and Design Verification and Validation Aids. These include
completeness checklists and capabilities for consistency checking of software de-
signs, such as the module description consistency checker being built at TRW along
the lines described in Reference [17].

Hierarchy of Performance Modeling and Simulation Tools. Capabilities are needed to
support smooth evolution of performance models to levels of greater detail or of
higher aggregation; for example, along the spectrum from analytic models through
semianalytic simulations to bit-level simulations.

Top-down Data Structuring. Capabilities are needed to accumulate a number of state-
ments of data usage (existing files, required outputs and response times, access con-
trol, etc.) and organize them in ways to support data structuring and performance
analysis. ISDOS [7] is a good step in this direction.

Structured Programming Extensions. Language features are needed to extend the con-
structs of structured programming in ways that accommodate asynchronous control.
Existing languages should be extended to easily accommodate structured program-
ming.

Online Analysis and Design Aids. Providing such capabilities would not only reduce
design concurrency problems in multiperson efforts but would also assure that the
design is in machine-readable form for easier analysis.

REFERENCES

1. R. C. McHenry, “Management concepts for top down structured programming,” IBM Corpora-
tion Technical Report No. FSC 73-0001, February 1973 revision.

2. H. Mills, “Top down programming in large systems,” in Debugging Techniques in Large Sys-
tems, Randall Rustrn (Ed.), Prentice-Hall, Englewood Cliffs, NJ, 41-55, 1971.

3. “HIPO: Design aid and documentation tool,” IBM Corporation, Armonk, NY, SR20-9413.
4. G.F. Weinberg, The Psychology of Computer Programming, Van Nostrand Reinhold, 1971.

5. “Structured walk-through: A project management tool,” IBM Corporation, Bethesda, Mary-
land, August 1973.

6. F. T. Baker, “Chief programmer team management of production programming,” /BM Systems
Journal, 11, 1, 1972.

18 Chapter 1 Software Architecture and Quality

7. D. Teichroew and H. Sayari, “Automation of system building,” Datamation, pp. 25-30, August
17, 1971.
8. J. D. Cougar, “Evolution of business system analysis techniques,” ACM Computing Surveys,
67-198, September, 1973.
9. F. W. Zurcher and B. Randell, Iterative Multilevel Modeling—A Methodology for Computer
System Design, in /[FIP Congress, Edinburgh, 1968.
10. D. L. Parnas, “More on simulation languages and design methodology for computer systems,”
in Proceedings Spring Joint Computer Conference, pp. 739—743, 1969.
11. R. M. Graham, G. L. Clancy, and D. B. DeVaney, “A software design and evaluation system,”
ACM Communications, 110-116, February, 1973.
12. E. L. Glaser, et al., “The LOGOS project,” Digest of Papers 72; Innovative Architecture Com-
pcon 72, IEEE, Catalog No. 72-CHO 59-3C, pp. 175-192, 1972.
13. E. W. Dijkstra, “Notes on structured programming,” in Structured Programming, Dahl, Dijk-
stra, and Hoare (Eds.), Academic Press, London, 1972.
14. H. D. Mills, “Structured programming in large systems,” IBM/FSD, Gaithersberg, November
1970.
15. C. Bohm and G. Jacopini, “Flow diagrams, Turing machines and languages with only two for-
mation rules,” ACM Communications, 9, 5, pp. 366371, 1968.
16. Software Development and Configuration Management Manual, TRW Systems Group, Redon-
do Beach, California, December 1973.
17. “Characteristics of software quality,” TRW Document No. 25201-6001-RU-00, TRW Systems
Group, Redondo Beach, California, 28 December 1973.
18. B. W. Boehm, “Some steps toward formal and automated aids to software requirements analy-
sis and design,” TRW Systems Group, Redondo Beach, California, November 1972.
19. “Information processing/data automation implications of Air Force command and control re-
quirements in the 1980’s,” U.S. Air Force, SAMSO/XRS-71-1, April 1972.
20. “Characteristics of software quality,” TRW Document No. 25201-60001-RU-OO, December 28,
1973.
21. B. W. Boehm, “Some steps toward formal and automated aids to software requirements analy-
sis and design,” to be presented at IFIP Congress 1974.
22. J. McGonagle, 4 Study of a Software Development Project, J. D. Anderson and Associates, Oc-
tober 1971.

APPENDIX. SOFTWARE SYSTEM DESIGN AND DEVELOPMENT:
TOP-DOWN, BOTTOM-UP, OR PROTOTYPE?

One difficulty which may occur in using the top-down structured programming approach
to software development is that of high-risk modules. If one proceeds too routinely
through a top-down structuring of a program, one may at times find oneself with a fifth-
level module that is supposed to “understand natural-language queries,” “process a
megabit of sensor information in two milliseconds,” or something equally impossible.
And, in coming up with an acceptable compromise for handling this module’s task, one
may have to rework all of the structure that was painstakingly worked out at levels 1, 2, 3,
and 4. It is such practical difficulties that have led same people to consciously reject the
top-down approach in favor of the bottom-up approach, and led others to advocate build-
ing a throw-away prototype before proceeding to develop the production-engineered soft-
ware system. However, in straightforward programming projects with no high-risk ele-
ments, the prototype approach would generally result in duplicated effort.

113

1-1 Software Design and Structuring 19

There is a formalism that can help determine how much bottom-up prototyping should
precede the top-down specification of the overall program structure. This is the statistical
decision theory approach, which takes explicit account of risk aspects. It is illustrated be-
low by an example.

The Statistical Decision Theory Approach—An Example

Suppose you are organizing a software project that has within it a requirement to process
30,000 bits of sensor data within 5 milliseconds. You have an algorithm that you are pret-
ty sure will work, and if you proceed top-down to develop the program and it works, you
will have to spend an estimated $40,000 in performance penalties, ending up with a loss
of $50,000 on the job. The other alternatives are (1) to develop the program initially with
the less efficient algorithm, accepting a loss of $10,000 on the project, or (2) to spend
$10,000 to quickly develop a bottom-level prototype and test it in a way that gives a much
stronger assurance, though no guarantee, that it will work in practice if it passes the tests.
How do you decide what to do?

Using statistical decision theory, you would begin by quantifying such words as “pret-
ty sure” and “stronger” into probabilistic terms. This is a very subjective step, but there
are various techniques involving expert polling that can help. To begin with, let us sup-
pose that you established a probability of 0.65 that the efficient algorithm would work.
From this, we can see that the expected value of proceeding top-down with the efficient
algorithm (Approach A) is:

0.65($30,000) + 0.35(-$50,000) = $2,500

which is clearly better than the $10,000 loss associated with proceeding top-down with
the less efficient algorithm (Approach B). However, the positive expected value using
Approach A is not completely reassuring, as most software performer organizations have
a highly asymmetric utility function such as that shown in Figure 5. It is generally fairly
linear on the profit side, but drops off steeply if the project begins to encounter losses.
Thus, the expected utility of Approach A is more like

0.65(0.4) + 0.35(~0.9) = —0.055

which is, again, clearly better than the —0.4 utility resulting from Approach B, but still not
very satisfactory.

In order to evaluate the expected value and utility of the bottom-level prototype ap-
proach (Approach C), we first need to estimate the effectiveness of the prototype as a pre-
dictor of the outcome of the success of the project. We do this by estimating two probabil-
ities:

1. The probability that the prototype is successful, given that the project is tractable.
Suppose we estimate this as 0.95; that is, 5% of the time, the prototype would be
badly done and fail, but the project would succeed if attempted.

2. The probability that the prototype is successful, but that the project would fail (due
perhaps to problems of scale, or unrepresentativeness of the prototype). Suppose we
estimate this as 0.15.

20 Chapter 1 Software Architecture and Quality

Utility U (P)

Profit P

+20 +40 +$60K

Figure 5. Utility function for software project outcome.

Then we can use Bayes’ formula to calculate the probability that the project will suc-
ceed, given that the prototype succeeds:

- (0.95)(0. 65) . 0617
(0.95)(0.65) + (0.15)(0.35) 0.670

Thus, the expected value associated with Approach C is:

=0.92

0.670[0.92($30K) + 0.08(~$50K)] + 0.330(~$10K) — $10K = $2.5K

where 0.670 is the probability of the prototype being successful and the decision being
made to use the efficient algorithm. The expected utility is

0.670[0.92U($20K) + 0.08 U(-$60K)]+ 0.330U(~20K) = +0.009.

Thus, in this situation, an expenditure of $10K on a prototype can change the expected
utility of the outcome from —0.055 to +0.009.

If we can estimate costs and probabilities with reasonable accuracy, then the statistical
decision theory approach can help us steer a proper course between top-down, bottom-up,
and prototype activities. Currently, given the scanty firm knowledge we have on software
cost estimation, and our lack of experience in expressing possible software outcomes in
probabilistic terms, the accuracy of the estimates will not support cookbook applications
of the method. However, it still has considerable value as a conceptual framework for
software development decision making, and provides another reason to press for more
collection and analysis of quantitative software data to support cost estimation.

