CHAPTER 1

NORMAL PREDICTION INTERVALS

1.1 OVERVIEW

The fundamental problem in groundwater monitoring is the prediction of future measure-
ments based on a background sample of historical measurements [Davis and McNichols,
1987; Gibbons, 1987b]. In some cases, the background sample may consist of repeated
measurements from a collection of wells located upgradient of the facility, In other cases,
the background sample may consisi of repeated measurements from a single monitoring
well to which the consistency of future measurements will be compared (i.e., intra-well
comparison). In either case, if the number of future comparisons is finite and known, we
may wish to compute an interval that witl contain alt future measurements with a given level
of confidence (e.g., 95% confidence). The most critical problem is correctly defining the
number of future comparisons and constructing the corresponding statistical decision rule
50 that the confidence level pertains to the site as a whole. As will be shown, the number
of future comparisons includes the total number of constituents and monitoring wells for
which a statistical test is to be performed. To assume any less will result in countless site
assessments and possible corrective action due te chance alone,

To provide a statistical foundation, denote the number of future comparisons as k£ and
the confidence level 1 — c, where « represents the false positive rate or Type 1 error
rate of the decision rule. The false positive rate is the rate at which we would reject a
new value if in fact it came from the same distribution as the background measurements.
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The appropriate statistical interval for this application is known as a prediction interval
[Davis and McNichols, 1987; Gibbons, 1987b; Gibbons and Baker, 1991]. A synonym
for prediction interval is a beta-expectation tolerance interval, in that on average, the new
measurements will be contained with confidence Tevel 1 — ¢,

In the context of groundwater monitoring, prediction intervals play an important role
because we often know the aumber of statistical comparisons made on each monitoring
event, and for regulatory purposes, we must include all measurements or risk a potentially
costly site assessment. However, what constitutes the number of future measurements is
not always lrivial. Is it the number of monitoring wells, the number of constituents at
a parlicular monitoring well or the combination of both? Should the number of future
comparisons be restricted to those performed on the next single monitoring event or for
all future monitoring events? To answer these questions, it is important to understand
the consequences of a false positive decision and the impact the choice of & has on the
false positive and negative rates of the statistical test. The false negutive rate describes
the frequency of failure to reject a new measurement when it has come from a different
distribution than the background measurements. To better understand the answers to these
questions, let us begin with the simplest form of prediction limit: a prediction limit for the
next single measurement from a normal distribution.

1.2 PREDICTION INTERVALS FOR THE NEXT SINGLE MEASUREMENT
FROM A NORMAL DISTRIBUTION
Assume we have collected n = & background waler quality measurements for total organic

carbon {TOC) levels, dencted 1, . . ., ws. The sample mean and sample standard deviation
of these eight measurements are given by

E:Z% (1.1)

and

(1.2)

On the next quarterly monitoring event, we intend to collect a new TOC measurement
from the same well or a corresponding compliance well located downgradient of the
facility. Based on the previous eight samples, what interval will contain the next single
TOC measurement with (1 — a}100% confidence?

To construct such an interval, we must begin by examining the sources of uncertainty
in this problem. First, notc that  and s are mercly sample-based estimates of the true
population mean and standard deviation g and . If we had measured all groundwater in
the area for that lime period, ¥ would equal x4 and 5 would equal & however, we only
have eight available measurements; hence, we will have coansiderable uncertainty in our
estimates of ;¢ and . Fortunately, we can quantify our uncertainty in & by noting that the
sample mean 7 is distributed normally with mean g and standard deviation o/ /7 (i.e.,
F ~ N, % /n]). Second, note that the new measurement 2., also has an associated
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measurement error ¢ for which we have a sample-based estimate s and is independent of
the prior measurements. Combining thesc (wo sources of uncertainty and seclecting the
(1 — e/2)100% point of Student’s é-distribution with n» — 1 degrees of freedom vields the
interval

, ,
Tditp_11-amyfs+ Pl (1.3)

which can be expressed in the more familiar form

{ 1
.’Eﬂ:t[n_l,l_a/g]s l+; . (1.4)

This interval will provide 100(1 — o }% cenfidence of including the next future measurement
from the normal distribution for which we have a sample of # previous measurements.

Frequently, however, we are most interested in providing an upper limit for the new mea-
surement, since, for example, a TOC measurement thai js too low poses no environmental
threat. In this case, we compute the one-sided normal prediction limit as

1
7+ t[n_l‘l_ﬂls-\/l += (1.5)
This prediction limil provides (1 — «)100% confidence of not being exceeded by the
next single measurement,
Example 1.1

Consider the data in Table 1.1 for TOC measurements from a single well over two years
of quarterly monitoring.

Table 1.1: Eight Quarterly TOC Measurements

Year Quarter TOC in mgfL
1992 { 10.0
1492 2 115
1992 3 Lo
19492 4 10.6
1943 1 104
1993 2 120
1993 3 i1.3
L5993 4 107

Inspection of the data reveals no obvious trends, and these data have mean & = 11.0
and standard deviation s = (.61. The upper 95% point of Student’s ¢ distribution with
it —1 =8 —1 = 7 degrees of freedom is t[7 1 _ y5) = 1.895; therefore, the upper 95%
confidence normal prediction limit is given by

i
11.0 + 1.895(0.61)1/1 + 5 = 12.23 rog/L,
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which is larger than any of the observed values. Had we required 99% coafidence of
including the next single measurement, the upper 99% point of Student’s £ distribution
on 7 degrees of freedom is #[7 1) = 2.998; therefore, the upper 99% confidence normal
prediction limit is given by

1
11.0+2.998(0.61)1/1+§ = 12.94 mg/L .

These limits (i.e., 12.23 mg/L and 12.94 mg/1.} provide 95% and 99% confidence respec-
tively, of inchuding the next single observation from a normal distribution for which eight
previous measurements have been obtained with observed mean 11.0 mg/L and standard
deviation (.61 mg/L..

1.3 PREDICTION LIMITS FOR THE NEXT k MEASUREMENTS FROM A

NORMAL DISTRIBUTION

In practice, it is rare to have an application in which only a single future measurement
requires evaluation. Typically, TOC measurements are obtained from a series of downgra-
dient or compliance wells and must be simultanecusly evatuated. The simplest approach
is to assume independence. Under independence, if the probability of a false positive
result for a single comparison is g, the probability of at least one of & comparisons being
significant by chance alone is

a*=1-(1-o. (1.6)

Here, " is the site-wide false positive rate since it simultaneously considers all &* com-
parisons being performed on a given monitoring event. At this point, we consider &% to
represent the total number of comparisons which is the product of the number of monitoring
wells and constituents (k* = kc¢). For example, with 5% confidence for an individual
comparison (1.e., & = .05) and &* = 10 comparisons, the probability of at least one significant
result by chance alone is

o =1—(1-.05)"= 40,

or a 40% chance of a statistically significant exceedance by chance alone. With 100
comparisons, a” = .99 or a 99% chance of a statistically significant exceedance by chance
alone. Since it is not uncommon for detection monitoring programs to have 20 or 30
monitoring wells, each monitored quarterly for 10 or 20 constituents (in some cases far
more}, the effect of these multiple comparisons on the site-wide false positive rate is
considerable. The likelihood of chance failure is near certainty. A facility with 25 wells,
each monitored for 20 constituents, will be performing S(H statistical tests per sampling
event. Even setting =01 will produce a probability of o = .09 or 2 99% chance of failing
at least one of those tests by chance alone. Since most state and federal regulations require
costly site assessments that may lead to corrective action on the basis of any significant
elevation of any constituent in any point of compliance well, the impact of an inflated
site-wide false positive rate is enormous.

One solution to this problem is to compute a prediction limit that will provide (T —
a*1100% confidence of including all k* future measurements. The simplest approach to
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this problem is through use of the Bonferroni inequality [see Miller, 1966; Chew. 19681,
noting that from (1.6}

ot
& = F .
Application of (1.7) reveals that in order to have a site-wide error rate at " = .05 when &~
= 10 comparisons are made requires that we test each comparison at the o = .0053% level.

The {1 — 2)100% prediction limit for the ncxt k* measurements from a normal distribution
is thercfore

(1.7

/ 1
E+ t[n—l,_l—rx”fk‘]s\/ 1+ e {1.8)

Table 1.2: Onec-Sided Values of Student’s ¢ Statistic 95% Overall Confidence for Back-

ground 7 =4 to 100 and k* = 4 to 50 Future Measurements

k™ = Tow! Mumber of Future Comparisons

n 3 10 i3 i) 5 ED) EL 0 a3 30
4 4.54 5.84 674 145 205 857 2.04 9.45 083 10,21
8 300 3.50 381 403 421 435 448 459 464 478
12 271 310 332 3.48 160 371 379 3.87 303 399
16 260 244 3.14 3.28 3.39 3.48 3.55 3.61 3467 an
20 254 246 3.04 317 3.27 335 342 348 3.53 3.57
24 2.50 281 298 310 3.20 327 334 3.39 344 3.48
28 247 277 294 3.06 EXE 3.22 3.28 3.33 3.38 342
32 243 274 291 30 U 3.18 3,24 329 33 3.37
16 2.44 272 2.88 300 308 315 321 3.26 330 3.34
4{} 243 271 287 298 306 313 318 323 3.27 331
a4 242 264 285 296 304 311 316 3121 3.25 329
48 240 268 284 2.95 303 3.09 315 219 3.24 327
52 240 2.68 283 293 301 308 313 318 3.22 3.26
56 240 267 282 2.02 300 3.07 12 317 321 324
60 239 266 2.81 29 3.00 3.06 300 3.16 320 3.23
64 239 266 2381 291 2.99 305 3.10 3.5 319 3.22
68 238 2.65 280 290 298 3.4 310 3.14 318 322
72 238 2.65 2.80 260 2,98 304 309 313 317 32)
76 238 264 2.79 289 297 303 308 313 117 320
80 237 264 279 289 297 303 3.08 332 316 320
24 237 264 278 2.88 2.96 302 307 312 316 319
8% 237 263 278 288 296 302 3.07 ERY 315 319
a2 2.37 263 278 283 295 3 307 ERT] EXE 318
o6 237 163 277 287 2.95 301 306 311 34 218
100 236 2.6 277 287 2.95 3.01 3.06 300 3.14 317

Table 1.2 displays one-sided values of 2, _y 4«4} for n =410 100 and &* = 5 to 50 and
Table 1.3 displays corresponding two-sided values.

Although the prediction limit in (1.8) limiis the probability of any one of §&* fuiure
measurements exceeding the limit by chance alone to o*, it does so at the expense of the
false negative rate. To illustrate this peini, Figure 1.1, displays statistical power curves
for prediction limits for the next 4*= 1, 10, and 50 comparisons based on a background
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Table 1.3: Two-Sided Values of Student’s ¢ Statistic 95% Overall Confidence for Back-

ground n =410 100 and £* = 4 (o 50 Future Measurements

;" = Toal Number of Future Comparisons

) 5 10 15 20 25 30 35 40 45 50
4 5.54 7.45 R.57 9.46 10.21 10.57 11.45 1198 12.47 12492
§ 330 4.03 4.35 4.59 4.7 4.94 5.08 5.20 531 541
12 310 348 37 387 394 4.10 4.19 4.26 4.33 4.39
16 294 328 348 361 372 3381 358 3.95 410 .06
20 286 317 335 348 3.57 3.65 372 378 3.83 3.58
24 231 3.10 3.27 3.39 348 3.56 362 3.67 in 3.76
28 277 3.06 322 3.33 342 3.49 3.35 3.60 3.63 3.69
32 2.74 3402 AL 329 33 3.44 350 353 359 3.63
36 272 3.00 315 3.26 334 341 346 3.51 3.55 3.59
40 271 2.98 313 3.23 331 3.38 343 348 3.52 3.56
44 269 296 311 3 339 335 341 345 344 353
48 268 245 304 kAL 327 334 339 343 347 3.51
52 268 2.93 3.08 3.18 3.26 332 3.37 342 3.46 349
56 2.67 2.92 3.07 37 3.24 331 3.36 3.40 3.44 348
o0 2.06 2.92 3.06 3.16 323 3.30 3.35 3.39 3.43 3.46
64 2.66 291 3.05 3.15 3.22 329 3.4 3.38 3.42 345
68 265 290 304 3.14 3.22 328 3.33 337 341 344
72 265 290 3404 313 32 3.27 332 3.36 3.40 343
7o 2.64 2.89 303 3.13 3.20 3.26 331 335 3.39 342
B0 2.64 2,59 303 iz 320 326 331 3.35 338 3.42
84 2.64 288 3402 312 3.19 325 3.30 334 338 341
o3 2.63 2HRR 3.02 A 308 3325 329 334 3.37 341
92 2.63 2,88 k)1 in 3.18 3.24 3.29 3.33 337 3.40
96 2.63 287 3m 311 3.18 3.24 329 3.33 3136 340
100 2.63 287 301 3.10 3.17 3.23 328 332 336 3.39

sample of n = § measurements, setting the individual comparisen false positive rate to
« = .06/%*, In Figure 1.1, contamination was introduced into a single monitoring well for
a single constituent; hence, only one of 1, 10, or 50 comparisons was contaminated. The
power curves in Figure 1.1 therefore display the probability of detecting a very localized
release that impacts only one of £* future measurements. In practice, we would expect
contamination to impact several wells and constituents, therefore the probability estimates
in Figure 1.1 represent a lower bound. Inspection of Figure 1.1 reveals that the false posi-
tive rates for k* = 1, 10, and 50 future comparisons all approach the nominal level of 5%:;
however, false negative rates are dramaticaily affected by adjusting for larger numbers of
future comparisons. For a difference of four standard deviation units and eight background
samples, the false negative rates are 4%, 39%, and 57% for £* = 1, 10, and 50, respectively
(i.e., | minus the probability of a significant result at x-axis = 4 sd units). These results
indicate that by simply performing a statistical adjustment to the prediction limit to provide
an overall site-wide false positive rate not greater than 5%, we sacrifice the false negative
rate (i.e., failure to detect contamination when present), an unacceptable outcome. Control
of the false negative rate at the expense of the false positive rate is also unacceptable. For
example, the original Rescurce Conservation and Recovery Act {(RCRA) regulation re-
quired that quadruplicate samples be obtained (i.e., a single sample spiit into four aliquots}),
and replicated measurements were (0 be treated as if they were independent, Of course, the
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Figure 1.1: Power of 95% Confidence Bonferroni Normal Prediction Limits for 1, 10, and

50 Future Comparisons

intra-sample correlation (i.e., correlation among the measurements for the four aliquots)
was typically near unity and not zero, as assumed by the Cochran’s Approximation to the
Behrens-Fisher (CABF) t-statistic. As such, the false positive rate approached 100%. A
test with a false positive rate of 100% has a false negative rate of zero since it will trigger
a site assessment regardless of the data.

Example 1.2

Returrting to the TOC example dataset in Table 1.1, we may wish to apply the computed
prediction limit to new TOC measarements from each of 10 downgradient monitoring
wells, limiting the overall probability of any false positive result to 5%. To do this, we
note that «* /k* = .05/10 = .005 and the 99.5% upper percentage point of Student’s
t-distribution with 7 degrees of freedom is #[7 go5) = 3.499, The upper prediction limit
is therefore

1
11.0+3.499(0.61)4/1 + & = 13.26 mg/L,
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in contrast to 12.23 mg/L for a single future comparison.

1.4 NORMAL PREDICTION LIMITS WITH RESAMPLING

The best currently available approach to balancing false positive and false negative rates in
groundwater menitoring applications is through the use of verification resampling. Here,
in the event of an initial excecdance, one or more verification resamples are obtained and
a statistical exceedance is declared if some number of the resampled values also exceeds
the limit. In small monitoring programs, it is sometimes possible to declare an exceedance
if any of the resampled values exceed the limit [sce Gibbons, 1991a].  Alternatively,
when background sample sizes are small and the number of future comparisons is large,
a reascnable balance between false positive and false negative rates may require that
statistical exceedance is declared oaly if all resampled values exceed the limit [see Davis
and McNichols, 1987; Gibbons, 1990]. For this reason, it i$ critical that the number of
menitoring wells and constituents (i.e., k*) be carefully selected and kept to a minimum.

To illustrate the ettects of verification resampling on the false positive rate of a test in
which the individual test-wise false positive rate is set at « = .01, consider a site with &* =
50 future comparisons and one verification resample. Assuming independence among the
k* future comparisons,

a* = 1 —Pr{all wells ok)

1 — (Pr{one well ok}}*

1- (I —a+all~-a)*

= 1—(1-.01+.01(1~.01))>°

= .005. (1.9)

I

In this equation, the first 1 — «x is for the initial sample being in bounds and the (1 — «)
is for the initial sample out of bounds but the resample in bounds. In this case, the
verification resample has allowed us to use a 99% confidence prediction limit for 50 future
measurements. Without verification resampling, we could have only provided a site-wide
95% confidence level for &* = 5 future monitoring measurements (.e., &« = a*/k* =
.05/5 = .01}, using exactly the same individual test-level false positive rate (i.c., & = .01}
and the corresponding prediction limit.

Now, coensider 4 monitoring program in which, in the event of an initial significant
increase, two verification resamples are to be obtained and a significant result is recorded
only if both verification resamples exceed the limit. In this case, the site-wide false positive
rate is

ot = 1-{(1-o%
= 1—(1-.01%%
= 00005, (1.10)

which is the probability of failing at least one of the initial samples and both of the
venification resamples. This result suggests that for this example, we have gone too far in
that the site-wide false positive rate is now well below the nominal 3% level.
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As amore conservative alternative, consider a moniloring program, which, in the event of
an initial exceedance, two verification resamples are obtained and a significant exceedance
is rccorded if either resampled value exceeds the limit. In this case, the site-wide false
positive rate is given by

ot = 1—(1~a+al—a)®)*
= 1-(1-.01+4.01(1 - .01}
= .01, (.11

i.c., the product of failing an initial sample and at least one of the two verification resamples,

In any of these cases, we should select the most powerful solution that provides a
reasonable site-wide false positive rate (i.e.. o™ ~ .05} within budgetary, legislative, and
independence constraints. To do this, select Equations (1.9), (1.10), or (1.t11) such that
«* ~ .05for o ~ .01{i.e., site-wide false positive rale of approximately 5% and an individ-
ual test false positive rate of approximately 1%). In this way, a reasonable balance between
false positive and false negative rates is achieved. Note, however, that these computations
require the monitoring samples and resamples to be (adequately) stochastically indepen-
dent. This implies a certain minimum time between samples. For guarterly monttoring, at
maost two resamples are reasonable,

Example 1.3

Returning to the TOC example dataset in Table 1.1, we may wish to apply the computed
prediction limit to new TOC measurements from each of 10 downgradient monitoring wells
for each of five monitoring constituents for a tolal of 50 future comparisons. Assuming
that the five constituents are reasonably independent, the upper 99% confidence normal
prediction limit for a single new measurement,

11‘0+2,998(U,61)1f1+% = 1294 mg/L.

will provide an overall site-wide false positive rate of
1—(1-.01)* = 39
or 39% without verification resampling,
1—{1—.014.01(1 —.01))* = .005
or 0.5% with a single verification resample,
1—{1-.014.01(1—.01)"% = .01

or 1.0% with failure indicated if either of two verification resamples fails (i.e.. exceeds
12.94),

1—{1—-.01%" = .00005

or 0.005% with failure indicated if both of two verification resamples fail.



10 Statistical Methods for Groundwater Menitoring

0.00 1.00 2.00 3.00 4.00 5.00
S D UNITS

Figure 1.2: Power of 99% Confidence Normal Prediction Limits: 10 Wells and Five

Coustituents—Four Resampling Plans

To illustraie the effects of resampling on false negative rates, Figure 1.2 displays power
curves for the four previously described alternatives (i.e., no resampling, one resample,
tailing the first and either of two resamples, or failing the first and both of two resamples)
using a 99% confidence normal prediction limit.

Figure 1.2 reveals that the plan without resampling has an unacceptably high false
posilive rate; however, the rate is slightly less than predicted (i.e., 34% versus 39%).
The reason for this discrepancy is that the multiple comparisons are not independent, as
assumed by the independence-based computations, This problem is discussed in detail in
the following section.

Figure 1.2 also reveals that for 10 monitoring wells and 5 constituents and a fixed
prediction limit, the best balance between false positive and false negative results is achieved
for the plan in which two verification resamples are taken and failure is indicated if either
exceeds the limit. Note that the false positive rates obtained via simulation for the various
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resampling plans were considerably higher than predicted via the Bonferroni inequality.
For example, with a single verification resample we predicted 0.4% false positives but
observed 2.7%. For two verification resamples, Plan A produced 6.4% false positives,
although only 0.8% were predicted, and Plan B produced 0.6%, although only 0.004%
were predicled. These discrepancies are the opposite of what we observed in the case
without resampling. The teason for the increased observed false postiive rate is that by
chance alone, background levels may be particularly low for one well and constituent,
but it is this same low background being compared to the verification resample(s). As
such, the probability of two successive fatlures is not the simple product of the individual
probabilities, as assumed by the Bonferroni adjustment. Davis and McNichols [1987] have
proposed an alternative approach to this problem that overcomes these limitations, which is
described in a following section. Caution must be used in comparing false negative rates for
tests with different false positive rates. For example, one might conclude from Figure 1.2
that the strategy without resampling has the lowest false negative rate and that this is more
important than the fact that it fails by chance alone on one-third of the monitoring events,
False negative rates are only meaningful for tests that achieve their intended false positive
rates, and comparisons between tests are only appropriate for a fixed false positive rate.
The purpose of Figure 1.2 (which clearly violates this advice) is that for a fixed prediction
limit {e.g., a 99% confidence normal prediction fimit for the next single measurement)
applied to different monitoring scenarios {e.g., multiple wells, constituents and resampling
strategies), both false positive and false negative rates can vary dramalically. In those cases
where the limit is fixed, perhaps by unwise regulalion, the verification resampling strategy
and the adequacy of the monitoring program as a whole must be based on achieving a
balance between false positive and false negative rates. Sacrifice of one for the other is
unacceptable.

1.5 SIMULTANEOUS NORMAL PREDICTION LIMITS FOR THE NEXT &

SAMPLES

The previcus prediction limits for multiple future comparisons are simultaneous in the
sense that they control the overall site-wide comparison rate (e.g., a* = .05), assuming
that the multiplc comparisons are independent. While this is true for a series of intra-well
comparisons on a given sampling event (i.e., each well is compared to its own background
for a single constituent), it is not true in the context of upgradient versus downgradient
comparisons where each new moniloring measurement is compared to the same pooled
upgradient background limit. This type of comparison strategy introduces a correlation
among the &* comparisens for each constituent of magnitude g = 1/{n+1). An analogous
situation occurs in the context of comparing multiple treatment group means to a single
conttrol (i.e., Dunnett’s test [Dunnett and Sobel, 1955]). The correlation among repeated
comparisons makes use of the simple probability product for &¢™ too conservative. Obtaining
the correct joint probability of failure on any one of the £* comparisons requires evaluation
of the equa-correlated multivariate normal distribution, and these probabilities must be
integrated over the distribution of s, the sample standard deviation. Tn this section we
define & as the number of comparisons (i.e., wells) for a single constituent (i.e., ¢ = 1);
hence k* = k. We do this so that we can differentiate the effect of multiple comparisons
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to a common background from the effects of multiple constituents on the error rates of the
overall monitoring program.

Suppose there is interest in comparing % groups with a common background in terms
of the means Xy, X1, ..., X\ {and common standard deviation s) of & + 1 sets of obser-
vations which are assumed to be independently and normally distributed; Xp refers to the
background and X to the ith comparison group (i = 1,. .., k) mean. In this case, Dunnett
1955] has provided a procedure for making confidence statements about expected values
of k differences X; — Xy, the procedure having the property that the probability of all
% statements being simultaneously correct is equal to a specified probability level 1 — .
Dunnett’s procedure and the associated tables were worked out for the case of equal sample
sizes in all groups. Here, we will expand the procedure for the case where sample sizes are
not equal.

Suppose there are 1 background measurements, r1 measurements on the first well, . . .
, Ny measurements on the kth well, and denote these observations by X;; 2 =0,1,.. ., k;
§=1,2,...,ny) and the corresponding ith well mean as X;. We assume that the Xy are
independent and normally distributed, with common variance ¢ and means s, and that
there is an estimate of 2 available {denoted s2) based on v degrees of freedom. Let

— X;—Xo— {11 — pig)
1 1
JE+E

and t; = z;/s for¢ = 1,2,..., k. As Dunnett [1953] notes, the lower confidence limits
with joint confidence coefficient 1 — « for the & comparison group effects gi; — fg are given

by
_ _ {1 1
Xi—Xo—disy) —+ — (1.13)
T o

if the k constants d; are chosen so that

Z

, (1.12)

Pr(h < i te < do, ..t < dg-_) =1—a (1.14)

To find the %k constants d; that satisfy these equations, joint distribution of the ¢; is
required, which is the multivariate analogue of Student’s ¢ distribution defined by Dunnett
and Sobel [1955]. Dunnett {1955] has shown how the problem of tabulating the multivariate
t-distribution can be reduced to the problem of tabulating the corresponding multivariate
normal {MVN) distribution. For this, note that the joint distribution of the z; is a MVN
distribution with means 0 and variances #2. The correlation between z; and z; is given by

- Zo Lo
Pi _'I/M/(?u 4—1) (TH +—1). (1.15)

Notice that the joint probability statement given above can be writien in the following way:

l—a = Pr{ty <di,ta<ds,... 0 <dg)
= Priz < dis, 22 < dps,..., 2 < dgs)
+ou
- ] Fldys, dos, . ., dus) f(s) ds. (1.16)
—o0
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where F(dys, das, . .., dps) is the MVN cumulative distribution function of the z; and f(s)
is the probability density function of s. Thus, with probability values for F(-}, the above
equation can be evalwated using numerical integration over the distribution of ¢. For this,
note that the density function of s is given by Pearson and Hartley [1976] as

I}u;’Z

= TEpeaa T eplvst 20t (L17)

fle)

Since 52 /0% = x? /v, we can rewrite the equation for 1 — o in terms of integration over
the distribution of ¥ = /¢ (which is defined on 0 to +ox) as

e ds
l-a = F(dly:d2ys---:dky)f(y)d_dy
0 Y
+ox Vv;‘Q 1 2
~ : Y - i
- A F(dly- dzy: AL d‘ky) 1—1{%)2(1//2)—1 Y EXp( vy /2) dy'

(1.18)

Numerical integration over the distribution of ¥ can then be performed to yield the
associated probability 1 — o for selected vatues of d, &, and .

In the present context, we are interested in comparing & new individual measurements
{e.g.. TOC levels in 10 downgradient monitoring wells) with a collection of » background
measurements, perhaps obtained from monitoring wells upgradient of the facility. In this
case, n; = 1,2 =1,...,k, ngp = n, and the constant correlation is p;; = 1/{n + 1). As
a result, the need for this correction decreases with increasing background sample size
since as n increases, p;; goes to zero. In this special case the probability integral simplifies
(8]

(X0 1/2
Filds,ds,... ds;p) = ] [F*‘- (%)] fly)dy, (1.19)

where f(7) = exp{—372)/(2%)"/? and F(7) = jf; f{7)dr; see Gupta [1963].
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Table 1.4: Dunneit-Type Multivariate #-Statistics 95% Overall Confidence for Background

n =4 to 100 and £* = 4 10 50 Future Measurements

%" = Total Number of Future Comparisons

) 5 10 L5 20 25 30 35 EN) 43 )
4 4,00 472 5.14 542 5.64 5.82 596 6.09 6.20 6.29
8 290 331 3.6 372 385 395 404 4.2 4,18 424
12 267 an2 322 336 347 3.56 363 369 3795 3.80
16 2,57 2,59 3.08 321 330 338 3.45 351 3.56 300
20 2.51 232 3.4 312 321 329 335 3.40) 345 349
24 248 278 2494 3.06 3.15 322 328 3.33 338 342
28 245 274 2m 3.02 an 338 3.24 3.29 333 337
32 2.44 272 2,88 2.99 308 314 3.20 325 3.29 333
36 242 am 2.86 247 305 3z 308 322 327 330
) 24 2.69 284 295 303 310 313 3.20 3.24 3.28
EE] 240 2.68 2.83 294 3.02 3.08 3.14 318 323 326
48 2.39 267 252 293 301 3.07 312 317 321 325
32 239 266 251 2492 299 i END 316 3.20 323
56 2.38 2.65 2.80 291 299 3.05 310 315 3.19 3.2z
60 238 265 2.80 290 298 304 309 314 318 321
64 2.38 264 279 289 297 303 3.09 313 317 3.20
4.3 237 2.64 279 289 2496 3.03 308 31z 316 320
72 237 2,63 278 2.88 296 302 3.07 3.12 316 319
76 237 263 2.78 233 295 3402 307 311 3.5 3149
B0 2.36 2.63 277 257 2485 30 3.06 3.l 315 3.18
84 2.36 2.62 297 2.87 2,85 301 3.06 kRl 3.4 318
88 2,36 2.62 237 2.87 2.54 3.00 3.05 310 314 37
92 2.36 262 276 286 294 300 345 304 303 an
96 2.36 2.62 276 2.56 294 3.00 303 309 KA K] 316
100 235 2.61 236 2.86 293 299 305 309 313 ER ]

To aid in application, Table 1.4 provides the constants d for background samplc sizes n
from 4 to 50 and number of future comparisons & from 2 to 50 for 1 — a = 0.95. These
coefficients may be used in deriving prediction limits of the form

1
Z+dgsy/1+ — (1.20)

Returning to the TOC example dataset in Table 1.1 and Example 1.2, in which the
prediction limit for TOC is to be apphed to new TOC measurements from each of 10
downgradient monitoring wells, limiting the overall probability of any false positive result
to 5%. Using the Bonferront adjustment, which assumes independence, the value in Table
1.2 that corresponds to n = 8 and k = 101is 3.5, leading to the upper prediction limit

Example 1.4

1
11.0 + 3.50(0.61}4/1 + 3= 13.26 mg/L.

In centrast, using the Dunnett-type multivariate £-statistic from Table 1.4 leads to the upper

prediction limit
11.04 3.31{0.61)4/1 —1—% = 13.14mg/L,
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which is slightly more conservative. Comparison of Tables 1.2 and 1.4 reveals that the
multivariate ¢ and Bonferroni adjusted £ statistics become relalively indistinguishable for
background sample sizes of n = 20 or more, but the difference is more pronounced for a
small background sample size. While this discussion helps fix ideas related to multiple
comparisons to acommon background, it has not been the focus of much if any application
in groundwater monitoring programs. This is due largely to the fact that it does not involve
verification resampling. A more complete generalization of these foundational ideas,
which has enjoyed widespread usage in practical applications in environmental monitoring
programs, is described in the following section.

1.6 SIMULTANEOUS NORMAL PREDICTION LIMITS FOR THE NEXT  OF

m MEASUREMENTS AT EACH OF & MONITORING WELLS

Davis and McNichoels [ L987] have generalized the solution given in the previous section Lo
the case in which r out of m samples in each of & future monitoring wells are required in
bounds. For example, a detection monitoring program that requires passage of both of two
resamples in the event of an initial exceedance is similar to a prediction limit for two of
three samples in bounds in each of k wells. Strictly speaking, however, we are concerned
with the case in which the first or next two samples are in bounds, which requires a slight
maedification of their original work. In fact, the multivariate Z-statistics in the previcus
section {i.e., Dunnetl’s test) represent a speciad case in which r = m = 1.

The derivation is somewhat complicated, but a few key features are described. As in
the previous derivations, we assume that the background cbservations and new monitoring
measurements are drawn [tom the same normal distribution N(p, o%). Expressing y;; =
o;;— & (i.e., amean deviation) fori = 1,..., kwellsand j = 1,...,m samples and letting
th(») denote the rth smallest of the ;; for well 4, and " = :rn,a;r:i(yi(,.)), then having at
least # of rn future observations below # 4 K s is equivalent 1o y* < K s, where K is the
multiplier we seek. Davis and McNichols [1987] have shown that

Py <Ks) = [ T,y (VAEK)
B k-1
¥ k ] m( m-l )@’_l(t)qf)(t){l — B(£)™ ")t
x m.( m -1 )@"_l(z*)qﬁ(z*)ll — ()T
(1.21)

where T, (-] is the cumnulative density function of the noncentral ¢ distribution, z* is
the maximum rth order siatistic across all & wells, and ¢ and & are the standard normal
probability density and cumulative distribution functions respectively. The equaticn is
then solved for X such that the right-hand side is equal to 1 — . Davis and McNichols
[1987] describe a numerical algorithm for obtaining values of K conditional on values
of &, r, and vn such that the overall confidence level is 1 — «. The original publication,
however, was limited in terms of combinations of &, r, m, and o 30 routine application
of this methodology was generally not possible. Tables 1.5 — 1.13 (prepared by C. Davis)
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overcome this limitation in three ways. First, the tables include three levels of a which
correspond to Bonferroni adjusted site-wide confidence levels for monitoring programs
consisting of 1 {@ = .05}, 10 (ex = .005) and 20 {& = .0025) constituents. Second,
the tables provide values of X for background sample sizes of n = 4 to 100 and k = 3
to 50 monitoring wells. Third, separate tables are prepared for one resample and two
resamples under Plans A (pass of all resamples) and B (pass at least one resample). In this
way, these important results can be practically applied to the widest variety of monitoring
programs. Tables 1.5 to 1.7 provide factors of K for the three verification resampling
strategies (pass one of two, one of three, and two of three) for o = .05, Tables 1.8 to 1,10
for @ = .005 and Tables 1.11 to 1.13 for o = .0025. The importance of disentangling
the number of monitoring wells from the number of constituents has often been poorly
understood in practice. For inter-well comparisons (i.e., upgradient versus downgradient),
the comparisons are correlated, and that correlation has a very specific form, as described
in the previous section. While multiple constituents are also likely to be correlated, their
intercorrelation is of a much more general form and may not be reliably estimated from the
typically small number of cbservations that are nsually available in groundwater monitoring
investigations. As such, we adjust for multiple constituents by adjusting « (i.e., & = “%),
where ¢ is the number of constituenis). Note however, that for intra-well comparisons (i.e.,
each well compared to its own background), the correlation provided by comparing each
downgradient well to a pooled upgradient background is no longer present; therefore, all
adjustment for multiple comparisons can be achieved by adjusting . (e.g., & = ‘;—;, where
k is the number of monitoring wells and ¢ is the number of constituents).



SIMULTANECUS NORMAL PREDICTION LIMITS FOR THE NEXT v OF rr: MEASUREMENTS AT EACH OF k MONITORING WELLS

Table 1.5: Simultaneous Normal Prediction Limit Factors for c = .05 ant One of Two

Samples Inbounds {Factors & Where the Prediction Limit Is & + Ks)

£ = Number of Future Comparisons

n 5 10 15 20 S 30 35 ) 3 30
4 247 3.00 33 352 369 382 394 a3 412 419
8 L72 203 22 233 243 251 2.57 263 267 1n
12 1.56 182 1.97 207 215 2121 227 2.31 2.36 239
14 148 172 1.86 195 2.03 2.08 213 218 221 225
20 144 167 180 1.89 1.95 201 206 2.10 213 216
24 (1] 1.63 1.76 1.84 191 1.96 2.0 205 ol 211
2 139 161 173 1.81 .58 193 197 201 24 207
32 138 159 171 179 185 1.90 1.95 198 202 2.04
36 137 1.58 1.69 1.77 .54 1.89 1.93 1.96 1.5 202
a 1.36 1.56 168 176 182 187 191 195 1.98 200
44 135 1.56 1.67 L5 181 1.86 190 1.83 196 1.99
48 134 1.55 1.66 (.74 180 1.85 1.89 192 195 1.98
52 134 .54 166 173 179 134 8% 191 194 197
56 1.33 1.54 1.65 )73 179 183 187 191 L94 1.96
60 13 153 164 172 178 1.83 147 1.30 1.93 195
64 133 L33 1.64 172 L7 182 1.86 1.49 192 1.95
68 1.32 152 164 171 177 182 1.85 1.89 192 184
7 1.32 1.52 1.63 171 L7 151 185 1.88 L91 194
76 .32 152 1.63 170 176 181 185 188 Lol 193
50 132 152 1.63 170 176 180 L84 158 190 193
84 132 151 1.62 170 176 1.80 1.84 187 1.90 193
88 131 151 162 170 LTS 1.80 184 187 1.90 192
92 1.31 1.51 1.62 1.69 175 180 1.83 £g7 | .89 192
96 131 151 1.62 1.69 175 L7 153 186 189 1.92
100 1.31 131 162 1.6% L35 1.79 L83 1.86 .89 1.91

Prepared by Charles Davis based on results in Davis and McNichols [ 1987]

17
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Table 1.6: Simultaneous Normal Prediction Limit Factors for a = .05 and One of Three

Samples Inbounds (Factors K Where the Prediction Limit Is & + K s)

k = Number of Future Comparisons

n 3 10 15 20 25 3 a5 4 45 50

4 1.62 202 2.25 242 .33 2.65 2.74 282 288 2.94

8 L12 1.37 1.51 1.6% 1.69 1.75 1.80 184 1.88 192
12 1.00 1.21 134 142 1.49 1.54 1.38 162 1.65 .68
1] 94 l.14 1.26 1.33 1.39 1.44 1.48 1.52 155 1.58
20 g1 1.0 1.2 1.28 1.34 1.34 1.43 146 145 1.51
24 89 1.0% 113 1.25 1.31 1.35 1.39 142 1.45 1.47
8 .87 1.06 1.16 1.23 1.28 1.33 136 1.39 142 143
32 86 1.04 1.14 1.21 1.27 1.31 i34 1.37 140 1.42
36 B3 1.03 113 1.20 1.25 1.29 133 1.36 138 1.41
40 85 1.02 112 g 1.24 128 1.32 1.35 137 134
44 -84 1.02 111 118 1.23 1.27 131 1.34 1.36 1.3%
48 84 L. L 117 1.22 1.27 1.30 1.33 135 1.38
52 B3 1.01 110 1.17 122 126 1.29 1.32 1,35 1.37
36 83 1.00 110 L.I6 121 1.25 1.29 1.32 1.34 136
60 B3 1.00 1.05 1.16 1.21 1.25 125 1.31 1.33 1.36
64 83 EL Loy L6 1.20 1.24 1.28 1.31 1.33 1.35
i B2 99 1.08 1.13 120 1.24 1.27 1.30 133 135
72 42 99 1.08 1.15 1.2} 1.24 1.27 1.30 1.32 1.34
T8 B2 59 1.08 115 1.20 1.23 1.27 1.29 1.32 1.34
50 82 99 108 .14 119 123 1.26 1.29 132 1.34
54 B2 5% 1.08 114 L19 1.23 1.26 1.29 1.3 1.34
83 81 K 1.0 [WE 119 1.23 126 1.29 1.31 1.33
52 81 98 107 .14 1.19 123 1.26 1.28 .31 1.33
96 81 98 1.07 1.14 1.1% 1.22 1.26 1.28 131 133
100 81 98 1.07 114 1.18 1.22 1.25 128 1.31 1.33

Prepared by Charles Davis based on results in Davis and McNichals [1987]
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Table 1.7: Simullancous Nosmal Prediction Limit Factors for o = .05 and the First or Next

Two Samples Inbounds (Factors /' Where the Prediction Limit Is # 4+ A's)

£ = Wunther of Future Com parisons

n 3 i) 13 20 FE] ) 33 0 a5 50

4 192 347 N 3599 4.16 429 4.44) 4.50 4.58 4.65
8 200 231 243 261 270 278 284 289 294 298
12 179 205 220 230 2.38 244 2.50 2.54 2.58 262
16 L.70 1.94 2.07 216 224 229 2.34 238 2.42 243
20 1.63 187 2.00 209 215 221 2.5 229 233 2.3
2] 162 1.83 1.95 204 210 215 2.20 223 wm 230
b 159 130 192 200 206 21 2.16 2.19 2m 223
32 158 178 1.90 198 204 20Ny 213 216 219 222
36 156 176 138 1.96 20 2.06 2,10 214 247 220
a 1.55 175 186 1.94 200 208 209 212 2.15 218
44 1.54 1.74 1.85 1.93 1.99 2.03 207 2,10 213 216
4 1.54 173 1.34 192 197 202 206 249 212 215
52 153 172 183 t91 196 201 205 208 21 214
56 153 1.72 .83 190 1.96 .00 104 207 210 213
60 152 17 1.82 189 1.95 199 2.03 206 209 212
64 1.52 171 1.81 139 194 199 203 206 209 211
63 151 170 181 1.88 194 .98 202 205 208 2.10
7 151 L70 1.81 188 1.93 198 208 203 207 210
7% L51 170 1.80 187 1.93 197 201 204 207 209
R 1.5] 1.69 180 1.7 1.92 1.97 2.0 2.04 206 .09
84 L.50 1.69 1.80 187 192 197 200 203 206 208
B8 150 1.69 1.7¢ L.5& 192 1.96 2.0 203 206 208
92 1.50 1.69 179 186 192 1.96 200 203 2.05 208
Y96 1.50 168 1.79 1.E6 1.91 1.96 154 2.02 2.05 207
100 L.50 1.68 179 1.86 191 193 199 202 205 207

Prepared by Charles Davis based on results in Davis and McNichols [1987)

19
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Table 1.8: Simultaneous Normal Prediction Limit Factoss for o = .005 and One of Two

Samples Inbounds (Factors & Where the Prediction Limit Is & + K #)

| = Number of Funure Comparisons

7 5 10 15 20 25 3 35 40 45 50
4 3.6 6.96 7.60 8.06 842 80 8.95 .13 9.34 9.50
§ 298 3.36 359 375 387 397 4.0 4.14 4.20 4.26
12 151 278 244 3.06 315 312 328 334 338 343
16 231 2.33 2.62 278 236 2.92 2.97 KRA 3.06 309
20 221 242 255 264 270 276 231 285 288 2n
24 2.14 235 2.46 255 261 2.66 2.70 274 2.77 2.50
28 210 229 240 248 2.54 2.59 2.83 267 270 273
32 2.07 225 2.36 244 2.50 2.34 253 262 2.65 2.67
36 2.04 223 233 240 2.46 .50 2.54 2.58% 2.6 2.63
40 2.02 220 2.30 2,38 243 248 2.51 2.54 257 2.60
44 2m 218 228 2.35 241 245 249 252 255 257
43 1.99 217 227 234 239 243 247 2.50 253 .53
52 1.95 216 2.25 232 2.37 242 2.45 248 251 253
36 158 2,15 2.24 2.31 2,36 240 244 247 249 252
6] 1.57 2.14 223 230 235 239 242 245 248 2.50
64 1.96 213 122 2.29 234 238 241 2.44 247 249
a8 1.85 212 221 2.28 233 237 240 243 246 248
2 1.95 211 2.2l 2.27 2.32 2.36 240 2.43 245 247
6 194 211 220 27 232 236 239 242 244 247
80 1.94 2.10 220 2.26 231 2.35 238 241 2.44 2.46
84 1.94 2m 29 226 230 2.34 238 241 243 245
88 |93 2.09 219 2.25 230 2.34 237 2.44) 2.42 245
92 1.93 21 218 215 2.29 233 237 2.3 2.42 244
96 1.93 209 218 224 2.29 233 2.36 239 241 244
10 1.92 208 204 224 224 233 236 2.39 241 243

Prepared by Charles Davis based on results in Davis and MeNichols | 1987}
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Table 1.9: Simultaneous Normal Prediction Limit Factors for & = .005 and One of Three

Samples Inbounds (Factors &7 Where the Prediction Limit Is & + K s

£ = Nomber of Future Comparisons

n 5 10 15 20 25 30 35 40 45 50
4 4.02 4.83 5.31 566 353 615 6.34 6.50 664 6.76
8 210 239 2.57 270 279 187 294 300 3.5 310
12 1.76 1.98 211 2.20 225 233 2.38 243 246 2.50
16 162 1.82 1.93 200 2 11 216 219 222 2.25
0 1.55 172 1.83 1.90 1.93 200 203 2.07 210 212
24 1.50 167 176 183 1.88 192 1.94 1.99 202 204
28 147 163 172 178 1.83 1.87 181 1.93 1.96 1.98
32 1.44 1 £} 1.69 1.75 1.80 .84 187 Lo 1.92 1.94
36 142 1.58 1.66 172 1.77 1.81 1.84 1.87 1.89 191
40 141 .56 1.64 170 175 1.79 1.82 1.84 L.87 1.89
44 1.4} 1.54 1.63 L&Y% 1.73 137 1.80 1.82 1.85 1.87
48 1.39 1.53 1.62 1.67 1.72 1.75 178 1.81 L83 1.83
52 138 1.52 1.61 1.66 1.71 1.74 177 180 182 1.84
L] 1.37 1.52 | 60 165 [l 1.73 176 1.78 ER1 183
60 1.37 1.51 1.59 1.64 1.69 1.72 1.75 177 1.30 1.82
64 1.36 £.50 (.58 1.64 1.68 171 174 177 17 &
o8 1.36 |50 L.58 163 1.67 1.71 1.74 1.76 1.78 L.30
12 1.35 T4y 1.57 1.63 1.67 1.7 1.73 1.75 177 1.79
76 1.33 1.49 1.57 1.62 1.66 1.70 1.72 175 1.77 179
&0 1.35 1.4% 1.56 |62 .66 1.69 172 1.74 1.76 178
84 1.34 1.48 1.56 1.61 1.63 169 L7 1.74 176 L.78
b33 1.34 1.48 1.55 161 163 1.68 1.7 1.73 1.75 1777
92 1.34 147 155 1.60 163 1.68 BT 1.73 175 137
96 .34 1.47 155 .60 1.64 168 170 173 135 177
104 1.33 147 1.55 1.6 1.6 1.67 1.70 1.72 1.74 176

Prepared by Charles Davis based on resulrs in Davis and McNichols [1987]
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Table 1.10: Simultaneous Normal Prediction Limit Factors for o = 005 and the First or

Next Two Samples Inbounds (Factors 57 Where the Prediction Limit Is £ + £'s)

# = Number of Futnre Comparisons

n § 10 is5 20 25 30 35 ) 45 50
4 6.81 7935 8.61 9.07 242 9.71 9.94 10.15 10,33 10.49
8 333 372 395 4.11 124 4.34 4.43 4.50 457 462
12 277 3005 3.21 333 342 3.44 3.35 3.60 365 3.69
16 2.54 278 291 3.0l 3.09 315 320 324 3.28 332
20 242 263 235 2.84 291 296 30 305 308 32
24 234 2.54 2,05 274 2.80 285 289 293 2.96 2,99
28 229 248 259 2.66 272 2737 281 2,85 2.88 291
32 2.15 243 2.54 2.61 2.47 271 275 279 2.82 2.84
36 2.22 240 2.5 257 263 2.67 271 274 .77 2.80
a0 220 237 2.47 2.54 2.50 2.64 258 271 2.73 276
44 IR 235 245 252 257 261 265 2.68 | 273
45 216 233 243 250 255 254 262 2.66 2.68 271
52 215 232 241 248 2.53 257 2.61 2.64 2.66 2.68
56 214 2.3 240 246 251 2.56 2.59 2.62 2.64 2.67
[il4] 213 229 239 245 2.50 254 258 2.60 2.63 2.65
64 212 2.29 238 2.44 249 2.53 236 2.539 262 2.64
68 212 2.8 237 243 248 .52 2,35 2.58 2.61 263
2 201 2.27 2.36 2.42 247 2.51 2.54 2.57 260 262
76 211 226 235 242 246 2.50 2.54 256 259 261
80 2.10 226 2.35 241 2.46 2.50 2.53 2.36 258 2.60
B4 2.0 225 234 2.40) 245 249 252 255 257 259
88 209 2.25 234 2.40 2.44 248 2.52 2.54 2.57 .59
92 2.9 224 2,33 239 2.44 248 .51 254 2.56 238
36 2.08 224 2,33 239 2.44 2.47 2.50 253 2.536 253
L) 208 224 232 233 243 247 2.50 2.53 2.55 2.57

Prepared by Charles Davis based on results in Davis and McNichols | 1987]
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Table 1.11: Simultaneous Normal Prediction Limit Factors for o = .0025 and One of Two

Samples Inbounds (Factors K Where the Prediction Limit Is & + K 8)

% = Nuinber of Future Comparisans

n 5 0 15 20 25 30 35 41 43 k]
4 7.45 8.82 .64 10.22 10.66 11.03 i1.33 11.59 11.82 12.02
& 340 382 406 424 437 449 458 4.66 4.73 480
12 2.80 3.08 3.25 3.37 3.46 3.34 3.60 300 371 335
16 2.56 279 293 3.03 311 317 3.23 327 33l 3.35
20 243 264 2737 286 2492 298 303 3407 30 314
24 235 235 2.66 2735 .81 2.86 230 254 2.97 3.00
28 2.30 249 2.60 267 273 2.78 282 2.86 2.89 291
32 2.26 244 2.54 262 2.68 2.72 276 2.79 282 2,835
36 2.23 230 .51 2.58 2.63 2.68 272 275 278 280
40 2.20 238 248 2.55 2.60 2.64 2.68 271 274 276
44 219 236 245 252 2.57 2.62 263 263 271 273
48 217 234 243 250 255 259 263 2.66 2.69 271
52 216 232 242 248 233 257 261 2.64 2,07 2,69
56 215 231 240 247 252 2.56 2.59 2.62 2.65 267
50 2.14 230 239 246 230 2.55 258 .61 263 2.66
64 2.3 2.29 238 244 249 233 2.57 2.60 262 2.04
68 212 2.28 2.37 2.43 2.48 252 2.56 2,58 261 2.63
72 211 27 130 243 247 251 2535 2.57 2.60 .62
76 211 227 .36 2.42 2.47 2.51 2.54 2.57 254 261
30 2,10 2.26 .35 241 2.46 2.50 2.53 2.56 2.538 2.60
84 200 2.26 234 241 243 2.49 252 2.55 258 2.6
B 210 225 234 240 245 249 252 254 257 2159
92 209 225 2.33 2.40 244 248 2.51 254 2.56 258
56 209 2.24 2.33 239 244 247 2.51 253 2.56 2.58
100 209 224 233 23 243 247 2.50 2.53 .55 257

Prepared by Charles Davis based on results in Davis and McNichols [1987]
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Table 1.12: Simultaneous Normal Prediction Limit Factors for ¢ = 0025 and One of Three

Samples Inbounds (Factors K Where the Prediction Limit Is & + K's}

& = Number of Furure Comparisons

" 5 S 15 20 25 30 35 4 45 5}
4 514 6.14 6.75 719 733 7.80 8.04 8.24 842 858
8 2.42 274 293 307 317 326 3.33 3.40 3.45 3.50
12 14949 222 238 245 232 2.5% 2.63 268 272 2735
16 1.82 201 212 2.20 126 .3 2,36 2.39 243 246
20 1.73 1.5 2.4 207 213 N 22 224 237 230
24 L&7 1.83 193 1.99 204 209 212 215 2.1% 2.20
28 1.63 1.78 1.87 1.94 1.99 2,03 2.06 209 211 214
32 1.60 175 1.84 1.90 1.4 1.9% 201 2.4 207 209
36 1.58 1.72 1.81 1.47 1.9 1.95 1.9% 201 203 205
AQ 1.56 1.70 1.79 1.84 1.89 192 1.95 198 2.00 2.02
44 1.55 169 1.7 1.83 1.37 1.90 193 1.96 198 200
48 1.53 L&Y 1.75 1.81 185 L.Rg 192 1494 1.96 1.98
52 1.52 1.66 174 1L&0 1.84 1.87 JREH] 193 1.95 1.97
56 1.52 163 1.73 179 183 1.86 1.89 1.91 193 £95
) 1.51 .64 1.72 178 152 185 188 190 1.92 1.94
64 1.50 1.64 1.71 177 1.81 1.84 1.87 1.89 191 1.93
68 1.50 1.83 1.71 1.76 1.80 1.83 1.86 1.88 1.91 192
12 1.49 1.63 170 1.75 179 1.53 1.85 138 1,90 1.52
6 .49 1.62 .70 115 1.7 152 185 1.87 189 141
80 1.48 162 1.69 1.74 1.78 1.81 1.84 1.87 1.89 1.5
84 .48 1.61 1.6y 1.74 178 181 1.84 4] 1.8% 1.50
88 1.48 1.61 §.6% 173 1.77 (3] 1.53 186 | 88 1.89
92 148 1.61 168 1.73 177 LB 1.83 183 1.87 189
96 147 1.60 1.68 1.73 1.77 1.80 1.82 1.85 1.87 188
100 1.47 1.60 1.67F 1.72 1.76 1.79 .42 1.84 |1 1.48

Prepured by Charles Duvis based on resulis i Davis and MeNichols 11987
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Table 1,13; Simultaneous Normal Prediction Limit Factors for o = .0025 and the First or

Next Two Samples Inbounds (Factors A Where the Prediction Limit Is & + K s)

k = Number of Futore Comparisons

" K 10 15 20 25 30 35 40 45 30
4 8.65 10.08 1091 1148 11.93 1229 12,59 12.84 13.07 13.27
8 378 421 4.46 4.64 478 4.59 4.93 .06 313 5.20
12 307 338 3353 3.65 3.74 382 KR 1 394 199 403
16 .78 3.03 317 3.26 3.34 340 346 350 3.54 3.58
21 2.64 2.85 297 3.4 313 319 323 3.27 331 334
4 2.54 274 2.86 294 300 303 RR 313 EN L] 319
28 248 2.67 278 .85 291 2.96 .00 33 EA 309
32 2.44 2.62 272 279 2.85 2.89 293 2.97 2.99 302
36 2.40 2.58 2.68 275 2.80 244 288 291 294 297
40 2.37 2.54 2.64 7 276 250 184 2487 290 242
44 2.3% 2.52 241 2.68 273 277 281 2.54 2.87 2.89
a4 233 2.50 .59 2.66 271 2,75 2.78 281 2.54 2.36
52 132 248 .37 204 .69 273 276 2.79 2.82 2.54
36 2.31 247 2.56 262 2,67 271 274 277 2.80 2.52
o} 2.30 245 254 261 2465 2649 273 275 278 2.80
64 228 244 2.53 2,39 2,64 2.68 2 .74 2737 L7y
a8 128 243 252 258 2,03 247 270 273 .75 277
2 227 242 251 257 262 2.66 2.69 272 274 .76
T 226 242 2.50 256 2.6l 2.65 2,68 271 273 275
80 226 24) .30 2.56 2.60 2.04 2,07 270 272 274
B4 2.25 240 249 255 2.60 2.63 2.66 2.69 2.7t 274
88 225 240 248 2.54 2.59 2.63 2.66 2.68 zn 273
92 224 239 248 2.54 258 262 265 2468 T 272
96 224 2,39 247 2.53 258 2.61 2.64 2.67 2,69 271
140 2314 2138 247 253 257 261 264 267 2.69 271

Prepared by Charles Davis bused on results in Davis and MeNichols [ E987]

To illustrate the strength of this approach, consider a monitoring program with a single
moritoring constituent, &£ = 50 monitoring wells and 7 = 8 background measurements. For
a single verification resample, the limit is given by ¥ + 2.723 (see Table 1.5). For two
verification resamples in which an exceedance is recorded if either is exceeded (i.e.. Plan
A), the limit is given by T + 2.98s (see Table 1.7). For two verification resamples in which
an exceedance is recorded only if both are exceeded (i.¢., Plan B), the limit is given by
Z + 1.925 {see Table 1.6). Note that by requiring both resamples to be exceeded, we can
use a smaller value of K and hence have greater power and a lower false negative rate.
This result is evident in the power curves displayed in Figure 1.3 This result is contrary
to gnidance and previous regulations which suggest that passing multiple resamples in the
presence of an initial exceedance leads to a more conservative monitoring program. When
the correct statistical model is used, in fact the reverse is true.
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Figure 1.3: Power of 93% Simultaneous Prediction Limits: 10 Wells and Five

Constituents—Three Resampling Plans

Finally, also note that despite the difference in multipliers for the three verification
resampling plans, the site-wide false positive rale continues to be 5% as intended. For these
reasons, simultaneous prediction limits of the form derived by Davis and McNichols [1987]
are the optimal choice for normally distributed measurements or those that can be suitably
transformed. Subsequent work in this area has extended these limits to other distributions
and nonparametric alternatives that do not assume any particular distributional form, both
of which will be described in fellowing chapters.
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1.7 NORMAL PREDICTION LIMITS FOR THE MEAN(S) OF = > 1 FUTURE

MEASUREMENTS AT EACH OF £ MONITORING WELLS

In certain cases, we may be interested in comparing an average concentration to background.
The average concentration may be ohtained as (1) the mean of a series of different locations
at a given time point. (2} the mean of a series of measurements collected over time at a single
location, or (3) the mean of measurements collected over time at a number of locations.
While there are a number of statistical approaches for the comparison of mean values
for normally distributed random variables (e.g., analysis of variance [ANOVA] or i-tests),
these methods pool variance estimates from both background and on-site/downgradient
measurements. Since contamination can impact both the absolute magnitude and the
variability of the concentration distribution, using potentially impacted data to represent
natural variability is not a judicious choice. If there is interest in comparing average on-
site/downgradient concentrations to background, then only the background data should be
used in deriving the estimate of natural variability, Fortunately, ihis is exactly ihe case
for prediction limits (i.e., F-expectation tolerance limits; Guttman {19707} for future mean
values. Since the variance of a single measurement o2 is much larger than the variance of
the mean of #t such measurements o2 /rn, the corresponding (1 — )100% prediction limit
for the mean of  future values from a normal distribution,

T4 tpo11-a)$vV I/m+1/n, (1.22)

is considerably smafler than the corresponding prediction limit for m future individual
measurements.  Also, note that since the m measurements are now pooled into a single
comparison for their mean, the total number of comparisons is reduced to a single compari-
son, further reducing the size of the statistical limit estimate. Of course, if we are interested
in comparing the mean of m measurements at each of & locations, the Bonterroni adjusted
prediction limit becomes

3_7+t[ﬂ—1,1_—a/k]8\"" ]./ﬂ'i‘,-i-lfr'f'.‘f. (1A23]

Finally, if we are interested in comparing the grand mean averaging over both time and
locations, the normal prediction limit becomes

T +itn_1a1-asV1/km+ 1/n, (124

which once again reduces to a single comparison for the mean of the & measurements,

While the first and last cases involve a single comparison {per constituent), the second
case {i.e., the mean of sn samples at each of k locations} produces a nontrivial multiple
comparison case in that the % locations are all compared to a common background. In this
case, the correlation between the & comparisons is constant (assuming an equal number of
measurements per location) with value

pzl/\/(%—i—l) (%—1—1) (125)

For example, with n = 8 background measurements and m = 4 on-site measurements in
each of the & Iocations, the correlation between the comparisons is o = .33 as compared to
p = 11forasingle (m = 1) measurement per well. Assuch, the coefficients obtained under
the independence assumption will be more severely biased (i.e., too large) when comparing
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on-site/downgradient means as opposed to individual measurements to background. The
variation on Dunnett’s test described in the previous section can be applied here as well.
The tabled values are different because the correlations change as a function of the number
of measurements at each location. Table 1.14 presents the appropriate coefficients for
m = 4 measurements at each of k = 4 — 50 locations. Table 1.15 presents the appropriatle
coefficients for m = 8 measurements at each of & = 4 to 50 locations. Table .16 presents
the appropriate coefficients for rn = 12 measurements at each of & = 4 to 50 lecations,
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Table 1.14;: Dunnett-Type Multivariate ¢-Statistics [d{n, m, )] for Comparing the Mean

of m = 4 Measurements at Each % = 4 to 50 Locations Based on n = 4 to 100 Background

Measurements with 95% Confidence

% = Number of Funure Comparisons

n 5 10 s 20 = 30 35 En) a5 50
4 370 4.25 4.56 478 4.94 507 5.18 527 535 542
8 281 318 3.39 354 365 373 38l 387 3.9 397
12 262 295 3.14 327 337 344 351 357 3.62 366
16 254 285 303 15 3 3.3t 338 343 347 3.52
20 2.49 2.79 2.96 3.08 116 3.24 3.30 335 339 3.43
24 246 233 292 303 N s .19 324 329 3.34 338
28 2.44 273 289 3.00 108 3.5 3.21 3.25 330 3.34
32 243 2 286 297 3.06 312 3.8 313 327 3.30
36 241 2.69 285 2.95 3.04 3.10 3.16 32 324 328
40 240 268 283 294 am 308 314 318 323 3.26
44 240 267 282 293 101 107 312 3.17 a2 325
a8 239 266 281 292 299 3.06 3 316 320 323
s2 238 265 280 291 299 105 310 3.15 3.19 122
56 238 263 2.80 290 2498 304 3uy AL 318 3|
60 238 264 279 2.89 297 3.03 3.08 343 317 320
64 237 264 278 289 296 303 308 32 316 320
68 237 263 278 288 2.96 302 167 ERE: 316 3.19
7 237 263 278 238 295 m 307 ER Y| ENE 308
76 236 263 277 287 295 30 3.06 AT 3.14 3.18
80 236 262 21 287 295 im KRL ERY in 317
84 236 262 277 287 254 3.00 3.05 3.10 114 317
88 2.36 262 276 286 294 300 305 309 313 317
92 236 2.62 276 2.86 294 3.00 3.05 3.09 KRE 316
% 235 261 276 286 293 299 304 109 ERE 316
100 2.35 261 275 2.86 293 299 3.04 3.08 a2 316

28
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Table 1.15: Dunnett-Type Multivariate ¢-Statistics [{n, m, k)] for Comparing the Mean
of m = & Measurements at Each of & =4 to 30 Locations Based on n. = 4 to 100 Background

Measurements with 95% Conftdence

& = Number of Future Comparisons

n B D s 20 75 30 35 D) 45 50

4 348 392 418 433 446 4.56 4.65 4m 478 434

8 273 3.05 323 336 345 3.53 359 364 3.69 373
12 257 158 3.04 316 325 332 3.8 343 347 3.51
16 2.51 2RO 2496 3407 AL 3.23 328 333 337 341
Bl 247 275 291 302 3.10 3.17 323 328 332 3.35
24 2.44 272 288 299 307 314 319 324 328 33z
% 2.43 2.0 286 2.98 3.04 311 .16 321 325 329
32 241 269 284 2.95 303 309 3.14 319 323 31
36 240 267 283 293 30 307 313 317 321 3.25
4} .39 2.66 281 2492 3400 3.6 3l 36 320 323
44 239 266 281 291 2.99 105 310 3.15 319 322
a8 238 265 2,80 290 298 304 309 EXE 118 32
52 234 264 279 289 297 103 308 3.13 .17 330
56 237 2.64 279 289 2.96 303 308 312 316 320
60 237 263 278 288 296 302 307 312 3.5 3.19
&4 237 263 2.78 2588 295 301 307 3l 315 3.18
68 2.36 163 237 287 295 3 3.06 ER)| 314 EAE.
72 236 262 2.77 287 294 3ol 306 3.10 314 307
7 236 262 277 287 294 3.00 305 3.10 3.13 47
B0 236 262 176 286 2494 KRLY 305 309 313 316
84 2.36 262 276 2.86 293 3.00 3.0 309 313 3.16
83 235 261 276 286 293 299 304 3.09 312 316
92 235 2.61 276 285 293 2.99 304 3.0 N 3.15
96 2.35 2461 275 LR 243 299 KR 308 ER W 315

100 235 2.61 275 2.85 292 2.98 304 3.08 31z 315
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Table 1.16: Dunnett-Type Multivariate ¢-Statistics [d{n, m, &} for Comparing the Mean of

m = 12 Measurements at Each of & =4 10 50 Locations Based on . = 4 to 100 Background

Measurements with 95% Confidence

f: = Number of Future Comparisons

n 3 T 13 by pH) 30 ik EN) 3 %0
4 334 372 343 4407 417 426 433 4.440) 4.45 4.50
8 266 295 3.11 3.22 331 3.37 343 3.48 3.52 3.36
2 2.33 .81 2486 307 315 321 37 331 335 3.39
16 247 2.75 290 301 308 313 3.20 3.25 329 332
0 244 272 287 2497 305 il 36 321 325 328
24 242 269 284 295 3.02 309 34 3.18 an 326
b 241 268 283 293 300 3007 a2 3.17 32 324
32 2.40 267 281 .42 2.99 306 3 315 304 3.23
36 239 2.66 280 291 298 305 3.10 314 318 321
40 238 2.65 280 290 297 304 309 A 347 320
44 238 264 279 289 297 303 308 a2 3.16 320
48 237 2.64 2.78 288 2.9% 302 307 312 316 3.19
52 237 263 278 2.88 295 3.02 307 AT 315 3.8
36 237 263 277 287 295 3.01 3.06 3.1 314 3.18
60 236 2.62 277 287 295 EXY] 3406 300 EN B 307
64 2.36 262 277 287 294 .00 305 310 313 37
63 236 2.62 276 236 294 100 305 309 313 316
72 2.3 262 276 2.86 293 3.00 3.05 39 3.13 316
6 2.35 2.61 276 246 2493 299 304 309 KR ML
30 235 261 276 285 293 2.99 3.04 308 3.12 15
84 235 261 275 2.85 293 2.99 304 3.08 312 315
88 233 261 273 2.85 292 298 343 3408 3.12 313
92 2.35 281 275 285 292 298 303 3.08 3l 345
96 233 2.60 275 285 292 298 30 3.07 9! 3.4
1t 2.35 260 275 254 292 298 303 307 31 314

k]
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Example 1.5

As an illustration, consider the following hexavalent chromium data and assume, for the
purpose of illustration, that they represent background conditions.

Date Result
08/02/96 29
09/09/96 14
(9/30/96 13
10/30/96 14
12/04/96 19
01/06/97 9
02/10/97 <1
05/08/97 33
08/03/97 150
11/11/97 60
02/02/98 57

For the mean of four future samples, the 95% normat upper prediction limit (UPL} is

UPL = Z4+tsy/1/m+1/n
= 36.136 + 1.812(42.515)\/1/4 + 1/11

= 81.116 mg/L.

Since there is a single future comparison (i.e., & = 1), the limit is based on Student’s
{-distribution. Now consider £ = 5 locations. From Table 1.14 we obtain a multivariate ¢
value of 2.67 and a corresponding UPL of 102.415 mg/L.

1.8 SUMMARY

A variety of statistical prediction limits and intervals have been presented for normally
distributed measurements in order of increasing statistical sophistication required for in-
creasingly complex applications. The final prediction limits presented, based on the work
of Davis and McNichols [1987], are most appealing since they consider both multiple com-
parisons and verification resamipling in the most statisticalty rigorous way. Furthermore,
they allow us to partition out the effects of multiple monitoring wells from the effects of
multiple constituents for inter-well comparisons. The reader should note, however, that
in the case of k > 1 we are invariably describing an upgradient versus downgradient
monitoring plan. For intra-well comparisons we select » = 1 and o = jf—:, where L~ is
the total number of comparisons, in this case the product of wells and constituents. The
assumption here is that either no spatial variability exists or that spatial variability in alf
downgradient wells is adeguately described and can be statistically modeled by the spatial
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variability in the small number of upgradient wells available at the facility (a topic to be dis-
cussed in a following chapter). Interestingly, there are ne current regulatory requirements
on the number of upgradient wells, and to minimize expenses, owners/operators typically
keep the number of upgradient wells to fewer than three or four. Often, there is only a
single upgradient well, and potential contamination is completely confounded with spatial
variability, making the upgradient versus downgradient compariscn strategy meaningless.
Even with three or four upgradient wells, it is extremely unlikely that spatial variability
across the site as a whele will be adequately characterized. The methods described here,
and indeed any other approach, will not work in the presence of such spatial variability. If
predisposal data exist, then estimates of site-wide spatial variability are available and can be
incorporated into prediction limits using components of variance models to be described.
Unforiunately, predisposal data are rarely available at mosi sites despite the fact that their
benefits far outweigh their cost. In these cases, intra-well comparisons may be the only
viable alternative. Intra-well comparisons are always more powerful if they are justified.








