
Chapter 1: Building and Processing
Dynamic Forms

In This Chapter
� Using HTML forms with PHP

� Getting data from an HTML form

� Displaying data in a form

� Processing what users type into HTML forms

� Building the code for a real form

A dynamic Web site is one in which the visitor interacts with the Web
site. The Web site visitor provides information to the Web site in an

HTML form, and the Web site performs actions based on the visitor’s infor-
mation. The Web site might display different Web pages based on the user’s
information or might store or use the information.

In this chapter, we don’t tell you about the HTML required to display a form.
We assume that you already know HTML. (If you don’t know HTML or need a
refresher, check out HTML 4 For Dummies, 5th Edition, by Ed Tittel and Mary
Burmeister, from Wiley Publishing.) What we do tell you is how to use PHP
to display HTML forms and to process the information that users type into
the form.

Using Static HTML Forms
HTML forms are very important for interactive Web sites. In your previous
experience, you might have displayed static HTML forms on Web pages.
That is, forms whose content is predetermined and cannot change. In this
section, you see how to display a static HTML form from a PHP script.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 469

CO
PYRIG

HTED
 M

ATERIA
L



Using Static HTML Forms470

Displaying an HTML form
To display a form with PHP, you can do one of the following:

✦ Use echo statements to echo the HTML for a form. For example:

<?php
echo “<form action=’process_form.php’

method=’POST’>\n
<input type=’text’ name=’fullname’ />\n
<input type=’submit’ value=’Submit Name’ />\n
</form>\n”;

?>

✦ Use plain HTML outside the PHP sections. For a plain static form,
there’s no reason to include it in a PHP section. For example:

<?php
statements in PHP section

?>
<form action=”process_form.php” method=”POST”>
<input type=”text” name=”fullname” />
<input type=”submit” value=”Submit Name” />

</form>
<?php
statements in PHP section

?>

Either of these methods produces the form displayed in Figure 1-1.

Getting information from the form
Joe Customer fills in the HTML form. He clicks the Submit Name button. You
now have the information that you wanted — his name. So where is it? How
do you get it?

Figure 1-1:
A form
produced 
by HTML
statements.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 470



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Using Static HTML Forms 471

You get the form information by running a script that receives the form infor-
mation. When the user clicks the submit button, PHP automatically runs a
script. The action parameter in the form tag tells PHP which script to run.
For instance, in the preceding script, the parameter action=process_
form.php tells PHP to run the script named process_form.php when the
user clicks the submit button. The script name supplied in the action
attribute can be any script you write to display, store, or otherwise use the
form data it receives when the form is submitted. You can name it with any
valid PHP script name.

When the user clicks the submit button, the script specified in the action
attribute runs, and statements in this script can get the form information
from PHP built-in arrays and use the information in PHP statements. The
built-in arrays that contain form information are $_POST, $_GET, and
$_REQUEST, which are superglobal arrays, special-purpose arrays that you
can use anywhere in your script.

When the form uses the POST method, the information from the form fields
is stored in the $_POST array. The $_GET array contains the variables
passed as part of the URL, including fields passed from a form using the GET
method. The $_REQUEST array contains all the array elements together that
are contained in the $_POST, $_GET, and $_COOKIES arrays. Cookies are
explained in Chapter 2 in this minibook.

When using PHP, it’s almost always preferable to use the POST method for
forms. When you use the POST method, the form data is passed as a package
in a separate communication with the processing program, allowing an
unlimited amount of data to be passed. When you use the GET method, in
which the form data is passed in the URL, the amount of data that can be
passed is limited. In addition, the POST method is more secure because the
form data isn’t displayed in the URL as it is with the GET method.

When the form is submitted, the script that runs can get the form informa-
tion from the appropriate built-in array. In these built-in arrays, each array
index is the name of the input field in the form. For instance, if the user
typed John Smith in the input field shown in Figure 1-1 and clicked the
submit button, the script process_form.php runs and can use an array
variable in the following format:

$_POST[‘fullname’]

Notice that the name typed into the form is available in the $_POST array
because the <form> tag specified method=’POST’. Also, note that the array
key is the name given the field in the HTML form with the name attribute
name=”fullname”.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 471



Using Static HTML Forms472

The superglobal arrays, including $_POST and $_GET, were introduced in
PHP 4.1. Up until that time, form information was passed in old arrays
named $HTTP_POST_VARS and $HTTP_GET_VARS. If you’re using PHP 4.0 or
earlier, you must use the long arrays. Both types of built-in arrays exist up
through PHP 5. The long arrays no longer exist in PHP 6. If you’re working
with some old scripts that use the long array names, you need to change the
array names from the long names, such as $HTTP_POST_VARS, to the super-
global array names, such as $_POST. In most cases, a search-and-replace in a
text editor will make the change with one command per array.

A script that displays all the fields in a form is useful for testing a form. You
can see what values are passed from the form to be sure that the form is for-
matted properly and that the form sends the field names and values that you
expect.

Listing 1-1 shows a script that displays the information from all the fields
sent by a POST type form when the user clicks the submit button. This script
displays the field values from any form. We’ve named this script process_
form.php. When the form shown earlier in Figure 1-1 is submitted, the
script in Listing 1-1 runs.

Listing 1-1: A Script That Displays All the Fields from a Form

<?php
/*  Script name:  process_form.php
*  Description:  Script displays all the information
*                passed from a form.
*/

Registering long arrays
The superglobal arrays were introduced in PHP
4.1. Until that time, form information was
passed in old arrays named $HTTP_POST_
VARS and $HTTP_GET_VARS. It’s very
unlikely that you’ll need to use them unless
you’re using some old scripts containing the
long variables.

A php.ini setting, introduced in PHP 5, con-
trols whether the old arrays are created. The
following line in php.ini controls this setting:

register_long_arrays = On

In PHP 5, this setting is On by default. Unless
you’re running old scripts that need the old
arrays, you should change the setting to Off
so that PHP doesn’t do this extra work.

In PHP 6, the register_long_arrays
setting is removed from php.ini. The long
arrays no longer exist. If you’re using old
scripts, you must change the long array names,
such as $HTTP_POST_VARS, to the newer
global array names, such as $_POST.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 472



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Using Static HTML Forms 473

echo “<html>
<head><title>Form Fields</title></head>
<body>”;

echo “<ol>”;
foreach($_POST as $field => $value)
{

echo “<li> $field = $value</li>”;
}
echo “</ol>”;

?>
</body></html>

If the user types the name John Smith into the form in Figure 1-1, the follow-
ing output is displayed:

1 fullname = John Smith

The output displays only one line because the form in Figure 1-1 has only
one field.

The script in Listing 1-1 is written to process the form information from any
form that uses the POST method.

Organizing scripts that display forms
Best practices for PHP scripts suggest that code be organized into separate
scripts, as follows:

✦ Logic code: The PHP code that performs the tasks for the scripts, which
includes the if and while statements that control the flow of the script.

✦ Display code: The code that determines the look and feel of the Web
pages, which includes the HTML and CSS code that defines the Web
page.

It’s easier to maintain and modify the script with separate files. When you
want to change the look of the form, you need to edit only the file containing
the code that defines the form. You won’t accidentally change the logic of
the script. By the same token, you can change the logic of the script without
affecting the appearance of the form. In addition, if you need to display the
form in different places in the script, you just include the file that defines the
form wherever you need to display it. You don’t add the entire code that dis-
plays the form inside your PHP script.

Script that contains the PHP logic
A simple logic script to display a form is shown in Listing 1-2.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 473



Using Static HTML Forms474

Listing 1-2: A Script That Displays a Form

<?php
/*  Program name: display_form.php
*  Description:  Script displays a form.
*/
include(“form_phone.inc”);
?>

The script consists of one statement that includes the file that displays the
form. All the code that actually displays the form is in the script form_
phone.inc, shown in Listing 1-3. This script is a simple case, with one
include statement. A slightly more complicated script might include an if
statement that displayed alternative forms, such as the following:

if(country == “Russia”)
include(“form_Russian.inc”);

elseif(country -- “USA”)
include(“form_English.inc”);

The logic script often includes statements that check the form information
for errors after it’s been submitted and statements that process the informa-
tion. Validating and processing form information are discussed later in this
chapter, in the section “Processing Information from the Form.”

Script that contains the display code
The form script contains the HTML and CSS code that displays the Web page
that includes the form. The look and feel of the Web page are defined in this
file. Listing 1-3 shows the file that the logic script in Listing 1-2 includes in
order to display a form that collects a Web visitor’s phone number.

Listing 1-3: A Script That Defines a Form

<?php ➝1
/*  Program name: form_phone.inc
*  Description:  Defines a form that collects a user’s
*                name and phone number.
*/
$labels = array( “first_name” => “First Name”, ➝6

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

$submit = “Submit Phone Number”; ➝10
?>
<html> ➝12
<head><title>Customer Phone Number</title>

<style type=’text/css’>
<!--
#form {

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 474



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Using Static HTML Forms 475

margin: 1.5em 0 0 0;
padding: 0;

}
#field {padding-bottom: 1em;}
label {
font-weight: bold;
float: left;
width: 20%;
margin-right: 1em;
text-align: right;
}
-->
</style>

</head>
<body>
<h3>Please enter your phone number below.</h3>
<form action=’process_form.php’ method=’POST’>
<div id=’form’>
<?php ➝35
/* Loop that displays the form fields */
foreach($labels as $field => $label) ➝37
{
echo “<div id=’field’><label for=’$field’>$label</label>

<input id=’$field’ name=’$field’ type=’text’
size=’50%’ maxlength=’65’ /></div>\n”;

}
echo “</div>\n”;
echo “<input style=’margin-left: 33%’ type=’submit’ ➝44

value=’$submit’ />\n”;
?>
</form></body></html>

The following explanation refers to the line numbers in the preceding code:

➝1 The script begins with a PHP section (Lines 1–11).

➝6 An array is created that contain the field names and labels used in
the form. The keys are the field names. Setting up your fields in an
array at the top of the script makes it easy to see what fields are
displayed in the form and to add, remove, or modify fields.

➝10 Creates a $submit variable $submit. The value assigned is the
value displayed on the submit button.

➝12 An HTML section (Lines 12–31) follows the PHP section. It includes
the CSS needed to style the form (Lines 12–31) and three lines
(Lines 32–34) that start the form, including the <form> tag. Notice
that the <form> tag specifies process_form.php in the action
attribute, meaning that the script process_form.php (Listing 1-1)
is assigned to run and process the form when the user clicks the
submit button.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 475



Using Static HTML Forms476

➝35 A second PHP section begins.

➝37 A foreach statement begins. A form field is displayed for each
element in the $labels array.

➝44 Displays the submit button.

For security reasons, always include maxlength — which defines the
number of characters that users are allowed to type into the field — in your
HTML statement. Limiting the number of characters helps prevent the bad
guys from typing malicious code into your form fields. If the information will
be stored in a database, set maxlength to the same number as the width of
the column in the database table.

When you run the script in Listing 1-2, the script in Listing 1-3 is included
and displays the form shown in Figure 1-2.

When a user fills in the form shown in Figure 1-2 (created by the script in
Listing 1-3) and submits it, the script process_form.php runs and pro-
duces output similar to the following:

1. first_name = Mary
2. middle_name = Quite
3. last_name = Contrary
4. phone = 555-5555

In processform.php, all elements of the $_POST built-in array are 
displayed.

Figure 1-2:
A form that
collects a
user’s name
and phone
number.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 476



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 477

Displaying Dynamic HTML Forms
PHP brings new capabilities to HTML forms. Because you can use variables
in PHP forms, your forms can now be dynamic: They can be formatted at the
time they are generated, rather than predetermined ahead of time as static
forms are. The content of the form can change, based on information sup-
plied by the user or information retrieved from the database. Here are the
major capabilities that PHP brings to forms:

✦ Using variables to display information in input text fields

✦ Using variables to build dynamic lists for users to select from

✦ Using variables to build dynamic lists of radio buttons

✦ Using variables to build dynamic lists of check boxes

Displaying values in text fields
When you display a form on a Web page, you can put information into the
text fields rather than just displaying a blank field. For example, if most of
your customers live in the United States, you might automatically enter US in
the country field when you ask customers for an address. If the customer
does indeed live in the United States, you’ve saved the customer some
typing. And if the customer doesn’t live in the United States, he or she can
just select the appropriate country. Also, the text automatically entered into
the field doesn’t have any typos — well, unless you included some yourself.

To display a text field that contains information, you use the following
format for the input field HTML statements:

<input type=”text” name=”country” value=”US”>

This displays the value US in the field. By using PHP, you can make the form
dynamic by using a variable to display this information, as shown in the two
following statements:

<input type=”text” name=”country”
value=”<?php echo $country ?>” />

echo “<input type=’text’ name=’country’ value=’$country’ />”;

The first example creates an input field in an HTML section, using a short
PHP section for the value only. The second example creates an input field by
using an echo statement inside a PHP section. If you’re using a long form
with only an occasional variable, using the first format is more efficient. If
your form uses many variables, it’s more efficient to use the second format.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 477



Displaying Dynamic HTML Forms478

If you have user information stored in a database, you might want to display
the information from the database in the form fields. For instance, you might
show the information to the user so that he or she can make any needed
changes. Or you might display the shipping address for the customer’s last
online order so that he or she doesn’t need to retype the address. Listing 1-4
shows the form_phone_values_db.inc file, containing the form code that
displays a form with information from the database. This form is similar to
the form shown in Figure 1-2, except that this form has information in it
(retrieved from the database), and the fields in the form are blank.

To display this form, you run the displayForm.php script, shown in 
Listing 1-2, with the include statement in the script changed to:

include(“form_phone_values_db.inc”);

This includes the file that displays the form produced by the code in 
Listing 1-4.

Listing 1-4: Displaying an HTML Form with Information

<?php
/*  Program name: form_phone_values_db.inc
*  Description:  Defines a form that gets a user’s
*                name and phone number from the database
*                and displays them in a form.
*/
$labels = array ( “first_name” => “First Name”,

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

$submit = “Submit Phone Number”;
$last_name = “Contrary”;     // user name ➝12
include(“dbstuff.inc”); ➝13
$cxn = mysqli_connect($host,$user,$passwd,$databname)

or die (“couldn’t connect to server”);
$query = “SELECT * FROM phone

WHERE last_name=’$last_name’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$customer = mysqli_fetch_assoc($result); ➝20
?>
<html>
<head><title>Customer Phone Number</title>
<style type=’text/css’>
<!--
#form {
margin: 1.5em 0 0 0;
padding: 0;

}
#field {padding-bottom: 1em;}

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 478



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 479

label {
font-weight: bold;
float: left;
width: 20%;
margin-right: 1em;
text-align: right;

}
-->

</style>
</head>
<body>
<h3>Please enter your phone number below.</h3>
<form action=’process_form.php’ method=’POST’>
<div id=’form’>
<?php
/* Loop that displays the form fields */
foreach($labels as $field => $label)
{
echo “<div id=’field’><label for=’$field’>$label</label>

<input id=’$field’ name=’$field’ type=’text’
size=’50%’ maxlength=’65’
value={$customer[$field]} /> </div>\n”; ➝52

}
echo “</div>\n”;
echo “<input style=’margin-left: 33%’ type=’submit’

value=’$submit’ />\n”;
?>
</form></body></html>

The form_phone_values_db.inc file, shown in Listing 1-4, is similar to
the form_phone.inc file shown in Listing 1-3. The difference is that the file
connects to the database to get the name and address and displays them in
the form.

The differences are shown in the following lines:

➝12 Lines 12–20 create an array that stores the name and phone
number retrieved from the database. Line 12 stores a user last
name to use to retrieve the information from the database. Line 13
includes a file that contains the username, password, and data-
base name to use when connecting to the database. Lines 14–20
retrieve the name and address and store them in a $customer
array.

➝52 This line adds a value attribute to the <input> tag to display the
values in the form fields.

Figure 1-3 shows the Web page resulting from the script in Listing 1-4. The
information in the form is the information stored in the database.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 479



Displaying Dynamic HTML Forms480

When the user clicks the submit button in the form displayed in Figure 1-3,
the process_form.php script runs and displays the following:

1. first_name = Mary
2. middle_name = Quite
3. last_name = Contrary
4. phone = 555-5555

Building selection lists
One type of field that you can use in an HTML form is a selection list. Instead
of typing into a field, your users select from a list. For instance, in a product
catalog, you might provide a list of categories from which users select what
they want to view. Or the form for users’ addresses might include a list of
states that users can select. Or users might enter a date by selecting a
month, day, and year from a set of lists.

Use selection lists whenever feasible. When the user selects an item from a
list, you can be sure that the item is accurate, with no misspellings, odd
characters, or other problems introduced by users’ typing errors.

An HTML selection list for a list of categories in a catalog might look as 
follows:

<form action=”process_form.php” method=”POST”>
<select name=”category”>
<option value=”clothes”>clothes</option>
<option value=”furniture” selected>furniture</option>
<option value=”toys”>toys</option>

</select>
<input type=”submit” value=”Select Category” />
</form>;

Figure 1-3:
A form
displaying
the
username
and phone
number.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 480



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 481

Figure 1-4 shows the selection list that these HTML statements produce.
Notice that the Furniture option is selected when the field is first displayed.
You determine this default selection by including selected in the option tag.

When the user clicks the arrow on the drop-down list, the entire list drops
down, as shown in Figure 1-5, and the user can select any item in the list.
Notice that the Furniture option is selected until the user selects a different
item.

When using PHP, your options can be variables. This capability allows you to
build dynamic selection lists. For instance, you must maintain the static list
of product categories shown in the preceding example. If you add a new cat-
egory, you must add an option tag manually. However, with PHP variables,
you can build the list dynamically from the categories in the database. When
you add a new category to the database, the new category is automatically
added to your selection list without your having to change the PHP script.
Listing 1-5 shows code from a file named form_select.inc that builds a
selection list of categories from the database.

Figure 1-5:
A selection
field for a
catalog with
a drop-
down list.

Figure 1-4:
A selection
field for a
catalog.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 481



Displaying Dynamic HTML Forms482

To display this form, you run the script displayForm.php, shown in 
Listing 1-2, with the include statement in the script changed to

include(“form_select.inc”);

This includes the file that displays the form produced by the code in 
Listing 1-5.

Listing 1-5: Building a Selection List

<?php
/*  Program name: form_select.inc
*  Description:  file builds a selection list
*                from the database.
*/
?>
<html>
<head><title>Categories</title></head>
<body>
<?php
include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“couldn’t connect to server”);
$query = “SELECT DISTINCT cat FROM Product ORDER BY cat”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
/* create form containing selection list */
echo “<form action=’process_form.php’ method=’POST’

style=’margin-left: 2em’>
<label for=’cat’

style=’font-weight: bold’>Category:</label>
<select id=’cat’ name=’cat’

style=’margin-top: 3em’>\n”;
while($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<option value=’$cat’>$cat</option>”;

}
echo “</select>\n”;
echo “<input type=’submit’ style=’margin-left: 3em’

value=’Select category’ />
</form>\n”;

?>
</body></html>

Notice the following in the script in Listing 1-5:

✦ Using DISTINCT in the query: DISTINCT causes the query to get each
category only once. Without DISTINCT, the query would return each
category several times if it appeared several times in the database.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 482



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 483

✦ Using ORDER BY in the query: The categories are sorted alphabetically.

✦ echo statement before the loop: The <form> and <select> tags are
echoed before the while loop starts because they are echoed only
once.

✦ echo statement in the loop: The <option> tags are echoed in the 
loop — one for each category in the database. No item is marked as
selected, so the first item in the list is selected automatically.

✦ echo statements after the loop: The end <form> and <select> tags
are echoed after the loop because they’re echoed only once.

The selection list produced by this script is longer than the selection list
shown earlier in Figure 1-5 because there are more categories in the data-
base. The Clothes option is selected in this script because it is the first item
in the list — not because it’s specifically selected as it is in the HTML tags
that produce Figure 1-5. The drop-down list produced by this script is in
alphabetical order, as shown in Figure 1-6.

You can use PHP variables also to set up which option is selected when the
selection box is displayed. For instance, suppose that you want the user to
select a date from month, day, and year selection lists. You believe that most
people will select today’s date, so you want today’s date to be selected by
default when the box is displayed. Listing 1-6 shows the file form_date.
inc, which displays a form for selecting a date and selects today’s date 
automatically.

To display this form, you run the script displayForm.php, shown in 
Listing 1-2, with the include statement in the script changed to:

include(“form_date.inc”);

Figure 1-6:
A dynamic
selection 
list for a
catalog.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 483



Displaying Dynamic HTML Forms484

This includes the file that displays the form produced by the code in 
Listing 1-6.

Listing 1-6: Building a Date Selection List

<?php
/*  Program name: form_date.inc
*  Description:  Code displays a selection list that
*                customers can use to select a date.
*/
echo “<html>

<head><title>Select a date</title></head>
<body>”;

$monthName = array(1 => “January”, “February”, “March”,
“April”, “May”, “June”, “July”,
“August”, “September”, “October”,
“November”, “December”);

$today = time();                   //stores today’s date
$f_today = date(“M-d-Y”,$today);   //formats today’s date

echo “<div style = ‘text-align: center’>\n”;
echo “<h3>Today is $f_today</h3><hr />\n”;
echo “<form action=’process_form.php’ method=’POST’>\n”;

/* build selection list for the month */
$todayMO = date(“n”,$today);  //get the month from $today
echo “<select name=’dateMonth’>\n”;
for ($n=1;$n<=12;$n++)
{
echo “ <option value=$n”;
if ($todayMO == $n)
{
echo “ selected”;

}
echo “ > $monthName[$n]\n</option>”;

}
echo “</select>\n”;

/* build selection list for the day */
$todayDay= date(“d”,$today);    //get the day from $today
echo “<select name=’dateDay’>\n”;
for ($n=1;$n<=31;$n++)
{
echo “ <option value=$n”;
if ($todayDay == $n )
{
echo “ selected”;

}
echo “ > $n</option>\n”;

}

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 484



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 485

echo “</select>\n”;

/* build selection list for the year */
$startYr = date(“Y”, $today);  //get the year from $today
echo “<select name=’dateYear’>\n”;
for ($n=$startYr;$n<=$startYr+3;$n++)
{
echo “ <option value=$n”;
if ($startYr == $n )
{
echo “ selected”;

}
echo “ > $n</option>\n”;

}
echo “</select>\n”;
echo “</form></div>\n”;
?>
</body></html>

The Web page produced by the script in Listing 1-6 is shown in Figure 1-7.
The date appears above the form so that you can see that the selection list
shows the correct date. The selection list for the month shows all 12 months
when it drops down. The selection list for the day shows 31 days when it
drops down. The selection list for year shows 4 years.

The script in Listing 1-6 produces the Web page in Figure 1-7 by following
these steps:

1. It creates an array containing the names of the months.

Figure 1-7:
A selection
field for the
date with
today’s date
selected.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 485



Displaying Dynamic HTML Forms486

The keys for the array are the numbers. The first month, January, starts
with the key 1 so that the keys of the array match the numbers of the
months.

2. It creates variables containing the current date.

$today contains the date in a system format and is used in the form.
$f-today is a formatted date that is used to display the date in the Web
page.

3. It displays the current date at the top of the Web page.

4. It builds the selection field for the month:

a. Creates a variable containing today’s month.

b. Echoes the <select> tag, which should be echoed only once.

c. Starts a for loop that repeats 12 times.

d. Inside the loop, echoes the <option> tag by using the first value
from the $monthName array.

e. If the number of the month being processed is equal to the number
of the current month, it adds the word “selected” to the
<option> tag.

f. Repeats the loop 11 more times.

g. Echoes the closing <select> tag for the selection field, which
should be echoed only once.

5. It builds the selection field for the day.

Uses the procedure described in Step 4 for the month. However, only
numbers are used for this selection list. The loop repeats 31 times.

6. It builds the selection field for the year:

a. Creates the variable $startYr, containing today’s year.

b. Echoes the <select> tag, which should be echoed only once.

c. Starts a for loop. The starting value for the loop is $startYr. The
ending value for the loop is $startYr+3.

d. Inside the loop, echoes the <option> tag, using the starting value of
the for loop, which is today’s year.

e. If the number of the year being processed is equal to the number of
the current year, it adds the word “selected” to the <option> tag.

f. Repeats the loop until the ending value equals $startYr+3.

g. Echoes the closing <select> tag for the selection field, which
should be echoed only once.

7. It echoes the ending tag for the form.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 486



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 487

Building lists of radio buttons
You might want to use radio buttons instead of selection lists. For instance,
you can display a list of radio buttons for your catalog categories and have
users select the button for the category that they’re interested in.

The format for radio buttons in a form is

<input type=”radio” name=”name” value=”value” />

You can build a dynamic list of radio buttons representing all the categories
in your database in the same manner that you build a dynamic selection list
in the preceding section. Listing 1-7 shows the file form_radio.inc, which
displays a list of radio buttons based on categories in the database.

To display this form, you run the script displayForm.php, shown in 
Listing 1-2, with the include statement in the script changed to:

include(“form_radio.inc”);

This includes the file that displays the form produced by the code in 
Listing 1-7.

Listing 1-7: Building a List of Radio Buttons

<?php
/*  Program name: form_radio.inc
*  Description:  Program displays a list of radio
*                buttons from database info.
*/
echo “<html>

<head><title>Radio Buttons</title></head>
<body>”;

include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“Couldn’t connect to server”);
$query = “SELECT DISTINCT cat FROM Product

ORDER BY cat”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

echo “<div style=’margin-left: .5in; margin-top: .5in’>
<p style=’font-weight: bold’>
Which type of product are you interested in?</p>
<p>Please choose one category from the

following list:</p>\n”;

/* create form containing radio buttons */
echo “<form action=’process_form.php’ method=’POST’>\n”;

(continued)

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 487



Displaying Dynamic HTML Forms488

Listing 1-7 (continued)

while($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<input type=’radio’ name=’category’

value=’$cat’ />$cat\n”;
echo “<br />\n”;

}
echo “<p><input type=’submit’ value=’Select category’ />

</form></div>\n”;
?>
</body></html>

The Web page produced by this file is shown in Figure 1-8.

Building lists of check boxes
You might want to use check boxes in your form. Check boxes are different
from selection lists and radio buttons because they allow users to select
more than one option. For instance, if you display a list of product cate-
gories with check boxes, a user can select two or three or more categories.
The file form_checkbox.inc in Listing 1-8 creates a list of check boxes.

To display this form, you run the script displayForm.php, shown in 
Listing 1-2, with the include statement in the script changed to

include(“form_checkbox.inc”);

This includes the file that displays the form produced by the code in 
Listing 1-8.

Figure 1-8:
List of radio
buttons
produced 
by the code
in form_
radio.inc.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 488



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Displaying Dynamic HTML Forms 489

Listing 1-8: Building a List of Check Boxes

<?php
/*  Program name: form_checkbox.inc
*  Description:  Program displays a list of
*                checkboxes from database info.
*/
echo “<html>

<head><title>Checkboxes</title></head>
<body style=’margin: .5in’>”;

include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$passwd,$databname)

or die (“couldn’t connect to server”);
$query = “SELECT DISTINCT cat FROM Product

ORDER BY cat”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);

echo “<h3>Which products are you interested in?
<span style=’font-size: 80%; font-weight: normal’>
(Check as many as you want)</span></h3>\n”;

/* create form containing checkboxes */
echo “<fieldset>

<legend style=’font-weight: bold’>Products</legend>
<form action=’process_form.php’ method=’POST’>
<ul style=’list-style: none’>\n”;

while($row = mysqli_fetch_assoc($result))
{

extract($row);
echo “<li><input type=’checkbox’ name=’interest[$cat]’

id=’$cat’ value=’$cat’ />
<label for=’$cat’

style=’font-weight: bold’>$cat</label>
</li>\n”;

}
echo “</ul></fieldset>”;
echo “<p><input type=’submit’

value=’Select Categories’ /></p>
</form></body></html>\n”;

?>

Notice that the input field uses an $interest array as the name for the field
because more than one check box can be selected. This script creates an ele-
ment in the array with a key/value pair for each check box that’s selected.
For instance, if the user selects both furniture and toys, the following array is
created:

$interest[Furniture]=Furniture
$interest[Toys]=Toys

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 489



Processing Information from the Form490

The script that processes the form has the selections available in the POST
array, as follows:

$_POST[‘interest’][‘Furniture’]
$_POST[‘interest’][‘Toys’]

Figure 1-9 shows the Web page produced by form_checkbox.inc.

Processing Information from the Form
Say that Joe Customer fills in an HTML form, selecting from lists and typing
information into text fields. When he clicks the submit button, the script
listed in the action attribute of the <form> tag, such as action=process_
form.php, runs and receives the information from the form. Handling form
information is one of PHP’s best features. You don’t need to worry about the
form data — just get it from one of the built-in arrays and use it.

The form data is available in the processing script in arrays, such as $_POST
or $_GET. The key for the array element is the name of the input field in the
form. For instance, if you echo the following field in your form

echo “<input type=’text’ name=’firstName’ />”;

the processing script can use the variable $_POST[firstName], which con-
tains the text that the user typed into the field. The information that the user

Figure 1-9:
A list of
check boxes
produced 
by form_
checkbox.
inc.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 490



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 491

selects from drop-down lists or radio buttons is similarly available for use.
For instance, if your form includes the following list of radio buttons,

echo “<input type=’radio’ name=’pet’ value=’dog’ />dog\n”;
echo “<input type=’radio’ name=’pet’ value=’cat’ />cat\n”;

you can access the variable $_POST[pet], which contains either dog or
cat, depending on what the user selected.

You handle check boxes in a slightly different way because the user can
select more than one check box. As shown in Listing 1-8, the data from a list
of check boxes can be stored in an array so that all the check boxes are
available. For instance, if your form includes the following list of check boxes,

echo “<input type=’checkbox’ name=’interest[dog]’
value=’dog’ />dog\n”;

echo “<input type=’checkbox’ name=’interest[cat]’
value=’cat’ />cat\n”;

you can access the data by using the multidimensional variable
$_POST[interest], which contains the following:

$_POST[interest][dog] = dog
$_POST[interest][cat] = cat

You now have all the information that you wanted in the $_POST or $_GET
array. Well, maybe. Joe Customer might have typed information that con-
tains a typo. Or he might have typed nonsense. Or he might even have typed
malicious information that can cause problems for you or other people using
your Web site. Before you use Joe’s information or store it in your database,
you want to check it to make sure that it’s the information you asked for.
Checking the data is called validating the data.

Validating the data includes the following:

✦ Checking for empty fields: You can require users to enter information in
a field. If the field is blank, the user is told that the information is
required, and the form is displayed again so that the user can type the
missing information.

✦ Checking the format of the information: You can check the information
to see that it’s in the correct format. For instance, ab3&*xx clearly is not
a valid ZIP code. Checking the format is also important to identify secu-
rity problems. Security issues are discussed in detail in Book IV.

Checking for empty fields
When you create a form, you can decide which fields are required and which
are optional. Your decision is implemented in the PHP script. You check the

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 491



Processing Information from the Form492

fields that require information. If a required field is blank, you send a mes-
sage to the user, indicating that the field is required, and you then redisplay
the form.

The general procedure to check for empty fields is

if(empty($_POST[‘last_name’]))
{

echo “You did not enter your last name.
Last name is required.<br />\n”;

redisplay the form;
exit();

}
echo “Welcome to the Members Only club.

You may select from the menu below.\n”;
display the menu;

Notice the exit statement, at the end of the if statement, that stops the
script. Without the exit statement, the script would continue to the state-
ments after the if statement. In other words, without the exit statement,
the script would display the form and then continue to echo the welcome
statement and the menu.

In many cases, you want to check all the fields in the form. You can do this
by looping through the array $_POST. The following statements check the
array for any empty fields:

foreach($_POST as $value)
{

if($value == “”)
{
echo “You have not filled in all the fields.\n”;
redisplay the form;
exit();

}
}
echo “Welcome”;

When you redisplay the Web form, make sure that it contains the informa-
tion that the user already typed. If users have to retype correct information,
they’re likely to get frustrated and leave your Web site.

In some cases, you might require the user to fill in most but not all fields. For
instance, you might request a fax number in the form or provide a field for a
middle name, but you don’t really mean to restrict registration on your Web
site to users with middle names and faxes. In this case, you can make an
exception for fields that aren’t required, as follows:

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 492



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 493

foreach($_POST as $field => $value)
{
if($field == “”)
{

if($field != “fax” and $field != “middle_name”)
{
echo “You have not filled in $field\n”;
display the form;
exit();

}
}

}
echo “Welcome”;

Notice that the inner if conditional statement is true only if the field is not
the fax field and is not the middle name field. For those two fields, the script
doesn’t display an error message and stop.

As an example, Listings 1-9 and 1-10 display and process the phone form
shown earlier in this chapter. Listing 1-9 shows form_phone_values.inc
that contains the display code for the form. The logic code is shown in
Listing 1-10.

The logic code both displays the form and processes the information sub-
mitted in the form. Performing both tasks in a single script is more efficient
than creating two separate scripts. To process the submitted information in
the same script, the action attribute of the <form> tag specifies the current
file. You can do this by providing the name of the script, or you can specify
the current file by using a variable provided by PHP, as follows:

<form action=”$_SERVER[‘PHP_SELF’]” method=’POST’>

The element in the $_SERVER superglobal array with the key PHP_SELF con-
tains the path/filename to the script that is currently running.

The display code in Listing 1-9 displays the same form as the code in Listing
1-2. The display code has been modified slightly. The form includes a hidden
field that is used by the logic code in Listing 1-10.

Listing 1-9: Displays a Form with a Hidden Field

<?php
/*  Program name: form_phone_values.inc
*  Description:  Defines a form that collects a user’s
*                name and phone number.
*/
$labels = array( “first_name” => “First Name”,

(continued)

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 493



Processing Information from the Form494

Listing 1-9 (continued)

“middle_name” => “Middle Name”,
“last_name” => “Last Name”,
“phone” => “Phone”);

$submit = “Submit Phone Number”;
?>
<html>
<head><title>Customer Phone Number</title>

<style type=’text/css’>
<!--
#form {
margin: 1.5em 0 0 0;
padding: 0;

}
#field {padding-bottom: 1em;}
label {
font-weight: bold;
float: left;
width: 20%;
margin-right: 1em;
text-align: right;
}
-->
</style>

</head>
<body>
<h3>Please enter your phone number below.</h3>
<?php
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>
<div id=’form’>”

if(isset($message)) ➝36
{

echo $message;
}
/* Loop that displays the form fields */
foreach($labels as $field => $label)
{
echo “<div id=’field’><label for=’$field’>$label</label>

<input id=’$field’ name=’$field’ type=’text’
size=’50%’ maxlength=’65’
value=’”.@$$field.”’ /></div>\n”; ➝46

}
echo “<input type=’hidden’ name=’sent’ value=’yes’ />\n”;
echo “<input style=’margin-left: 33%’ type=’submit’

value=’$submit’ />\n”;
?>
</form></body></html>

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 494



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 495

This code is similar to the code shown in Listing 1-2, with the following 
differences:

➝33 The action attribute of the <form> tag shows
$_SERVER[‘PHP_SELF’], which specifies the current script.

➝36-39If a variable named message exists, it is displayed. This variable
can contains an error message that is created in the logic script
(Listing 1-10) if any errors are found.

➝46 A value attribute is added to the <input> tag for the fields. The
value is a variable variable, $$field, which will output a variable
with the name of the field, such as $first_name or $middle_
name. Notice the @ before the variable name to prevent a notice
from displaying when the variable does not exist.

➝48 A hidden field is added to the form. When the user clicks the
submit button, the hidden field is sent with the form.

When the checkBlank.php script in Listing 1-10 first runs, it displays the
form by including the form_phone_values.inc file. When the form is sub-
mitted, the script checks all the required form fields for blank fields. All the
fields are required except middle_name. The following is an overview of the
script’s structure:

if (form has been submitted)
Test whether any required fields are blank.
if(blanks are found)

display error message
redisplay form

if(no blanks are found)
display “All required fields contain information”

else (form is displayed for the first time, not submitted)
display blank form

Listing 1-10: Checking for Blank Fields

<?php
/*  Program name: checkBlank.php
*  Description:  Program checks all the form fields for
*                blank fields.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”) ➝6
{
/* check each field except middle name for blank fields */
foreach($_POST as $field => $value) ➝9
{
if($value == “”) ➝11
{

(continued)

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 495



Processing Information from the Form496

Listing 1-10 (continued)

if($field != “middle_name”) ➝13
{

$blank_array[] = $field; ➝15
} // endif field is not middle name

} // endif field is blank
else ➝18
{
$good_data[$field] = strip_tags(trim($value));

}
}  // end of foreach loop for $_POST
/* if any fields were blank, create error message and

redisplay form */
if(@sizeof($blank_array) > 0) ➝25
{
$message = “<p style=’color: red; margin-bottom: 0;

font-weight: bold’>
You didn’t fill in one or more required fields.
You must enter:
<ul style=’color: red; margin-top: 0;

list-style: none’ >”;
/* display list of missing information */
foreach($blank_array as $value)
{
$message .= “<li>$value</li>”;

}
$message .= “</ul>”;
/* redisplay form */
extract($good_data); ➝40
include(“form_phone_values.inc”); ➝41
exit(); ➝42

} // endif blanks
echo “All required fields contain information”; ➝44
} // endif submitted
else ➝46
{
include(“form_phone_values.inc”);
}
?>

The following numbers in the explanation of the script shown in Listing 1-10
refer to the line numbers in the listing:

➝6 Begins an if statement that checks for the hidden field. If the
hidden field exists, the form was submitted by a user. The if
statement executes. If the hidden field does not exist, the script is
running for the first time, not started by a form submitted by a
user, and the script jumps to the else statement on Line 46.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 496



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 497

➝9 Starts a foreach statement that loops through the $_POST array.
All the information from the form is in the array.

➝11 Starts an if statement that executes if the field is blank.

➝13 Starts an if statement that executes if the field is not middle_
name. middle_name is not a required field, so it is allowed to be
blank. If the blank field is not middle_name, the field name is
stored in the array called $blank_array (Line 15).

➝18 Starts an else statement that executes if the field is not blank.
The data is cleaned and stored in $good_data so it can be safely
displayed in the form.

➝25 Determines whether any blank fields were found by checking
whether $blank_array contains any elements. If one or more
blank fields were found, the script constructs an error message
and stores it in $message. The form is displayed (Lines 40 and
41). The error message is displayed at the top of the form, and the
information from $good_data is displayed in the fields. An exit
statement (Line 42) stops the script after the form displays. The
user must click the submit button to continue.

➝44 If no blank fields were found, the if statement on Line 25 does not
execute. The echo statement on Line 44 displays a message that
all fields are okay.

➝46 Begins an else statement that executes the first time the script is
run, before the user submits the form. The blank form is dis-
played.

Don’t forget the exit statement. Without the exit statement, the script
would continue and would display All required fields contain
information after displaying the form.

Figure 1-10 shows the Web page that results if the user didn’t enter a first or
a middle name. Notice that the list of missing information doesn’t include
Middle Name because Middle Name isn’t required. Also, notice that the infor-
mation the user originally typed into the form is still displayed in the form
fields.

Checking the format of the information
Whenever users must type information in a form, you can expect a certain
number of typos. You can detect some of these errors when the form is sub-
mitted, point out the error(s) to the user, and then request that he or she
retype the information. For instance, if the user types 8899776 in the ZIP
code field, you know this isn’t correct. This information is too long to be a
ZIP code and too short to be a ZIP+4 code.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 497



Processing Information from the Form498

You also need to protect yourself from malicious users — users who might
want to damage your Web site or your database or steal information from
you or your users. You don’t want users to enter HTML tags into a form 
field — something that might have unexpected results when sent to a
browser. A particularly dangerous tag would be a script tag that allows a
user to enter a script into a form field. Checking data, as described in this
section, protects against both accidental problems and malicious users.

If you check each field for its expected format, you can catch typos and pre-
vent most malicious content. Checking information is a balancing act. You
want to catch as much incorrect data as possible, but you don’t want to
block any legitimate information. For instance, when you check a phone
number, you might limit it to numbers. The problem with this check is that it
would screen out legitimate phone numbers in the form 555-5555 or (888)
555-5555, so you also need to allow hyphens (-), parentheses ( ), and spaces.
You might limit the field to a length of 14 characters, including parentheses,
spaces, and hyphens, but this screens out overseas numbers or numbers
that include an extension.

The bottom line: You need to think carefully about what information you
want to accept or screen out for any field.

You can check field information by using regular expressions, which are pat-
terns. You compare the information in the field against the pattern to see
whether it matches. If it doesn’t match, the information in the field is incor-
rect, and the user must type it over. (See Book II, Chapter 2 for more on regu-
lar expressions.)

Figure 1-10:
The result of
processing
a form with
missing
information.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 498



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 499

In general, use these statements to check fields:

if( !preg_match(“pattern”,$variablename) )
{

echo error message;
redisplay form;
exit();

}
echo “Welcome”;

The preg_match function matches the pattern to the input value in $vari-
ablename, where pattern is a regular expression. (See Book II, Chapter 2 for
information on matching strings to regular expressions.) Notice that the con-
dition in the if statement is negative. That is, the ! (exclamation mark)
means “not”. So, the if statement actually says this: If the value in the vari-
able does not match the pattern, execute the if block.

For example, suppose that you want to check an input field that contains the
user’s last name. You can expect names to contain letters, not numbers, and
possibly apostrophe and hyphen characters (as in O’Hara and Smith-Jones)
and also spaces (as in Van Dyke). Also, it’s difficult to imagine a name longer
than 50 characters. Thus, you can use the following statements to check a
name:

if( !preg_match(“/[A-Za-z’ -]{1,50}/”,$last_name)
{

echo error message;
redisplay form;
exit();

}
echo “Welcome”;

If you want to list a hyphen (-) as part of a set of allowable characters that
are surrounded by square brackets ( [ ] ), you must list the hyphen at the
beginning or at the end of the list. Otherwise, if you put it between two char-
acters, the script will interpret it as the range between the two characters,
such as A–Z.

You also need to check multiple-choice fields. Although multiple choice pre-
vents honest users from entering mistakes, it doesn’t prevent clever users
with malicious intentions from entering unexpected data into the fields. You
can check multiple-choice fields for acceptable output with the following
type of regex:

if( !preg_match(“/(male|female)/”,$gender) )

If the field contains anything except the value male or the value female, the
if block executes.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 499



Processing Information from the Form500

The script checkFormat.php, shown in Listing 1-11, checks field informa-
tion for valid formats. The script displays and processes the form in the file
form_phone_values.inc, shown in Listing 1-9. This script checks only for
valid format, not for empty required fields. In most cases, you would want to
check for both blank fields, as shown in the script checkBlanks.php in
Listing 1-10 and for valid formats.

Listing 1-11: Checking for Invalid Formats in Form Fields

<?php
/*  Program name: checkFormat.php
*  Description:  Program checks all the form fields for
*                valid formats.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”) ➝6
{
/* validate data from the form */
foreach($_POST as $field => $value) ➝9
{
if(!empty($value)) ➝11
{
$name_patt = “/^[A-Za-z’ -]{1,50}$/”; ➝13
$phone_patt = “/^[0-9)(xX -]{7,20}$/”;
if(preg_match(“/name/i”,$field)) ➝15
{

if(!preg_match($name_patt,$value)) ➝17
{
$error_array[] = “$value is not a valid name”;
$bad_data[$field] = strip_tags(trim($value));

}
else ➝22
{
$good_data[$field] = strip_tags(trim($value));

}
}  // endif name format check
if(preg_match(“/phone/i”,$field)) ➝27
{

if(!preg_match($phone_patt,$value)) ➝29
{
$error_array[] = “$value is not a

valid phone number”;
$bad_data[$field] = strip_tags(trim($value));

}
else
{
$good_data[$field] = strip_tags(trim($value));

}
}  // endif phone format check

} // endif not blank
}  // end of foreach loop for $_POST
/* if any fields were invalid, create error message and

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 500



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 501

redisplay form */
if(@sizeof($error_array) > 0) // errors are found ➝44
{
/* create error message */
$message = “<ul style=’color: red; list-style: none’ >”;
foreach($error_array as $value)
{
$message .= “<li>$value</li>”;

}
$message .= “</ul>”;
/* redisplay form */
extract($good_data); ➝54
extract($bad_data);
include(“form_phone_values.inc”);
exit(); ➝57

} // end if blanks
echo “All required fields contain valid information”; ➝59

} // end if submitted
else ➝61
{
include(“form_phone_values.inc”);

}
?>

The numbers in the following explanation of Listing 1-11 refer to the line
numbers in the listing:

➝6 Begins an if statement that checks for the hidden field. If the
hidden field exists, the form was submitted by a user. The if
statement executes. If the hidden field doesn’t exist, the script is
running for the first time, not started by a form submitted by a
user, and the script jumps to the else statement on Line 61.

➝9 Starts a foreach statement that loops through the $_POST array.
All the information from the form is in the array.

➝11 Starts an if statement that executes if the field is not blank. This
is necessary so that fields that are allowed to be blank aren’t
tested for an invalid format.

➝13 Creates variables that contain the pattern that matches the cor-
rect format. $name_patt contains the pattern for name variables
to match; $phone_patt contains the pattern for phone numbers
to match.

➝15 Starts an if statement that executes for name fields. Notice that the
pattern to match is followed by an i, which means to ignore case.

➝17 Starts an if statement that tests whether the data in the name
field matches the pattern. If the data doesn’t match the pattern, an
error message is added to an array named $error_array, and
the data is cleaned and added to an array called $bad_data. If

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 501



Processing Information from the Form502

the data does match the pattern, the else statement (Line 22) is
executed, which adds the data to an array named $good_data.

➝27 Starts an if statement that executes for the field that contains the
phone number.

➝29 Starts an if statement that tests whether the data in the phone
field matches the pattern. If the data does not match the pattern,
an error message is added to an array named $error_array and
the data is cleaned and added to an array called $bad_data. If
the data does match the pattern, the else statement is executed,
which adds the data to an array named $good_data.

➝44 Determines whether any invalid formats were found by checking
whether $error_array contains any elements. If one or more
invalid formats were found, the script constructs an error mes-
sage and stores it in $message. The form is displayed (Lines
54–56). The error message is displayed at the top of the form and
the information from $good_data and $bad_data is displayed in
the fields. An exit statement (Line 57) stops the script after the
form displays. The user must click the submit button to continue.

➝59 If no invalid formats were found, the if statement on Line 44
doesn’t execute. The echo statement on Line 59 displays a mes-
sage that all fields contain valid formats.

➝61 Begins an else statement that executes the first time the script is
run, before the user submits the form. The blank form is displayed.

The Web page in Figure 1-11 results when the user accidentally types non-
sense for his or her phone number.

Figure 1-11:
The result of
processing
a form with
incorrect
information.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 502



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Processing Information from the Form 503

Giving users a choice with multiple submit buttons
You can use more than one submit button in a form. For instance, in a cus-
tomer order form, you might use a button that reads Submit Order and
another button that reads Cancel Order. The logic code in your script can
check the value of the submit button and process the form differently,
depending on which button the user clicks.

Listing 1-12 shows the display code for a form with two buttons. The script
containing the logic code that displays and processes the form is shown in
Listing 1-13.

Listing 1-12: Displaying a Form with Two Submit Buttons

<?php
/*  Program name: form_two.inc
*  Description:  Displays a form with two buttons.
*/
?>
<html>
<head><title>Two Buttons</title></head>
<body>
<?php
echo “<form action=’$_SERVER[PHP_SELF]’ method=’POST’>

<p><label for=’last_name’
style=’font-weight: bold’>Name: </label></p>

<p><input id=’last_name’ name=’last_name’ type=’text’
size=’50%’ maxlength=’65’ /></p>

<p><input type=’submit’ name=’display_button’
value=’Show Address’ />

<input type=’submit’ name=’display_button’
value=’Show Phone Number’ /></p>

<input type=’hidden’ name=’sent’ value=’yes’ />
</form>”;

?>
</body></html>

Notice that the submit button fields have a name: display_button. The
fields each have a different value. Whichever button the user clicks sets the
value for $display_button. The form produced by this file is shown in
Figure 1-12.

The script processTwoButtons.php in Listing 1-13 processes the form in
Listing 1-12. The script displays the form shown in Figure 1-12. When the
user clicks a button, the script performs different actions, depending on
which button the user clicks.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 503



Processing Information from the Form504

Listing 1-13: Processing Two Submit Buttons

<?php
/*  Program name: processTwoButtons.php
*  Description:  Displays different information depending
*                on which submit button was clicked.
*/
if(isset($_POST[‘sent’]) && $_POST[‘sent’] == “yes”)
{

include(“dbstuff.inc”);
$cxn = mysqli_connect($host,$user,$password,$database)

or die (“Couldn’t connect to server”);
if($_POST[‘display_button’] == “Show Address”)
{
$query = “SELECT street,city,state,zip FROM Customer

WHERE last_name=’$_POST[last_name]’”;
$result = mysqli_query($cxn,$query)

or die (“Couldn’t execute query.”);
$row = mysqli_fetch_assoc($result);
extract($row);
echo “$street<br />$city, $state  $zip”;

}
else
{

$query = “SELECT phone FROM Customer
WHERE last_name=’$_POST[last_name]’”;

$result = mysqli_query($cxn,$query)
or die (“Couldn’t execute query.”);

$row = mysqli_fetch_assoc($result);
echo “Phone: {$row[‘phone’]}”;

}
}
else
{
include(“form_two.inc”);

}
?>

Figure 1-12:
The form
with two
submit
buttons.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 504



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Creating a Form That Allows Customers to Upload a File 505

The script executes different statements, depending on which button the
user clicks. If the user clicks the button for the address, the script outputs
the address for the name submitted in the form; if the user clicks the Show
Phone Number button, the script outputs the phone number.

Creating a Form That Allows 
Customers to Upload a File

Sometimes you want to receive an entire file of information from a user, such
as user résumés for your job-search Web site or pictures for your photo
album Web site. Or, suppose you’re building the catalog from information
supplied by the Sales department. In addition to descriptive text about the
product, you want Sales to provide a picture of the product. You can supply
a form that Sales can use to upload an image file.

Using a form to upload the file
You can display a form that allows a user to upload a file by using an HTML
form designed for that purpose. The general format of the form is as follows:

<form enctype=”multipart/form-data”
action=”processfile.php” method=”POST”>

<input type=”hidden” name=”MAX_FILE_SIZE” value=”30000” />
<input type=”file” name=”user_file” />
<input type=”submit” value=”Upload File” />

</form>

Notice the following points regarding the form:

✦ The enctype attribute is used in the <form> tag. You must set this
attribute to multipart/form-data when uploading a file to ensure
that the file arrives correctly.

✦ A hidden field is included that sends a value (in bytes) for
MAX_FILE_SIZE. If the user tries to upload a file that is larger than this
value, it won’t upload. You can set this value as high as 2MB. If you need
to upload a file larger than 2MB, you must change the default setting for
upload_max_filesize in php.ini to a larger number before sending
a value larger than 2MB for MAX_FILE_SIZE in the hidden field.

✦ The input field that uploads the file is of type file. Notice that the
field has a name — user_file — as do other types of fields in a form.
The filename that the user enters into the form is sent to the processing
script and is available in the built-in array called FILES. We explain the
structure and information in FILES in the following section.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 505



Creating a Form That Allows Customers to Upload a File506

When the user submits the form, the file is uploaded to a temporary loca-
tion. The script needs to copy the file to another location because the tem-
porary file is deleted as soon as the script is finished.

Processing the uploaded file
Information about the uploaded file is stored in the PHP built-in array 
called $_FILES. An array of information is available for each file that was
uploaded, resulting in $_FILES being a multidimensional array. As with any
other form, you can obtain the information from the array by using the name
of the field. The following is the array available from $_FILES for each
uploaded file:

$_FILES[‘fieldname’][‘name’]
$_FILES[‘fieldname’][‘type’]
$_FILES[‘fieldname’][‘tmp_name’]
$_FILES[‘fieldname’][‘size’]

For example, suppose that you use the following field to upload a file, as
shown in the preceding section:

<input type=”file” name=”user_file” />

If the user uploads a file named test.txt in the form, the resulting array
that can be used by the processing script looks something like this:

$_FILES[user_file][name] = test.txt
$_FILES[user_file][type] = text/plain
$_FILES[user_file][tmp_name] = D:\WINNT\php92C.tmp
$_FILES[user_file][size] = 435

In this array, name is the name of the file that was uploaded, type is the type
of file, tmp_name is the path/filename of the temporary file, and 435 is the
size of the file. Notice that name contains only the filename, but tmp_name
includes the path to the file as well as the filename.

If the file is too large to upload, the tmp_name in the array is set to none,
and the size is set to 0. The processing script must move the uploaded file
from the temporary location to a permanent location. The general format of
the statement that moves the file is as follows:

move_uploaded_file(path/tempfilename,path/permfilename);

The path/tempfilename is available in the built-in array element
$_FILES[‘fieldname’][‘tmp_file’]. The path/permfilename is the
path to the file where you want to store the file. The following statement

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 506



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Creating a Form That Allows Customers to Upload a File 507

moves the file uploaded in the input field, given the name user_file,
shown earlier in this section:

move_uploaded_file($_FILES[‘user_file’][‘tmp_name’],
‘c:\data\new_file.txt’);

The destination directory (in this case, c:\data) must exist before the file
can be moved to it. This statement doesn’t create the destination directory.

Security can be an issue when uploading files. Allowing strangers to load
files onto your computer is risky; malicious files are possible. You want to
check the files for as many factors as possible after they’re uploaded, using
conditional statements to check file characteristics, such as expected file
type and size. In some cases, for even more security, it might be a good idea
to change the name of the file to something else so that users don’t know
where their files are or what they’re called.

Putting it all together
A script that allows a user to upload a file is provided in this section. The
script displays a form for the user to upload a file, saves the uploaded file,
and then displays a message after the file has been successfully uploaded.

The form that the user uses to upload the file is stored in the file
form_upload.inc, shown in Listing 1-14.

Listing 1-14: A File That Displays the File Upload Form

<!-- Program Name: form_upload.inc
Description:  Displays a form to upload a file -->

<html>
<head><title>File Upload</title></head>
<body>
<ol><li>Enter the file name of the product picture you

want to upload or use the browse button
to navigate to the picture file.</li>

<li>When the path to the picture file shows in the
text field, click the Upload Picture button.</li>

</ol>
<div style=’text-align: center’><hr />
<form enctype=”multipart/form-data”

action=”<?php echo $_SERVER[‘PHP_SELF’] ?>”
method=”POST”>

<p><input type=”hidden” name=”MAX_FILE_SIZE”
value=”500000” />

(continued)

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 507



Creating a Form That Allows Customers to Upload a File508

Listing 1-14 (continued)

<input type=”file” name=”pix” size=”60” /></p>
<p><input type=”submit” name=”Upload”

value=”Upload Picture” /></p>
</form></div></body></html>

The file includes the enctype attribute in the <form> tag and a hidden field
that sets MAX_FILE_SIZE to 500,000. A Web page displaying the form is
shown in Figure 1-13.

The form produced by the code in Listing 1-14 allows users to select a file to
upload. The form has a text field for inputting a filename and a Browse
button that enables the user to navigate to the file and select it.

The PHP script that displays the form and processes the uploaded file is
shown in Listing 1-15. This script expects the uploaded file to be an image
file and tests to make sure that it is an image file, but any type of file can be
uploaded.

Listing 1-15: Uploading a File with a POST Form

<?php
/* Script name: fileUpload.php
* Description: Uploads a file via HTTP with a POST form.
*/
if(!isset($_POST[‘Upload’])) ➝5
{
include(“form_upload.inc”);

}
else ➝9
{
if($_FILES[‘pix’][‘tmp_name’] == “none”) ➝11
{

Figure 1-13:
The file-
uploading
form pro-
duced by
the code in
Listing 1-14.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 508



Book VI
Chapter 1

Building and
Processing

Dynam
ic Form

s
Creating a Form That Allows Customers to Upload a File 509

echo “<p style=’font-weight: bold’>
File did not successfully upload. Check the

file size. File must be less than 500K.</p>”;
include(“form_upload.inc”);
exit();

}
if(!preg_match(“/image/”,$_FILES[‘pix’][‘type’])) ➝19
{
echo “<p style=’font-weight: bold’>
File is not a picture. Please try another

file.</p>”;
include(“form_upload.inc”);
exit();

}
else ➝27
{
$destination=’c:\data’.”\\”.$_FILES[‘pix’][‘name’];
$temp_file = $_FILES[‘pix’][‘tmp_name’];
move_uploaded_file($temp_file,$destination);
echo “<p style=’font-weight: bold’>
The file has successfully uploaded:

{$_FILES[‘pix’][‘name’]}
({$_FILES[‘pix’][‘size’]})</p>”;

}
}

?>

The following discussion of the script refers to the line numbers in the 
listing:

➝5 This line is an if statement that tests whether the form has been
submitted. If not, the form is displayed by including the file con-
taining the form code. The include file is shown in Listing 1-14.

➝9 This line starts an else block that executes if the form has been
submitted. This block contains the rest of the script and
processes the submitted form and uploaded file.

➝11 This line begins an if statement that tests whether the file was
successfully uploaded. If not, an error message is displayed, and
the form is redisplayed.

➝19 This line is an if statement that tests whether the file is a picture.
If not, an error message is displayed, and the form is redisplayed.

➝27 This line starts an else block that executes if the file has been
successfully uploaded. The file is moved to its permanent destina-
tion, and a message is displayed that the file has been uploaded.

When the file is successfully uploaded and stored in its permanent location,
the message The file has successfully uploaded: is displayed, fol-
lowed by the filename and the file size.

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 509



Book VI: PHP Web Applications510

34_167779 bk06ch01.qxp  12/17/07  8:55 PM  Page 510


