
IIS 7 and ASP.NET
Integrated Architecture

Internet Information Services 7.0 (IIS 7) is the latest version of Microsoft Web server. IIS 7 has gone
through significant architectural changes since the last version. The most notable change for
ASP.NET developers is the deep integration of the IIS 7 and ASP.NET framework. This provides
both ASP.NET developers and IIS 7 administrators with an integrated programming environment
that allows them to implement features and functionalities that were not possible before. The main
goal of this chapter is twofold. First, it covers the IIS 7 package updates and their constituent fea-
ture modules, discusses five different IIS 7 setup options, and shows you how to use each option
to custom-build your own Web server from these package updates. Second, it provides you with
an overview of the IIS 7 and ASP.NET integrated architecture and its constituent systems, setting
the stage for the next chapters where you’ll dive into the details of this integrated architecture and
programming framework.

Modular Architecture of IIS 7
The main priority of the Microsoft IIS team for IIS 6.0 was to improve its security, performance,
and reliability. For that reason, modularity and extensibility didn’t make it to the list of top priori-
ties for IIS 6.0. That said, IIS 6.0 introduced a very important notion: selectively disabling IIS 7 fea-
tures such as ISAPI extensions and CGI components. One of the main problems with the earlier
versions of IIS was that all features of IIS had to be installed and enabled. There was no way to dis-
able features that your application scenario did not need.

IIS 6.0 enables only static file serving by default on a clean install of the Web server. In other
words, dynamic features such as ISAPI extensions and CGI components are disabled by default
unless the administrator explicitly enables them. Such customization of the Web server allows
you to decrease the attack surface of your Web server by giving attackers fewer opportunities for
attacks.

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

Disabling unwanted features was the first step toward the customizability of IIS. However, this step
didn’t go far enough because IIS 6.0 still installs everything, which introduces the following problems:

❑ Disabled features consume server resources such as memory, and therefore increase the Web
server footprint.

❑ Administrators still need to install service packs that address bugs in the disabled features, even
though they’re never used.

❑ Administrators still need to install software updates for the disabled features.

In other words, administrators have to maintain the service features that are never used. All these prob-
lems stem from the fact that the architecture of IIS 6.0 is relatively monolithic. The main installation
problem with a monolithic architecture is that it’s based on an all-or-nothing paradigm where you have
no choice but to install the whole system.

IIS 7.0 is modular to the bone! Its architecture consists of more than 40 feature modules from which you
can choose. This allows you to install only the needed feature modules to build a highly customized,
thin Web server. This provides the following important benefits:

❑ Decreases the footprint of your Web server.

❑ Administrators need to install only those service packs that address bugs in the installed feature
modules.

❑ Administrators need to install software updates only for the installed feature modules.

So, administrators have to maintain and service only installed feature modules.

Next, I provide an overview of the IIS 7 feature modules or components. These feature components are
grouped into what are known as functional areas, where each functional area maps to a specific IIS pack-
age update. That is, each package update contains one or more feature modules or components. As
you’ll see later, you’ll use these package updates to custom-build your Web server.

The top-level IIS update is known as IIS-WebServerRole, and contains the updates shown in Figure 1-1.
As the name suggests, the IIS-WebServerRole update enables Windows Server 2008 and Windows Vista
to adopt a Web server role, which enables them to exchange information over the Internet, an intranet, or
an extranet.

Figure 1-1

IIS-WebServerRole

IIS-WebServer

IIS-WebServerManagementTools

IIS-FTPPublishingService

2

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 2

IIS-WebServer
The IIS-WebServer update contains five updates as shown in Figure 1-2. As you can see, this update con-
tains the feature modules that make up the core functionality of a Web server.

Figure 1-2

IIS-CommonHttpFeatures
The IIS-CommonHttpFeatures update contains the feature modules or components described in the fol-
lowing table:

Feature Module Description

IIS-StaticContent Use this module to enable your Web server to service requests for static
content. Web site resources with file extensions such as .html, .htm,
.jpg, and the like that can be serviced without server-side processing
are known as static content.

IIS-DefaultDocument This module allows you to specify a Web resource that will be used as
the default resource when the request URL does not contain the name
of the requested resource.

IIS-DirectoryBrowsing Use this module to enable your Web server to display the contents of a
specified directory to end users when they directly access the directory
and no default document exists in the directory.

IIS-HttpErrors Use this module to enable your Web server to support sending custom
error messages to end users.

IIS-HttpRedirect Use this module to enable your Web server to support request redirects.

IIS-WebServer

IIS-CommonHTTPFeatures

IIS-ApplicationDevelopment

IIS-HealthAndDiagnostics

IIS-Security

IIS-Performance

3

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 3

IIS-ApplicationDevelopment
The IIS-ApplicationDevelopment update contains the feature modules that support different application
types as described in the following table:

IIS-HealthAndDiagnostics
The IIS-HealthAndDiagnostics package update contains the feature modules described in the following
table:

Feature Module Description

IIS-HttpLogging Use this module to enable your Web server to log Web site activities.

IIS-LoggingLibraries Use this module to install logging tools and scripts on your Web server.

IIS-RequestMonitor Use this module to enable your Web server to monitor the health of the
Web server and its sites and applications.

IIS-HttpTracing Use this module to enable your Web server to support tracing for
ASP.NET applications and failed requests.

IIS-CustomLogging Use this module to enable your Web server to support custom logging
for the Web server and its sites and applications.

IIS-ODBCLogging Use this module to enable your Web server to support logging to an
ODBC-compliant database.

Feature Module Description

IIS-ASPNET Use this module to enable your Web server to host ASP.NET applications.

IIS-NetFxExtensibility Use this module to enable your Web server to host managed modules.

IIS-ASP Use this module to enable your Web server to host ASP applications.

IIS-CGI Use this module to enable your Web server to support CGI executables.

IIS-ISAPIExtensions Use this module to enable your Web server to use ISAPI extension mod-
ules to process requests.

IIS-ISAPIFilter Use this module to enable your Web server to use ISAPI filter to cus-
tomize the server behavior.

IIS-ServerSideIncludes Use this module to enable your Web server to support .stm, .shtm, and
.shtml include files.

4

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 4

IIS-Security
The IIS-Security package update contains the feature modules described in the following table:

IIS-Performance
The following table describes the performance feature modules:

Performance Feature Module Description

IIS-HttpCompressionStatic Use this module to enable your Web server to compress static con-
tent before sending it to the client to improve the performance.

IIS-HttpCompressionDynamic Use this module to enable your Web server to compress dynamic
content before sending it to the client to improve the performance.

Security Feature Module Description

IIS-BasicAuthentication Use this module to enable your Web server to sup-
port the HTTP 1.1 Basic Authentication scheme. This
module authenticates user credentials against
Windows accounts.

IIS-WindowsAuthentication Use this module to enable your Web server to
authenticate requests using NTLM or Kerberos.

IIS-DigestAuthentication Use this module to enable your Web server to sup-
port the Digest authentication scheme. The main dif-
ference between Digest and Basic is that Digest
sends password hashes over the network as opposed
to the passwords themselves.

IIS-ClientCertificateMappingAuthentication Use this module to enable your Web server to
authenticate client certificates with Active Directory
accounts.

IIS-IISCertificateMappingAuthentication Use this module to enable your Web server to map
client certificates 1-to-1 or many-to-1 to a Windows
security identity.

IIS-URLAuthorization Use this module to enable your Web server to per-
form URL authorization.

IIS-RequestFiltering Use this module to enable your Web server to deny
access based on specified configured rules.

IIS-IPSecurity Use this module to enable your Web server to deny
access based on domain name or IP address.

5

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 5

IIS-WebServerManagementTools
Figure 1-3 presents the Web server management feature modules.

Figure 1-3

The following table describes the feature modules contained in the IIS-WebServerManagementTools
update:

The following table presents the feature modules in the IIS-IIS6ManagementCompatibility update:

Feature Module Description

IIS-ManagementConsole This module installs the Web Server Management Console, which
allows administration of local and remote IIS Web servers.

IIS-ManagementScriptingTools Use this module to enable your Web server to support local Web
server management via IIS configuration scripts.

IIS-ManagementService Use this module to enable your Web server to be managed
remotely via Web Server Management Console.

IIS-WebServer

IIS-CommonHTTPFeatures

IIS-ApplicationDevelopment

IIS-HealthAndDiagnostics

IIS-Security

IIS-CommonHTTPFeatures

IIS-ApplicationDevelopment

IIS-HealthAndDiagnostics

IIS-Security

IIS-WebServerManagementTools

IIS-ManagementConsole

IIS-ManagementScriptingTools

IIS-ManagementService

IIS-IIS6ManagementCompatibility

IIS-Metabase

IIS-WMICompatibility

IIS-LegacyScripts

IIS-LegacySnapIn

6

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 6

IIS-FTPPublishingService
The feature modules contained in the IIS-FTPPublishingService package update are discussed in the fol-
lowing table.

At the time of this writing, Microsoft announced that it would be releasing a significantly enhanced IIS
7 FTP server for Longhorn and (as a separate download) for Vista.

WAS-WindowsActivationService
Figure 1-4 presents the feature modules in the WAS-WindowsActivationService package update. These
modules provide the base infrastructure for process activation and management.

Figure 1-4

IIS-WebServerRole

IIS-WebServer

IIS-WebServerManagementTools

IIS-FTPPublishingService

WAS-WindowsActivationService

WAS-ProcessModel

WAS-NetFxEnvironment

WAS-ConfigurationAPI

Feature Module Description

IIS-FTPServer Use this module to install the FTP service.

IIS-FTPManagement Use this module to install the FTP Management Console.

Feature Module Description

IIS-Metabase Use this module to enable your Web server to support metabase
calls to the new IIS 7 configuration store.

IIS-WMICompatibility Use this module to install the IIS 6.0 WMI scripting interfaces to
enable your Web server to support these interfaces.

IIS-LegacyScripts Use this module to install the IIS 6.0 configuration scripts to
enable your Web server to support these scripts.

IIS-LegacySnapIn Use this module to install the IIS 6.0 Management Console
to enable administration of remote IIS 6.0 servers from this
computer.

7

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 7

Extensible Architecture of IIS 7
IIS 6.0 allows you to extend the functionality of the Web server by implementing and plugging in your
own custom ISAPI filter and extension modules. Unfortunately, ISAPI suffers from fundamental prob-
lems such as:

❑ Because ISAPI is not a convenient or friendly API, writing an ISAPI filter or extension module is
not an easy task to accomplish. It can take a lot of time and tends to be error-prone.

❑ ISAPI is not a managed API, which means that ASP.NET developers cannot benefit from the rich
features of the .NET Framework when they’re writing ISAPI filter and extension modules.

IIS 7.0 has replaced ISAPI with a new set of convenient object-oriented APIs that make writing new fea-
ture modules a piece of cake. These APIs come in two different flavors: managed and native. The native
API is a convenient C++ API that you can use to develop and plug native modules into the core Web
server. The managed API, on the other hand, allows you to take full advantage of the .NET Framework
and its rich environment. This allows both ASP.NET developers and IIS 7 administrators to use conven-
ient ASP.NET APIs to extend the core Web server.

IIS 7 and ASP.NET Integrated Request
Processing Pipeline

Take a look at the request processing model of IIS 6.0 for processing requests for ASP.NET content as
shown in Figure 1-5. Notice that this figure contains two different request processing pipelines: IIS 6.0
and ASP.NET. Each request processing pipeline is a pipeline of components that are invoked one after
another to perform their specific request processing tasks. For example, both pipelines contain an
authentication component, which is called to authenticate the request.

Figure 1-5

Request

IIS6.0 Request Processing Pipeline

Preprocessing

Authentication

…

Request

Handler Mapper

Postprocessing

…

Response

Request

ASP.NET Request Processing Pipeline

Preprocessing

Authentication

…

Request

Handler Mapper

Postprocessing

…

Response

8

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 8

As Figure 1-5 shows, the incoming request first goes through the IIS 6.0 pipeline. At some point along
this pipeline, IIS 6.0 uses its metabase to map the request to a particular handler. The requests for
ASP.NET resources such as ASP.NET pages are mapped to the aspnet_isapi.dll handler. This han-
dler then loads the CLR and the target ASP.NET application, if they haven’t already been loaded.
This is where the ASP.NET request processing pipeline kicks in.

At the beginning of the request, ASP.NET allows the components in its request processing pipeline to
register one or more event handlers for one or more ASP.NET application-level events. ASP.NET then
fires these events one after another and calls these event handlers to allow each component to perform
its specific request processing task. At some point along the pipeline, ASP.NET uses the configuration
file to map the request to a particular handler. The main responsibility of the handler is to process the
request and generate the appropriate markup text, which will then be sent back to the requesting
browser.

Having two separate pipelines, that is, IIS and ASP.NET pipelines working on the same request, intro-
duces the following problems:

❑ There’s a fair amount of duplication. For example, both pipelines contain an authentication
component, which means that the same request gets authenticated twice.

❑ Because the ASP.NET pipeline begins after the IIS pipeline maps the request to the
aspnet_isapi extension module, the ASP.NET pipeline has no impact on the IIS pipeline steps
prior to handler mapping.

❑ Because the rest of the IIS pipeline steps don’t occur until the ASP.NET pipeline finishes, the
ASP.NET pipeline has no impact on the IIS pipeline steps either.

❑ Because the ASP.NET pipeline kicks in only when the IIS pipeline maps the request to the
aspnet_isapi extension module, and because this mapping is done only for requests
to ASP.NET content, the ASP.NET pipeline components cannot be applied to requests to
non-ASP.NET content such as .jpg, .js, asp, CGI, and the like. For example, you cannot
use the ASP.NET authentication and authorization modules to protect the non-ASP.NET con-
tents of your application.

IIS 7 has changed all that by removing the aspnet_isapi extension module and combining the
ASP.NET and IIS pipelines into a single integrated request processing pipeline as shown in Figure 1-6.

This resolves all the previously mentioned problems as follows:

❑ The integrated pipeline does not contain any duplicate components. For example, the request is
authenticated once.

❑ The ASP.NET modules are now first-class citizens in the integrated pipeline. They can come
before, replace, or come after any native IIS 7 modules. This allows ASP.NET to intervene at any
stage of the request processing pipeline.

❑ Because the integrated pipeline treats managed modules like native modules, you can apply
your ASP.NET managed modules to non-ASP.NET content. For example, you can use the
ASP.NET authentication and authorization modules to protect the non-ASP.NET contents of
your application, such as asp pages.

9

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 9

Figure 1-6

IIS 7 and ASP.NET Integrated
Configuration Systems

In IIS 6.0, two separate configuration systems govern the IIS and ASP.NET pipelines. These configura-
tion systems store their configuration settings in two different storage media, with two different
schemas. IIS configuration settings are stored in the IIS 6.0 metabase, whereas ASP.NET configuration
settings are stored in ASP.NET configuration files. Such separation of configuration systems makes the
task of administering the Web server and its sites and applications much more complex and trouble-
some. For one thing, there’s no way to delegate site- and application-specific IIS configuration settings to
site and application administrators without compromising the integrity and security of the Web server,
because all IIS configuration settings are centralized. This also takes away from the ASP.NET developers
the opportunity to tailor the IIS configuration settings toward their own applications. Having two sepa-
rate configuration systems for IIS and ASP.NET configuration settings also means that you have to learn
two separate APIs to programmatically access and edit these configuration settings.

IIS 7 has changed all that. Having a single integrated pipeline made it possible for the IIS 7 team to intro-
duce a single integrated configuration system for both IIS and ASP.NET settings. Because this integrated
configuration system is an extension of the ASP.NET configuration system, the existing ASP.NET config-
uration files can easily merge into the new integrated configuration system with a little or no changes.

Request

Request

Response

Integrated Request Processing Pipeline

Preprocessing Modules

Handler Mapper

Postprocessing Modules

Authentication Module

Authorization Module

…

…

…

PageHandlerFactory

StaticFile

Compression Module

Logging Module

10

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 10

This integrated configuration system provides a lot of benefits to system administrators and developers
alike. For one thing, both IIS and ASP.NET configuration settings are stored in storage media with the
same schema. This is great news for ASP.NET developers because the new integrated schema is an
extension of the ASP.NET configuration schema. Another obvious benefit of the integrated configura-
tion system is that you can use the same set of APIs to programmatically access and set both IIS 7 and
ASP.NET configuration settings.

One of the great new features of the IIS 7 and ASP.NET integrated configuration system is its declarative
extensibility through a new integrated declarative schema extension markup language. Thanks to this
integrated markup language, you can extend this integrated configuration system to add support for
new configuration sections without writing a single line of imperative code such as C# or VB. This is a
departure from the imperative extensibility model of the ASP.NET configuration system, which requires
developers to write a fair amount of imperative code to extend the system.

IIS 7 and ASP.NET Integrated
Administration

Having two separate configuration systems for ASP.NET and IIS in IIS 6.0 also means having two sepa-
rate administration tools, GUIs, and APIs to administer and to manage them. Having a single integrated
configuration system made it possible for the IIS 7 team to introduce brand new administration or man-
agement tools, GUIs, and APIs that make the task of server, site, and application administration a whole
lot easier. This allows you to use the same integrated management tools, GUIs, and APIs to configure
ASP.NET and IIS.

Two very important components of the IIS 7 and ASP.NET integrated administration are the integrated
graphical management system and the integrated imperative management system. This book covers both
of these systems and their extensibility models in detail. You will learn how to extend these two systems
to add graphical and imperative management support for your own custom configuration sections.

Building a Customized Web Server
IIS 7 setup is completely modular, allowing you to custom-build your Web server from a list of more
than 40 available feature modules. This ensures that your Web server contains only the feature modules
you need, thereby decreasing the attack surface and footprint of your server. In this section, I walk you
through the steps that you need to take to build your very own custom Web server on Windows Vista
(including Windows Vista Home Premium, Windows Vista Professional, and Windows Vista Ultimate
editions) and Windows Server 2008 operating systems.

In general, there are five different IIS 7 setup options:

❑ Windows Features dialog (Windows Vista only)

❑ Server Manager tool (Windows Server 2008 only)

❑ pkgmgr.exe command-line tool (both Windows Vista and Windows Server 2008)

11

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 11

❑ Unattended (both Windows Vista and Windows Server 2008)

❑ Upgrade (both Windows Vista and Windows Server 2008)

Before drilling down into the details of these five setup options, you need to understand the dependen-
cies between the installable updates.

Update Dependencies
When you’re installing an update, you must also install the updates that it depends on. In general, there
are two types of dependencies: interdependencies and parent-dependencies. The following table pres-
ents the update interdependencies:

Every update also depends on its parent update. For example, to install IIS-WebServer, you must also
install its parent update, IIS-WebServerRole.

Update Depends On

IIS-WebServer WAS-ProcessModel

IIS-ASP IIS-ISAPIExtensions
IIS-RequestFiltering

IIS-ASPNET IIS-DefaultDocument
IIS-NetFxExtensibility
WAS-NetFxEnvironment
IIS-ISAPIExtensions
IIS-ISAPIFilter
IIS-RequestFiltering

IIS-NetFxExtensibility WAS-NetFxEnvironment
IIS-RequestFiltering

IIS-ManagementService IIS-WebServer
IIS-ManagementConsole
WAS-NetFxEnvironment
WAS-ConfigurationAPI

IIS-ManagementConsole WAS-ConfigurationAPI

IIS-ManagementScriptingTools WAS-ConfigurationAPI

IIS-LegacyScripts IIS-Metabase
IIS-WMICompatibility

12

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 12

Windows Features Dialog
Follow these steps to use the Windows Features dialog to set up and custom-build your Web server on
Windows Vista:

1. Launch the Control Panel.

2. Click the “Programs” option if Control Panel is displayed in its default view, or the “Programs
and Features” option if Control Panel is displayed in Classic View.

3. Click “Turn on or off Windows features” to launch the Windows Features dialog shown in
Figure 1-7. If you haven’t logged in as the built-in Administrator account, Vista will launch
the User Account Control dialog. The content of this dialog depends on the privileges of your
account. If your account has administrator privileges, the dialog will just ask you for confirma-
tion. If your account does not have administrator privileges, the dialog will present you with
the list of accounts with administrator privileges asking you to choose one and enter the
required password. Keep in mind that you’ll get this dialog even if you have logged in as an
account that has administrator privileges. This is one of the new security features.

Figure 1-7

4. Expand the Internet Information Services option to see the tree of update nodes discussed in the
previous sections. You can install or uninstall each update by simply toggling it on or off and
finally clicking the OK button. Notice that when you select an update, its parent update and the
update that it depends on are automatically selected.

13

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 13

As you can see, building your own custom Web server with the Windows Features dialog is a piece of
cake. You don’t have to worry about the update dependencies; it’s all taken care of behind the scenes. As
you’ll see in the following section, you don’t have this luxury if you use the other two IIS 7 installation
options.

Server Manager
In this section, I show you how to use the Server Manager tool to build your customized Web server on
the Windows Server 2008 operating system. Before doing so, you need to familiarize yourself with three
basic Windows Server 2008 terms known as roles, role services, and features.

Every server provides its clients with a set of services. These services are grouped into what are known
as roles. Installing a server role means installing one or more role services that belong to the role. In
other words, when you’re installing a server role, you don’t have to install all its associated role services.

Here is an example: There is a server role known as Web Server, which enables a server to exchange
information over the Internet, an intranet, or an extranet. Another example of a server role is UDDI
Services. This role enables a server to provide its clients with Universal Description, Discovery, and
Integration (UDDI) services to exchange information about Web services over the Internet, an intranet,
or an extranet.

A feature is a piece of software that does not belong to any particular role, but it provides services to one
or more server roles and their associated role services. An example of a feature is the Windows Process
Activation Service. This service enables the server in the Web Server role to process requests made
through all kinds of communication protocols, such as TCP or HTTP.

A role, role service, or feature may depend on other roles, role services, and features. For example, the
UDDI Services depend on the Web Server role for the actual exchange of information over the Internet,
intranet, or extranet. When you attempt to install a role, role service, or feature that depends on other
roles, role services, and features, the Server Manager prompts you to approve the installation of the
roles, role services, and features on which the role, role service, or feature being installed depends.

Now back to the business at hand, which is building a customized Web server. Take one of the following
steps to launch the Server Manager:

❑ Select Start ➪ All Programs ➪ Administrative Tools ➪ Server Manager from Administrative
Tools to launch the Server Manager tool shown in Figure 1-8.

❑ First launch the Control Panel, double-click the Administrative Tools icon in the Control Panel,
and then double-click the Server Manager to launch the Server Manager tool shown in Figure 1-8.

As Figure 1-8 shows, the left pane contains a node named Server Manager, which in turn contains a child
node named Roles. As just discussed, a server can be in one or more roles. As you can see from Figure 1-8,
in a clean install of Windows Server 2008 the server is originally in no roles. The role that you’re inter-
ested in is the Web Server role. Recall that this is the role that allows the server to share information on
the Internet, an intranet, or an extranet. The first order of business is to launch a wizard named Add
Roles to add this role to your server.

14

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 14

Figure 1-8

To launch the Add Roles Wizard, do one of the following:

❑ Click the Add Roles link button in Roles Summary panel.

❑ Right-click the Roles node in the Server Manager panel and select Add Roles.

❑ Click the Action menu and select Add Roles.

The first page of the Add Roles Wizard provides you with some preliminary instruction. Read the
instructions and make sure your account meets the specified requirements as shown in Figure 1-9.

Figure 1-9

Machine Level 1 (machine.config and root web.config)

Machine Level 2 (applicationHost.config)

Site Level (web.config)

Application Level (web.config)

Virtual Directory Level (web.config)

15

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 15

Click the Next button to go to the page shown in Figure 1-10.

Figure 1-10

Check the Web Server (IIS) item shown in Figure 1-10. It should show you the popup shown in
Figure 1-11 informing you that you need to install the Windows Process Activation Service. Click the
Add Required Features button on this popup to install the Windows Process Activation Service.

Now click Next to go the next page, which provides some preliminary information. Click Next again to
go to the page shown in Figure 1-12.

Notice that some package updates are already selected. These updates form the default installation of
the Web server. Note that when you turn on an update that depends on other updates, the Server
Manager tool pops up a message showing the updates on which the selected update depends and
informing you that you need to install the dependent updates as well. For example, when you check the
ASP.NET option, the Server Manager pops up the message shown in Figure 1-13.

After you’re done with toggling on the desired updates, click the Next button in Figure 1-13 to move on
to the confirmation page shown in Figure 1-14, which lists all the selected updates and their dependent
updates. At this point these updates have not been installed yet.

16

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 16

Figure 1-11

Figure 1-12

17

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 17

Figure 1-13

Figure 1-14

18

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 18

Click the Install button in Figure 1-14 to have Server Manager install the specified updates. This will take
you to the progress page where you have to wait for a while for the updates to be installed. When the
installation completes, the Add Roles Wizard automatically takes you to the page shown in Figure 1-15.

Figure 1-15

If you click the Close button in Figure 1-15, you’ll be back to the Server Manager shown in Figure 1-16. Note
that the Roles nodes on the left panel and the middle panel now contain a role named Web Server (IIS).

Figure 1-16

19

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 19

Command-Line Setup Option
Windows Vista and Windows Server 2008 come with a new command-line tool named pkgmgr.exe that
you can use to custom install IIS 7. The following table describes the available options on this command-
line tool:

When you use the pkgmgr.exe command-line tool to install specified updates, you must also explicitly
specify and install the updates that your specified updates depend on. For example, if you decide to
install the IIS-CommonHttpFeatures update, you must also install its parent update, that is, IIS-
WebServer. To install the IIS-WebServer update you must also install its parent update, IIS-
WebServerRole, and the update that it depends on, WAS-ProcessModel (see the update dependencies
table). To install the WAS-ProcessModel update you must also install its parent update, WAS-
WindowsActivationService update:

start /w /iu:IIS-WebServerRole;WAS-WindowsActivationService;WAS-ProcessModel;
IIS-WebServer;IIS-CommonHttpFeatures

Notice that if you don’t specify the start /w option, the command-line tool will return immediately
and process everything in the background, which means that you won’t be able to see when the setup is
completed.

Unattended Setup Option
As mentioned earlier, the pkgmgr.exe command-line tool comes with the /n:unattend.xml option.
unattend.xml is the XML file that contains the updates to be installed or uninstalled. This XML file
provides you with two benefits. First, you don’t have to directly enter the names of the updates on
the command line. Second, you can store this file somewhere for reuse in other Web server machines.
This XML file must have the same schema as the XML file shown in Listing 1-1. This listing installs
the IIS-CommandHttpFeatures update and the updates that it depends on as discussed in the previous
section.

Option Description

/iu:update1;update2… Run the tool with this option to install the specified updates. Notice
that the update list contains a semicolon-separated list of update
names discussed in the previous sections.

/uu:update1;update2… Run the tool with this option to uninstall the specified updates. Notice
that the update list contains a semicolon-separated list of update
names discussed in the previous sections.

/n:unattend.xml Run the tool with this option to install or uninstall the updates speci-
fied in the specified unattend.xml file. I cover this file in the follow-
ing section.

20

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 20

Listing 1-1: The unattend.xml File

<?xml version=”1.0” ?>
<unattend xmlns=”urn:schemas-microsoft-com:unattend”
xmlns:wcm=”http://schemas.microsoft.com/WMIConfig/2002/State”>
<servicing>
<!--Install a selectable update in a package that is in the
Windows Foundation namespace-->
<package action=”configure”>
<assemblyIdentity name=”Microsoft-Windows-Foundation-Package”
version=”6.0.5308.6” language=”neutral” processorArchitecture=”x86”
publicKeyToken=”31bf3856ad364e35” versionScope=”nonSxS” />

<selection name=”IIS-WebServerRole” state=”true”/>
<selection name=”WAS-WindowsActivationService” state=”true”/>
<selection name=”WAS-ProcessModel” state=”true”/>
<selection name=”IIS-WebServer” state=”true”/>
<selection name=”IIS-CommonHttpFeatures” state=”true”/>

</package>
</servicing>

</unattend>

Notice that the <servicing> element contains one or more <selection> child elements, and each
child element specifies a particular update. The <selection> child element features two attributes
named name and state. The name attribute contains the update name to be installed or uninstalled. Set
the state attribute to true to install or false to uninstall the specified update.

Upgrade
If you’re upgrading from Windows XP to Windows Vista, or from Windows Server 2003 to Windows
Server 2008, and if your old operating system has IIS installed, the Windows Vista or Windows Server
2008 setup automatically scans through the capabilities of the installed IIS and ensures that the new
install of IIS 7 supports those features and capabilities. Unfortunately, due to the monolithic architecture
of IIS 5.1 and IIS 6.0, this installation ends up installing almost all of the feature modules of IIS 7. I highly
recommend that after the upgrade you use one of the previously discussed installation options to unin-
stall the updates that you do not need to decrease the attack surface and footprint of your Web server.

Summary
This chapter first covered the IIS 7 package updates and their constituent feature modules, and showed
you how to custom-build your own Web server from the desired package updates to decrease the foot-
print of your Web server. The chapter then provided in-depth coverage of five different IIS7 setup
options. The chapter also gave an overview of the main systems that make up the IIS7 and ASP.NET
integrated infrastructure. As discussed, one of these systems is the IIS7 and ASP.NET integrated configu-
ration system, which will be discussed thoroughly in the next chapter.

21

Chapter 1: IIS 7 and ASP.NET Integrated Architecture

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 21

52539c01.qxd:WroxPro 9/17/07 6:51 PM Page 22

