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1 Potential and Charge
of a Hard Particle

1.1 INTRODUCTION

The potential and charge of colloidal particles play a fundamental role in their interfa-
cial electric phenomena such as electrostatic interaction between them and their mo-
tion in an electric field [1-4]. When a charged colloidal particle is immersed in an
electrolyte solution, mobile electrolyte ions with charges of the sign opposite to that
of the particle surface charges, which are called counterions, tend to approach the
particle surface and neutralize the particle surface charges, but thermal motion of
these ions prevents accumulation of the ions so that an ionic cloud is formed around
the particle. In the ionic cloud, the concentration of counterions becomes very high
while that of coions (electrolyte ions with charges of the same sign as the particle
surface charges) is very low, as schematically shown in Fig. 1.1, which shows the
distribution of ions around a charged spherical particle of radius a. The ionic cloud
together with the particle surface charge forms an electrical double layer. Such an
electrical double layer is often called an electrical diffuse double layer, since the dis-
tribution of electrolyte ions in the ionic cloud takes a diffusive structure due to thermal
motion of ions. The electric properties of charged colloidal particles in an electrolyte
solution strongly depend on the distributions of electrolyte ions and of the electric
potential across the electrical double layer around the particle surface. The potential
distribution is usually described by the Poisson—Boltzmann equation [1-4].

1.2 THE POISSON-BOLTZMANN EQUATION

Consider a uniformly charged particle immersed in a liquid containing N ionic spe-
cies with valence z; and bulk concentration (number density) n{° (i=1,2, ..., N)
(in units of m*3). From the electroneutrality condition, we have

N
> an =0 (1.1)
i=1

Usually we need to consider only electrolyte ions as charged species. The elec-
tric potential y(r) at position r outside the particle, measured relative to the bulk
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4 POTENTIAL AND CHARGE OF A HARD PARTICLE

FIGURE 1.1 Electrical double layer around a positively charged colloidal particle. The
particle is surrounded by an ionic cloud, forming the electrical double layer of thickness 1/x,
in which the concentration of counterions is greater than that of coions.

solution phase, where V is set equal to zero, is related to the charge density pq(r) at
the same point by the Poisson equation, namely,

pel(r)

r€o

Ajp(r) = — (1.2)

where A is the Laplacian, ¢, is the relative permittivity of the electrolyte solution,
and ¢, is the permittivity of the vacuum. We assume that the distribution of the
electrolyte ions n(r) obeys Boltzmann’s law, namely,

Zi“ﬁ(")) (13)

ni(r) = n exp (— T
where n,(r) is the concentration (number density) of the ith ionic species at position
r, e is the elementary electric charge, k is Boltzmann’s constant, and 7 is the abso-
lute temperature. The charge density p.(r) at position r is thus given by

N af ~ ziey(r)
pa(r) =D zieniv) = Y _zien; exp(— T ) (14)
i=1 i=1

which is the required relation between y/(r) and p¢(r).
Combining Eqgs. (1.2) and (1.4) gives

N
AY(r) = — ! Zzienfo exp <— Zielﬁ(y)) (L.5)

&0 <5 kT
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This is the Poisson—-Boltzmann equation for the potential distribution (r). The
surface charge density ¢ of the particle is related to the potential derivative normal
to the particle surface as

oy o o
AP S 1.6
% on o on & (1.6)
where ¢, is the relative permittivity of the particle and » is the outward normal at the
particle surface. If the internal electric fields inside the particle can be neglected,

then the boundary condition (1.6) reduces to

%_ o

on &

If the potential Y is low, namely,

ziey
% <1 (1.3)
then Eq. (1.5) reduces to
AY = 2y (1.9)

with

L 1/2
2 2 00
- 2% n; 1.10
o~ (o) (.10)

Equation (1.9) is the linearized Poisson—Boltzmann equation and « in Eq. (1.10)
is the Debye-Hiickel parameter. This linearization is called the Debye—Hiickel ap-
proximation and Eq. (1.9) is called the Debye—Hiickel equation. The reciprocal of x
(i.e., 1/k), which is called the Debye length, corresponds to the thickness of the
double layer. Note that n7° in Egs. (1.5) and (1.10) is given in units of m~>. If one
uses the units of M (mol/L), then n{° must be replaced by 1000Nsn?°, Na being
Avogadro’s number.

Expressions for « for various types of electrolytes are explicitly given below.

(i) For a symmetrical electrolyte of valence z and bulk concentration n,

2.2\ 1/2
K= (2Z ¢ ”) (1.11)

&6okT

(i1) For a 1-1 symmetrical electrolyte of bulk concentration n,

K= ( 2¢°n )1/2 (1.12)

&okT
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(iii) For a 2-1 electrolyte of bulk concentration #,

6e’n 172
K= (s . kT) (1.13)
5o

(iv) For a mixed solution of 1-1 electrolyte of bulk concentration n; and 2-1
electrolyte of bulk concentration n,,

1/2

2(111 + 3n2)€2

K= <788 T (1.14)
T¢0
(v) For a 3-1 electrolyte of bulk concentration n,

12¢2n 1/2
= 1.15
" <8r80kT> ( )

(vi) For a mixed solution of 1-1 electrolyte of concentration n; and 3-1 electro-
lyte of concentration n,,

K= (2(”1 + 6”2)62) 172

1.16
e-6,kT ( )

1.3 PLATE

Consider the potential distribution around a uniformly charged plate-like particle in
a general electrolyte solution composed of N ionic species with valence z; and bulk
concentration (number density) n° (i=1,2, . .., N) (in units of m ). We take an
x-axis perpendicular to the plate surface with its origin x =0 at the plate surface so
that the region x < 0 corresponds to the internal region of the plate while the region
x>0 corresponds to the solution phase (Fig. 1.2). The electric potential (x) at
position x outside the plate, measured relative to the bulk solution phase, where
is set equal to zero, is related to the charge density p¢(x) of free mobile charged
species by the Poisson equation (Eq. (1.2)), namely,

Y pa)
e ek (1.17)

We assume that the distribution of the electrolyte ions n,(x) obeys Boltzmann’s
law, namely,

(1.18)

ni(x) = n;° exp <— Zielp(x))

kT
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FIGURE 1.2 Schematic representation of potential distribution 1/(x) near the positively
charged plate.

where n,(x) is the concentration (number density) of the ith ionic species at position
x. The charge density p.;(x) at position x is thus given by

al N oS Zi@lﬁ(x)
pa(0) = zieni(x) =Y zien® exp (— T ) (1.19)
i=1 i=1

Combining Egs. (1.17) and (1.19) gives the following Poisson—Boltzmann equa-
tion for the potential distribution y/(x):

Y 1

A e 2_aeny exp(—
T¢0

i=1

Z"e‘p(x)) (1.20)

kT

We solve the planar Poisson—Boltzmann equation (1.20) subject to the boundary
conditions:

=1, at x=0 (1.21)
wao,%ﬂo as x — 00 (1.22)

where Y, is the potential at the plate surface x =0, which we call the surface
potential.

If the internal electric fields inside the particle can be neglected, then the surface
charge density o of the particle is related to the potential derivative normal to the
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particle surface by (see Eq. (1.7))

dyr o
— =— 1.23
dx|,_o+ &0 ( )

1.3.1 Low Potential

If the potential ¥ is low (Eq. (1.8)), then Eq. (1.20) reduces to the following linear-
ized Poisson—Boltzmann equation (Eq. (1.9)):

d*y

il (1.24)

The solution to Eq. (1.24) subject to Eqs. (1.21) and (1.22) can be easily ob-
tained:

(x) = Pe ™ (1.25)

Equations (1.23) and (1.25) give the following surface charge density—surface
potential (6—,,) relationship:

g

= 1.26
Vo= ik (1.26)

Equation (1.26) has the following simple physical meaning. Since s decays from
Y, to zero over a distance of the order of K (Eq. (1.25)), the electric field at the
particle surface is approximately given by W/~ '. This field, which is generated by
o, is equal to d/e.e,. Thus, we have Vol =ole,, resulting in Eq. (1.26).

1.3.2 Arbitrary Potential: Symmetrical Electrolyte

Now we solve the original nonlinear Poisson-Boltzmann equation (1.20). If the
plate is immersed in a symmetrical electrolyte of valence z and bulk concentration
n, then Eq. (1.20) becomes

dYyx)  zen ze(x) ze(x)
i = o) e ()]

= % Gnn <Ze‘p(x)>

(1.27)

&réo kT
We introduce the dimensionless potential y(x)

el

Y= (1.28)
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then Eq. (1.27) becomes

d2
d—z = 2 sinh y (1.29)
X

where the Debye—Hiickel parameter x is given by Eq. (1.11). Note that y(x) is scaled
by kT/ze, which is the thermal energy measured in units of volts. At room tempera-
tures, kT/ze (with z=1) amounts to ca. 25 mV. Equation (1.29) can be solved by
multiplying dy/dx on its both sides to give

dyd’y . dy
A A hy—= 1.
e = K sinhy— (1.30)
which is transformed into
Ld [ (dy)* —szcosh (1.31)
2dx | \dx) [~ ax '
Integration of Eq. (1.31) gives
dy 2 2
™ 2Kk* cosh y + constant (1.32)
by

By taking into account Eq. (1.22), we find that constant = —2x” so that Eq.
(1.32) becomes

dy 2_ 2 42 w2 (Y
(E) = 2k%(cosh y — 1) = 4x? sinh (E) (1.33)

Since y and dy/dx are of opposite sign, we obtain from Eq. (1.33)

% = —2k sinh(y/2) (1.34)

Equation (1.34) can be further integrated to give

Yo dy _ X

where

_zey,
kT

Yo (1.36)
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is the scaled surface potential. Thus, we obtain

1 ny oKX
y(x) = 4 arctanh(ye™) = 21n (%) (1.37)
— e
or
UT . (1 +pe ™
= 1.
b0 =2 (120 (138)
with
» — tanh zey, _ exp(zeyr,/2kT) — 1 _ exp(y,/2) — 1 (139)
4kT exp(zey,/2kT) + 1 exp(y,/2) + 1

Figure 1.3 exhibits 7 as a function of y,, showing that y is a linearly increasing
function of y, for low y,, namely,

Yo _ zeY,

y

4 4T

(1.40)

but reaches a plateau value at 1 for [y,| > 8.

Figure 1.4 shows y(x) for several values of y, calculated from Eq. (1.37) in compar-
ison with the Debye—Hiickel linearized solution (Eq. (1.25)). It is seen that the Debye—
Hiickel approximation is good for low potentials (ly,| < 1). As seen from Egs. (1.25)
and (1.37), the potential }(x) across the electrical double layer varies nearly

08+ -

0.6 -

04 .

02 E

0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16

|75 |
FIGURE 1.3 7 as a function of |y,| (Eq. (1.39)).




PLATE 11

FIGURE 1.4 Potential distribution y(x) = zey(x)/kT around a positively charged plate
with scaled surface potential y, = zey/kT. Calculated for y, =1, 2, and 4. Solid lines, exact
solution (Eq. (1.37)); dashed lines, the Debye—Hiickel linearized solution (Eq. (1.25)).

exponentially (Egs. (1.37)) or exactly exponentially (Eq. (1.25)) with the distance x
from the plate surface, as shown in Fig. 1.4. Equation (1.25) shows that the potential
Y (x) decays from ¥, at x=0 to /e (Y/3) at x=1/k. Thus, the reciprocal of the
Debye—Hiickel parameter x (the Debye length), which has the dimension of length,
serves as a measure for the thickness of the electrical double layer. Figure 1.5 plots the

¥ =2

ny(x)n, n_(x)n

FIGURE 1.5 Concentrations of counterions (anions) n_(x) and coions (cations) n,(x)
around a positively charged planar surface (arbitrary scale). Calculated from Egs. (1.3) and
(1.26) for y,=2.
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concentrations of counterion (n_(x) =nexp(y(x))) and coions (. (x) = nexp(—y(x)))
around a positively charged plate as a function of the distance x from the plate surface,
showing that these quantities decay almost exponentially over the distance of the
Debye length 1/k just like the potential distribution /(x) in Fig. 1.4.

By substituting Eq. (1.38) into Eq. (1.23), we obtain the following relationship
connecting ¥, and o:

 2ee0kkT . (zey,\ 12 oo (2,
o= Ze s1nh( T = (8neceokT) ' * sinh AT (1.41)

or inversely,

2kT . o 2kT . ze0
Y, = ——arcsinh| ———==) = ——arcsinh{ ———
ze 8neeokT ze 2e:60KkT
2T In zea n zea 2 1
 ze 2&:60KkT 2e:80kkT

If ¢ is small and thus v/, is low, that is, the condition (Eq. (1.8)) is fulfilled, then
Eq. (1.38) reduces to Eq. (1.25) with the surface potential given by Eq. (1.26). Fig-
ure 1.6 shows the g—), relationship calculated from Eq. (1.42) in comparison with
the approximate results (Eq. (1.26)). The deviation of Eq. (1.26) from Eq. (1.42)
becomes significant as the charge density ¢ increases.

10 T T T I ,

(1.42)

Yo

0 2 4 6 8 10
0—*
FIGURE 1.6 Scaled surface potential y, =zey /kT as a function of the scaled surface
charge density 0" = zea/ee,kkT for a positively charged planar plate in a symmetrical elec-

trolyte solution of valence z. Solid line, exact solution (Eq. (1.41)); dashed line, Debye—
Hiickel linearized solution (Eq. (1.26)).
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1.3.3 Arbitrary Potential: Asymmetrical Electrolyte

When a charged plate is immersed in a 2-1 electrolyte (e.g., CaCl,) of bulk concen-
tration n, the Poisson—-Boltzmann equation (1.20) becomes

d*y(x) 2en 2er(x) ep(x)
2 o [exp(— T ) —exp( T )] (1.43)

where the first term on the right-hand side of Eq. (1.43) corresponds to divalent
cations while the second to monovalent anions. Equation (1.43) subject to the
boundary conditions (1.21) and (1.22) can be integrated by multiplying dy/dx on
both sides of Eq. (1.43) to give

2
kT 31+ %y167KX 1

with

3
A —
/_2 N (1.45)
(ge)(’—’_g) +]
ey
=2 1.4
Yo =" (1.46)

where y, is the scaled surface potential and « is given by Eq. (1.13). By substituting
Eq. (1.44) into Eq. (1.23), we obtain the following relationship between the surface
potential Y/, and the surface charge density o:

12
g = T {1 e (_ ekwT) } {%exp (ekWT) N %} (1.47)

If ¢ is small and thus y, is low, then the potential distribution y(x) (Eq. (1.44))
and the g—s, relationship (Eq. (1.47)) are given by Egs. (1.25) and (1.26), respec-
tively, which also hold for general electrolytes.

Next consider the case of a mixed solution of 1-1 electrolyte of bulk concentra-
tion n; and 2-1 electrolyte of bulk concentration n,. The Poisson-Boltzmann equa-
tion (1.5) becomes

&2 2
VO ¢ Loy exp(~ ) s 282) 2 ()

(1.48)
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Equation (1.48) subject to the boundary conditions (1.21) and (1.22) can be eas-
ily integrated to give

o=\ () (i) ()] 0

with

- 3}’12
o ny + 3n,

:< I >{(1—f7/3)ey"+f1/3}1/2—1
PN [ —amen a3

n (1.50)

(1.51)

where y, is the scaled surface potential defined by Eq. (1.46) and « is given by Eq.
(1.14).

The relationship between ¢ and v, which is derived from Egs. (1.23) and (1.49),
is given by

_ &8okkT - AV 1/2
o= e )[(1 3) +3} (1.52)

1.3.4 Arbitrary Potential: General Electrolyte

In the case of a charged plate immersed in a general electrolyte, the Poisson—
Boltzmann equation (1.20), in terms of the scaled potential y(x) = ey//kT, is rewrit-
ten as

dZy K2 25\7:1 Zinieiziy

e R S (1.53)
Doic1 G

where the Debye—Hiickel parameter x is given by Eq. (1.10). The boundary condi-
tions are given by Eqgs. (1.21) and (1.22). Since y, and dy/dx are of opposite sign,
integration of Eq. (1.53) gives

@ = _Sgn(yo)K [

1/2
25N nie@ — 1)
o (1.54)

Zf‘vzl Z1'2”i

where sgn(y,) = +1 for y, >0 and —1 for y, < 0. Note that the sign of 1 —exp(—y)
equals that of y,. Equation (1.54) is thus rewritten as

dy

A0 (1.55)
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with

1/2 1/2
23 e = 1) : (1—e™) 25N e — 1) !
=1-e
Sy g (I—e? 3" 2n,

(1.56)

J () = sgn(y,) [

Note that as y — 0, f{y) — y. Explicit expressions for f(y) for some simple cases
are given below.

(i) For a symmetrical electrolyte of valence z,
f() = 2 sinh(zy/2) (1.57)
(i) For a monovalent electrolyte,
f) = 2sinh(y/2) (1.58)
(iii) For a 2-1 electrolyte,

) 12
fO)=10—-¢e7) <§€y +§> (1.59)

(iv) For a mixed solution of 2-1 electrolyte of concentration n, and 1-1 electro-
lyte of concentration n;,

— (1 _ Y oMy, mY?
fo)=(1—e )[(1 3>e +3] (1.60)
with
3)’!2
o7 1.61
v (1.61)
(v) For a 3-1 electrolyte,
1 11 12
— (1 — o N[ Zpy o — 1~y
fo)=U-e )<2e +t3tge ) (1.62)

(vi) For a mixed solution of 3-1 electrolyte of concentration n, and 1-1 electro-
lyte of concentration n;,

! / ’ 1/2
fo=a e”){(l Z)a%@#@ﬂ] (1.63)
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with
6]’12
== 1.64
g ny + 6n; ( )
By integrating Eq. (1.55) between x =0 (y =y,) and x =x (y =), we obtain
Yo dy
KX = — 1.65
y fO) (165)

which gives the relationship between y and x. For a symmetrical electrolyte of va-
lence z, 2-1 electrolytes, and a mixed solution of 2-1 electrolyte of concentration 7,
and -1 electrolyte of concentration n;, Eq. (1.65) reproduces Egs. (1.38), (1.44),
and (1.49), respectively.

The surface charge density—surface potential (6—y,) relationship is obtained from
Egs. (1.23) and (1.55) and given in terms of f(y,) as

dy  &eokkT
0= —tito - . () (1.66)
or
N 1/2
2) ni(e @0 —1)
e-0kkT ;
o= . sgn(y,) | ——w————
>sn
i—1
N 12 (1.67)
2) ni(e 0 —1)
_ &&okkT Z

sgn(y,)(1 —e™) il

N
(1- e*yO)ZZzizni
i=1

Note that as y, — 0, f(y,) — ¥, so that for low y, Eq. (1.67) reduces to Eq. (1.26).
For a symmetrical electrolyte of valence z, 2-1 electrolytes, and a mixed solution of
2-1 electrolyte of concentration n, and 1-1 electrolyte of concentration n,, Eq.
(1.67) combined with Eqgs. (1.57), (1.59), and (1.60) reproduces Eqs. (1.41), (1.47),
and (1.52), respectively.

1.4 SPHERE

Consider a spherical particle of radius a in a general electrolyte solution. The
electric potential (r) at position r obeys the following spherical Poisson—
Boltzmann equation [3]:

Py 2dp zey
ar trar T  eto Zz,en exp( kT (1.68)

i=1




SPHERE 17

0]
a
FIGURE 1.7 A sphere of radius a.

where we have taken the spherical coordinate system with its origin r =0 placed
at the center of the sphere and r is the distance from the center of the particle
(Fig. 1.7). The boundary conditions for (), which are similar to Eqgs. (1.21)
and (1.22) for a planar surface, are given by

Y=y, at r=a" (1.69)

d
lﬁ—>0,d—w—>0 as zr — 00 (1.70)
r

1.4.1 Low Potential

When the potential is low, Eq. (1.68) can be linearized to give

Py 2y,

The solution to Eq. (1.71) subject to Egs. (1.69) and (1.70) is
() =, e ) (1.72)
r

If we introduce the distance x = r — a measured from the sphere surface, then Eq.
(1.72) becomes

Y(x) = llfoaiﬂe"”‘ (1.73)

For x < a, Eq. (1.73) reduces to the potential distribution around the planar sur-
face given by Eq. (1.19). This result implies that in the region very near the particle
surface, the surface curvature may be neglected so that the surface can be regarded
as planar. In the limit of k — 0, Eq. (1.72) becomes

W) =, (1.74)
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which is the Coulomb potential distribution around a sphere as if there were no
electrolyte ions or electrical double layers. Note that Eq. (1.74) implies that the po-
tential decays over distances of the particle radius a, instead of the double layer
thickness 1/k.

The surface charge density ¢ of the particle is related to the particle surface po-
tential y/, obtained from the boundary condition at the sphere surface,

@ B o

or|,_ &ro

(1.75)

which corresponds to Eq. (1.23) for a planar surface. By substituting Eq. (1.72) into
Eq. (1.75), we find the following /,—¢ relationship:

g

Vo= &éok(1 + 1/Ka)

(1.76)

For xa > 1, Eq. (1.76) tends to Eq. (1.26) for the y/,—0o relationship for the plate
case. That is, for ka > 1, the curvature of the particle surface may be neglected so
that the particle surface can be regarded as planar. In the opposite limit of ka < 1,
Eq. (1.76) tends to

ga

Vo= (1.77)

&réo

If we introduce the total charge Q = 4ma” on the particle surface, then Eq. (1.77)
can be rewritten as

0

4meeoa

Vo

(1.78)

which is the Coulomb potential. This implies that for ka < 1, the existence of
the electrical double layer may be ignored. Figures 1.8 and 1.9, respectively, show
that Eq. (1.76) tends to Eq. (1.26) for a planar y,—o¢ relationship for xa > 1 and to
the Coulomb potential given by Eq. (1.78) for xka < 1. It is seen that the surface
potential 1, of a spherical particle of radius a can be regarded as y, of a plate for
ka> 107 (Fig. 1.8) and as the Coulomb potential for ka < 1072 (Fig. 1.9). That is,
for ka < 1072, the presence of the electrical double layer can be neglected.

1.4.2 Surface Charge Density—Surface Potential Relationship: Symmetrical
Electrolyte

When the magnitude of the surface potential is arbitrary so that the Debye—Hiickel
linearization cannot be allowed, we have to solve the original nonlinear spherical
Poisson—-Boltzmann equation (1.68). This equation has not been solved but its approxi-
mate analytic solutions have been derived [5-8]. Consider a sphere of radius a with a
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FIGURE 1.8 Surface potential i/, and surface charge density o relationship of a spherical
particle of radius a as a function of xa calculated with Eq. (1.76). For ka > 107 the surface
potential 1/, can be regarded as \/, = a/¢.&,i for the surface potential of a plate.

surface charge density ¢ immersed in a symmetrical electrolyte solution of valence z
and bulk concentration n. Equation (1.68) in the present case becomes

d2¢+%%=2ﬂsmh(ﬂ) (1.79)

darr ' rdr &r&o kT

Y, (OlAne e, a)

0 1 1 1

10" 107 10 107 1 10
Ka

FIGURE 1.9 Surface potential i/, and surface charge density o relationship of a spherical

particle of radius a as a function of xa calculated with Eq. (1.76). For xa < 1072, the surface
potential 1/, can be regarded as the Coulomb potential i/, = Q/4neeqa.
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Loeb et al. tabulated numerical computer solutions to the nonlinear spherical
Poisson—-Boltzmann equation (1.63). On the basis of their numerical tables, they
discovered the following empirical formula for the 6—, relationship:

 2eeokkT [ . (zey, 2 zey,
o= P [smh(y{T) + (Ka) tanh(4kT (1.80)

where the Debye—Hiickel parameter x is given by Eq. (1.11). A mathematical
basis of Eq. (1.80) was given by Ohshima et al. [7], who showed that if, on the
left-hand side of Eq. (1.79), we replace 2/r with its large a limiting form 2/a and
dy/dr with that for a planar surface (the zeroth-order approximation given by
Eq. (1.34)), namely,

24y 2dy 4k . (zey
-— - = ——sinh| =— 1.81
rdr - adr zeroth-order a o <2kT ( )
then Eq. (1.63) becomes
&’ 4
d—rﬁ _— <sinhy +—sinh @) (1.82)

where y = zey/kT is the scaled potential (Eq. (1.28)). Since the right-hand side
of Eq. (1.82) involves only y (and does not involve r explicitly), Eq. (1.82) can
be readily integrated by multiplying dy/dr on its both sides to yield

dy oy ) 1/2
—==-2 h(z) |l + ———— 1.83
dr e (2) { Ka coshz(y/4)} (1.83)

By expanding Eq. (1.83) with respect to 1/ka and retaining up to the first order of
1/ka, we obtain

dy . (Y I
& — —2sinh ( 2) {1 L —_ /4)] (1.84)

Substituting Eq. (1.84) into Eq. (1.75), we obtain Eq. (1.80), which is the first-
order -, relationship.

A more accurate o0—/, relationship can be obtained by using the first-order ap-
proximation given by Eq. (1.84) (not using the zeroth-order approximation for a
planar surface given by Eq. (1.34)) in the replacement of Eq. (1.81), namely,

2dy 2dy 4y 1

a 2 Ka cosh?(y/4)

first-order
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FIGURE 1.10 Scaled surface charge density ¢*=zea/ee,kkT as a function of the scaled
surface potential y,=zey/kT for a positively charged sphere in a symmetrical electrolyte
solution of valence z for various values of xa. Solid line, exact solution (Eq. (1.86)); dashed
line, Debye—Hiickel linearized solution (Eq. (1.76)).

The result is

oo 26 e0kkT sinh (zel//o) { | 1 2 1 8ln[cosh(zey, /4kT)] 1/2
T ze 2kT Kkacosh®(zey, /4kT) = (ka)*  sinh*(zes,/2kT)
(1.86)

which is the second-order o/, relationship [4]. The relative error of Eq. (1.80) is
less than 1% for ka > 5 and that of Eq. (1.86) is less than 1% for ka > 1. Note that
as y, increases, Eqs. (1.80) and (1.86) approach Eq. (1.41). That is, as the surface
potential y, increases, the dependence of y, on ka becomes smaller. Figure 1.10
gives the o—,, relationship for various values of xa calculated from Eq. (1.86) in
comparison with the low-potential approximation (Eq. (1.76)).

1.4.3 Surface Charge Density—Surface Potential Relationship: Asymmetrical
Electrolyte

The above approximation method can also be applied to the case of a sphere in a 2-1
symmetrical solution, yielding [4]

. srso:kT g+ G —Pa -3} (1.87)

Kapq
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as the first-order -, relationship and

_ &&okkT 4 3—p)g—3, 4 g+1 1/2
R (Ka)z(pq)z{an( 2 >+ln(1_p)H

(1.88)
as the second-order o—, relationship, where

p=1—exp(—ey,/kT) (1.89)

|2 ey, 17'?
q= [3€XP(kT> +3} (1.90)

and k is the Debye—Hiickel parameter for a 2-1 electrolyte solution (Eq. (1.13)).
For the case of a mixed solution of 1-1 electrolyte of concentration n; and 2-1
electrolyte of concentration n,, the first-order -, relationship is given by [7]

&6okkT
¢ = e
2 3120 —p) ({1 + /3"t — (n/3)7}
— {@B-pr—3-— 1
[p Hmpf{( P 2\ = /) P+ /37
(1.91)
with
B n ep,\ nl'?
‘= [(1 3)exp<kT> +3} (1.92)
_ 31’12
n_m (1.93)

where k is the Debye—Hiickel parameter for a mixed solution of 1-1 and 2-1 electro-
lytes (Eq. (1.14)) and p is given by Eq. (1.89).

1.4.4 Surface Charge Density—Surface Potential Relationship: General
Electrolyte

The above method can be extended to the case of general electrolytes composed of
N ionic species with valence z; and bulk concentration (number density) n° (i=1,
2, ..., N) (in units of m—>) [8]. The spherical Poisson—Boltzmann equation (1.68)
can be rewritten in terms of the scaled potential y = ey/kT as

d*y 2@ o K2 vazl zine”

[t 1.94
dr?  rdr E;\’:lzizni (194)
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where x is the Debye—Hiickel parameter of the solution and defined by Eq. (1.10).

In the limit of large xa, Eq. (1.94) reduces to the planar Poisson—Boltzmann
equation (1.53), namely,

2 2 N —Zy
dy kYL zime ™

—= = 1.95
dr? Zivzl zn; ( )
Integration of Eq. (1.95) gives
1/2
dy 23N mi(e@ — 1)
- =— = 1.96
gp = TSEn0o)K [ S (1.96)
Equation (1.96) is thus rewritten as
dy
- =— 1.97
2= i) (1.97)

where f(y) is defined by Eq. (1.56). Note that as y — 0, f{y) tends to y and the right--
hand side of Eq. (1.94) is expressed as x*f(y)df/dy. By combining Eqgs. (1.75) and
(1.97), we obtain

dys eéockT
= et T e ) (1.98)
where y, = ey/kT is the scaled surface potential. Equation (1.98) is the zeroth-order
-y, relationship.

To obtain the first-order o0—y, relationship, we replace the second term on the
left-hand side of Eq. (1.94) by the corresponding quantity for the planar case (Eq.
(1.88)), namely,

2dy 2dy 2K
=N — ) (1.99)
rdr adr zeroth-order a
Equation (1.94) thus becomes
d*y 2k« 5. df
-—=— — 1.100
R AR A0 d ( )

which is readily integrated to give

dy 4 Y 1/2
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By expanding Eq. (1.101) with respect to 1/xa and retaining up to the first order
of 1/ka, we have

dy Kf(y){l 2 /yf( )d} (1.102)
— = - u)au .
dr ' Kaf*(y) Jo

From Egs. (1.75) and (1.102) we obtain the first-order 6—y, relationship, namely,

erOKkT Yo

fO,) [1 +— f(u)du} (1.103)

2
Kkaf?(y,)

Note that since f(y,) — y, as y, — 0, Eq. (1.103) tends to the correct form in the
limit of small y, (Eq. (1.76)), namely,

1
=&&k| 1 +— 1.104
0= &¢ K( +Ka>tﬁ0 ( )

We can further obtain the second-order o—y, relationship by replacing the second
term on the left-hand side of Eq. (1.94) by the corresponding quantity for the first-
order case (i.e., by using Eq. (1.101) instead of Eq. (1.97)), namely,

2dy 2dy
s 27
rdr adr

2K 2 y
first-order T ;f(y) |:1 + m/o f(u)du:| (1105)

where we have introduced a fitting parameter 4. Then, Eq. (1.94) becomes

dzy

=1+ s
a

(1.106)

" [ s +rod

s f2@)

which is integrated to give

& kkT 4 Yo g % 1 , 2
sl sgesl ot AL o)
o v s | 10 s ), 7w T
(1.107)
In the limit of small y,, Eq. (1.107) tends to
7 il {1 T +,1(,“1)2} (1.108)
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We thus choose A =2 to obtain Eq. (1.104). Therefore, Eq. (1.107) becomes

ereoickT 4 Yo 4 Yo 1 y 12
= 14+ —5— dy + ————— — du Sd
o=+ s | o s [ ) o]
(1.109)

which is the required second-order o—y, relationship.

For some simple cases, from Eqgs. (1.103) and (1.109) with Eq. (1.56) one can de-
rive explicit expressions for the g—y, relationship. Indeed, for 1-1 and 2-1 electrolyte
solutions and their mixed solution, Eqs. (1.103) and (1.109) with Egs. (1.58)—(1.60)
yield Eqgs. (1.80) and (1.86)—(1.88). As another example, one can derive expressions
for the g—y, relationship for the case of 3-1 electrolytes of concentration #. In this
case, the Debye—Hiickel parameter k and f(y) are given by Egs. (1.15) and (1.62),
respectively. By substituting Eq. (1.62) into Egs. (1.103) and (1.109) and carrying out
numerical integration, we can derive the first-order and second-order o—y, relation-
ships, respectively. The relative error of Eq. (1.103) is less than 1% for xa > 5 and
that of Eq. (1.109) is less than 1% for ka > 1.

1.4.5 Potential Distribution Around a Sphere with Arbitrary Potential

By using an approximation method similar to the above method and the method of
White [6], one can derive an accurate analytic expression for the potential distribu-
tion around a spherical particle. Consider a sphere of radius a in a symmetrical elec-
trolyte solution of valence z and bulk concentration n[7]. The spherical Poisson—
Boltzmann equation (1.68) in this case becomes

dy 2dy .
W+;$:K sinh y (1.110)

where y = zey/kT is the scaled potential. Making the change of variables

szgwm—xu—m) (1.111)
we can rewrite Eq. (1.110) as
d*y [y 2ka + 1
2
§°—=+s— =sinhy — G 1.112
ds? d (ka + 1)? 2 ( )

where

2r+ 1\ (xa+ 1\*/ . dy
G(y) = hy —s— 1.113
) (2Ka + 1) (KI’ + 1) (sm Y sds) ( )
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and the boundary conditions (1.69) and (1.70) as
y=y,fors =1

d
y:d—)s):Ofors:O

When ka > 1, Eq. (1.112) reduces to

with solution

B 1 + tanh(y, /4)s
¥ =2In [1 ~tanh(y, /4)s]

an approximate expression obtained by White [6].

(1.114)

(1.115)

(1.116)

(1.117)

To obtain a better approximation, we replace G(y) in Eq. (1.112) by its large ka

limiting value

d
lim G(y) = sinhy— lim (s—y>
Ka— 00 Ka—oQ ds

= sinhy — 2 sinh(y/2)

to obtain

d*y dy 2Ka y
2 s .
K E—l—s%— smhy—mH_ ] {y—2smh(§)}

This equation can be integrated once to give

dy 2xa+1 | (y){ 2ka + 1 }1/2
§— =-———>SInn| = — 5
ds  (ka+ 1) 2 (ka)*cosh?(y/4)

which is further integrated to give

_ oy, [ B+ Bs/(2xa + 1))
Y = n{(l —Bs)(1 — Bs/(2xa + 1))]
or
_2KT | 1+ Bs)(1 + Bs/(2ka + 1)
vin =, n{(l —Bs)(1 — Bs/(2xa + 1))]
where

B_ (2xa + 1)/(ka + 1))tanh(y, /4)

1+ {1 = (@xa+ 1)/ (ka+ 1)Pyanh’(y, /4)}

(1.118)

(1.119)

(1.120)

(1.121)

(1.122)

(1.123)
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The relative error of Eq. (1.122) is less than 1% for ka > 1. Note also that Eq.
(1.121) or (1.122) exhibits the correct asymptotic form, namely,

y(r) = costant X s (1.124)

Figure 1.11 gives the scaled potential distribution y(r) around a positively
charged spherical particle of radius a with y, =2 in a symmetrical electrolyte solu-
tion of valence z for several values of xa. Solid lines are the exact solutions to Eq.
(1.110) and dashed lines are the Debye—Hiickel linearized results (Eq. (1.72)). Note
that Eq. (1.122) is in excellent agreement with the exact results. Figure 1.12 shows
the plot of the equipotential lines around a sphere with y, =2 at xa =1 calculated
from Eq. (1.121). Figures 1.13 and 1.14, respectively, are the density plots of coun-
terions (anions) (n_(r) =nexp(+y(r))) and coions (cations) (n_(r) =nexp(—y(r)))
around the sphere calculated from Eq. (1.121).

Note that one can obtain the o—y,, relationship from Eq. (1.120),

- oo dy &eokkT ka + 1 dy
B = s—=
dr|,_ e ka ds|,_,
’ 12 (1.125)
_ 26:60KkT sinh (y_o) ) 2Ka + 1
T e 2 (ra)*cosh’(y, /4)

¥(r)

K(r-a)

FIGURE 1.11 Scaled potential distribution y(r) around a positively charged spherical par-
ticle of radius a with y,=2 in a symmetrical electrolyte solution of valence z for several
values of xa. Solid lines, exact solution to Eq. (1.110); dashed lines, Debye—Hiickel linear-
ized solution (Eq. (1.72)). Note that the results obtained from Eq. (1.122) agree with the exact
results within the linewidth.
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FIGURE 1.12 Contour lines (isopotential lines) for y(r) around a positively charged
sphere with y, =2 at ka = 1. Arbitrary scale.

FIGURE 1.13 Density plots of counterions (anions) around a positively charged spherical
particle with y,=2 at ka=1. Calculated from n_(r) =nexp(+y(r)) with the help of Eq.
(1.121). The darker region indicates the higher density and n_(r) tends to its bulk value n far
from the particle. Arbitrary scale.
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FIGURE 1.14 Density plots of coions (cations) around a positively charged spherical par-
ticle with y, =2 at xa = 1. Calculated from n () = nexp(—y(r)) with the help of Eq. (1.121).
The darker region indicates the higher density and n,(r) tends to its bulk value n far from the
particle.

which corresponds to Eq. (1.80), but one cannot derive the second-order o—y,
relationship by this method. The advantage in transforming the spherical Poisson—
Boltzmann equation (1.79) into Eq. (1.112) lies in its ability to yield the potential
distribution y(r) that shows the correct asymptotic form (Eq. (1.124)).

We obtain the potential distribution around a sphere of radius a having a surface
potential ¥, immersed in a solution of general electrolytes [9]. The Poisson—
Boltzmann equation for the electric potential y(r) is given by Eq. (1.94), which, in
terms of f(r), is rewritten as

d’y 2dy  ,. dy
—4-——== — 1.126
dr? + rdr fo dr ( )
with f(r) given by Eq. (1.56). We make the change of variables (Eq. (1.111)) and
rewrite Eq. (1.126) as
d*y

2y | dy
25+ =)

df  2wr+1 af  dy
ds? {f }

& w2 V0 s

ds
which is subject to the boundary conditions: y=y, at s=1 and y=dy/ds =0 at
s =0 (see Egs. (1.114) and (1.115)). When xa > 1, Eq. (1.127) reduces to

af
dy

(1.127)

d? d
SIS+ = f0)
ds

05 (1.128)
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which is integrated once to give

dy_
sa—f(y) (1.129)

We then replace the second term on the right-hand side of Eq. (1.127) with its
large xka limiting form, that is, kr — xa and s dy/ds — f(y) (Eq. (1.120)),

2Kr + 1 df dy 2Kxa + 1 df

Equation (1.127) then becomes

d*y dy df  2Kka+1 df dy
24y 4 Y9 S B 1.131
e Vs ) dy (ka+ 1) {f(y) dy  ds ( )
and integrating the result once gives
dy
—=F 1.132
s =FO) (1.132)
with
Fo) Ka o) 1+2(2xa+ D1 yf( Y }1/2 (1133)
=— —_— w)du .
Pk T ka2 Jo

Note that F(y) —y as y — 0 and that F(y) — f(y) as ka — co. Expressions for F
(v) for several cases are given below.

(1) For a 1-1 electrolyte solution,

2 2(2ka + 1 1 1/2
Fy) = sinh (3) {1 Gratl) ] ] (1.134)
Ka + 1 2 (ka)~  cosh*(y/4)
(i1) For the case of 2-1 electrolytes,
Ka 2 . 1\'"?
F — 1l—e | =& +—
”) Ka—|—1( ¢ )<3e +3)

(1.135)

1+2Q2ka+ D2+ e )Ce + '3 i
(ra) (e G + )
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(iii) For the case of a mixed solution of 1-1 electrolyte of concentration n; and
2-1 electrolyte of concentration n,,

for oD ]

Ka+ 1
y {1 N 2(2Kka + 1)
(ka)*(1 — e (1 —n/3)e* +1n/3}
. m .o V3(1—1n)
X{(2+€') (1—§)€)+§—3—T
<{\/(1 “u/3e F /3 — /u/3Y1 + /0] )) H
{V/ (L =n/3)e* +n/3+/n/3}1 — \/n/3)

(1.136)
where 7 is defined by Eq. (1.61).
Equation (1.132) is integrated again to give
Yo d
flns:/ & (1.137)
vy FO

Substituting Eq. (1.134) into Eq. (1.137), we obtain Eq. (1.122) with z=1. For a
2-1 electrolyte and a mixture of 1-1 and 2-1 electrolytes, one can numerically calcu-
late y(r) from Eq. (1.137) with the help of Eqgs. (1.135) and (1.136) for F(y). For a
3-1 electrolyte and a mixture of 1-1 and 3-1 electrolytes, one can numerically calcu-
late F(y) from f(y) (Egs. (1.62) and (1.63)) with the help of Eq. (1.133) and then
calculate y(r) from Eq. (1.137).

1.5 CYLINDER

A similar approximation method can be applied for the case of infinitely long cylin-
drical particles of radius a in a general electrolyte composed of N ionic species with
valence z; and bulk concentration n; (i = 1, 2, . . ., N). The cylindrical Poisson—
Boltzmann equation is

d21// ldy zey
; 1.138
dr2 rdr sreo Z et exp( kT > ( )

i=1

where r is the radial distance measured from the center of the cylinder (Fig. 1.15).
The conditions (1.69), (1.70), and (1.75) for a spherical particle of radius a are also
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FIGURE 1.15 A cylinder of radius a.

applied for a cylindrical particle of radius a, namely,

Y=y, atr=a"

Y — 0, %HOaeroo

% o

or|,_+ &ro

where ¢ is the surface charge density of the cylinder.

1.5.1 Low Potential
For low potentials, Eq. (1.128) reduces to

&y lﬂ =K%Y

dr?  rdr
where k is given by Eq. (1.10). The solution is

KQ(K?‘)

lﬁ(r) = wo Ko(ka)

(1.139)

(1.140)

(1.141)

(1.142)

(1.143)
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where ), is the surface potential of the particle and K,(z) is the modified Bessel
function of the second kind of order n. The surface charge density ¢ of the particle
is obtained from Eq. (1.141) as

Ki(xa)

0 = &&EKY, Ko(va) (1.144)
or
o Ko(ka)
= 1.14
Vo eeok K (ka) ( 5)

In the limit of ka — oo, Eq. (1.145) approaches Eq. (1.26) for the plate case.

1.5.2 Arbitrary Potential: Symmetrical Electrolyte

For arbitrary ., accurate approximate analytic formulas have been derived [7,10],
as will be shown below. Consider a cylinder of radius a with a surface charge den-
sity o immersed in a symmetrical electrolyte solution of valence z and bulk concen-
tration n. Equation (1.138) in this case becomes

dy ldy .
F‘F;E—K smhy (1.146)

where y = zey//kT is the scaled potential. By making the change of variables [6]

K()(K}")
= 1.147
7 Kolka) (1.147)
we can rewrite Eq. (1.146) as
d’y dy
2 o 2
c @—I—c%—smhy—(l—ﬂ)H(y) (1.148)
where
1 — {Ko(er) /K (k)| [ . dy
H(y) = 7 smhy—c% (1.149)
Ko(xa)
_ 1.150
Ki(xa) ( )
and the boundary conditions (1.139) and (1.140) as
y=y, forc=1 (1.151)
d
y=220 forc=0 (1.152)

ds
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In the limit xa > 1, Eq. (1.148) reduces to

d’ d
czd—z+c£:sinhy (1.153)
with solution
1 + tanh(y,/4)c

=2ln|——F—>—~— 1.154
Y n [1 — tanh(y,/4)c ( )

an expression obtained by White [6]. We note that from Eq. (1.149)
H(y) = sinhy — 2 sinh(y/2) (1.155)

Ka—oo

and replacing H(y) in Eq. (148) by its large ka limiting form (Eq. (1.155)) we obtain

==+ cd—i = sinhy — (1 — *){sinhy — 2 sinh(y/2)} (1.156)

This equation can be integrated to give

(1+Do){1+ (1 —p)/(1 + ﬂ))Dc}]
=21 1.157
Yo " [(1 — Do) {1 — ((1 = B)/(1 + B))Dc} ( )
and
2eceokckT . /v, 1 1 172
Gzziesmh(?> |:1+ <P— 1) m] (1158)
with
D= (1 + B)tanh(y,/4) (1.159)

172

L+ {1 (1 — Ptanh®(y,/4))

where y, = zeW/kT is the scaled surface potential of the cylinder. For low poten-
tials, Eq. (1.158) reduces to Eq. (1.144).

1.5.3 Arbitrary Potential: General Electrolytes
We start with Eq. (1.138), which can be rewritten as
d’y ldy  «? SV zime @

=7 - 1.160
dr?  rdr Zi,\’:lzgni ( )

where y = ey /kT
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Equation (1.160) may further be rewritten as

d*y ldy
drr " rdr

d
Kzf(y)d—]; (1.161)

where f(y) is defined by Eq. (1.56). Making the change of variables (Eq. (1.147)),
we can rewrite Eq. (1.161) as

d’y dy df Ko(kr)) 2 i dy
2 = - - —_—— —_—
¢ dc2+cdc_f(y)dy ! {Kl(xr)} {f(y)dy Cdc} (1.162)

When ka > 1, Eq. (1.162) reduces to

d*y  dy df
2 .
—+c—= — 1.163
< ac T dc o dy ( )
Equation (1.163) is integrated once to give

dy

— = 1.164

¢ =) (1.164)

We then replace the second term on the right-hand side of Eq. (1.162) with its
large ka limiting form, namely,

2 d d
[1 - {en) Mf(y)jj; b a-plof-rmp e

Ki(kr) dc

Equation (1.162) then becomes

c2%+cj—i=f<y>j—];—<1 —ﬁz){f(y)j—];—f(y)} (1.166)
and integrating the result once gives
c%:F(y) (1.167)
with
1 1 1/2
FO) = ff©») [1 + 2(32 - 1)]%/0 f(u)du} (1.168)
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Note that F(y) —y as y — 0 and that F(y) — f{y) as ka — co. Expressions for F
(v) for several cases are given below.

(1) For a 1-1 electrolyte solution,

B . y 1 1 1/2

(ii) For the case of 2-1 electrolytes,

—)( 2 /2 _
ea(hor) e s
B (1-277Ge +D)

1/2

’ 1\ 12
F(y) = p( — e_y)<§€y +§)

(1.170)

(iii) For the case of a mixed solution of 1-1 electrolyte of concentration n; and
2-1 electrolyte of concentration 75,

FO) = pa—en[(1-T)e+1

27— 1)
(1 — e {(1 —n/3)e’ +1n/3}

x{(Z—i—e‘y) (1—g)ey+ﬂ—3—‘ﬁ§17\;")

<{¢(1n/3)e‘+f1/3\/—}(1+\/—>>H
{V/ A =n/3)e +n/3+/n/3}1 = \/n/3)

]1/2

x[lJr

(1.171)
where 7 is defined by Eq. (1.61).

The relationship between the reduced surface charge density ¢ and the reduced
surface potential y, = ey, /KT follows immediately from Eq. (1.141), namely [10],

o &&okkT K (kr) dy
0 = —&&— = —
or|,_.+ e Ko(ka)dc|,._, (1172)
_ &eokkT 1 dy srsoka 1 FO)| '
N e /3 dc B °

Note that when |y,| < 1, Eq. (1.172) gives the correct limiting form (Egq.
(1.144)), since F(y) —»yasy — 0.
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For the case of a cylinder having a surface potential y, in a 1-1 electrolyte solu-
tion, F(y) is given by Eq. (1.169). Substitution of Eq. (1.169) into Eq. (1.172) yields
Eq. (1.158) with z = 1. For the case of 2-1 electrolytes, F(y) is given by Eq. (1.170).

The -y, relationship is thus given by

ereokkT 1 (3 —p)g— 3} 1/2
= 1+2(—1)=2—2 2 1.173
T pq{ <ﬂ2 ) (pa? (1173)

For a mixed solution of 1-1 electrolyte of concentration n; and 2-1 electrolyte of
concentration n,, F(y) is given by Eq. (1.171). The g—y,, relationship is thus given by

&6oKckT
g = p t
i | PO (B IO (VT (T "
(28 2V (t+/n/3)A —+/n/3)
(1.174)
with
— My, 1
‘= (1 3)@ +1 (1.175)

Similarly, for the case of 3-1 electrolytes, F(y) is calculated from f(y) (Eq.
(1.62)). For a mixed solution of 3-1 electrolyte of concentration n, and 1-1 electro-
Iyte of concentration ny, F(y) is calculated from f(y) (Eq. (1.63)). By substituting the
obtained expressions for F(y) into Eq. (1.172) and carrying out numerical integra-
tion, we can derive the o—y, relationship.

Equation (1.167) is integrated again to give

Yo
“ine= [ 2 (1.176)
y

Equation (1.176) gives the general expression for the potential distribution
around a cylinder. For the special case of a cylinder in a 1-1 electrolyte, in which
case F(y) is given by Eq. (1.134), we obtain Eq. (1.157) with z= 1. For other types
of electrolytes, one can calculate by using Eq. (1.176) with the help of the corre-
sponding expression for F(y).

1.6 ASYMPTOTIC BEHAVIOR OF POTENTIAL AND EFFECTIVE
SURFACE POTENTIAL

Consider here the asymptotic behavior of the potential distribution around a particle
(plate, sphere, or cylinder) at large distances, which will also be used for calculating
the electrostatic interaction between two particles.
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1.6.1 Plate

Consider a charged plate with arbitrary surface potential i/, in a symmetrical elec-
trolyte solution of valence z and Debye—Hiickel parameter k. We take an x-axis
perpendicular to the plate surface with its origin at the plate surface so that the
region x > (0 corresponds to the solution phase while the region x <0 to the plate
interior. Equation (1.37) (or Eq. (1.38)) for the potential distribution y(x) around
the surface in the region far from the surface, that is, at large xx, takes the form

T T (200
Y(x) = = tan <4kT>e (1.177)
or
_ ey 2o
y(x) = T =4ye” 4tanh<4kT>e (1.178)

Comparing Eqgs. (1.25) and (1.177), we find that the effective surface potential
Vesr of the plate is given by

4kT kT zey
= — - .4tanh 0 1.1
Verr = ” i tan <4kT> (1.179)
and the scaled effective surface potential ¥ = zey.s/kT is given by
Y =4y =4tanh eV (1.180)
4kT

where 7 is defined by Eq. (1.39). For small potentials, the effective surface potential
Verr tends to the real surface potential /.. Figure 1.16 shows the asymptotic solution
(Eq. (1.178)) in comparison with the exact solution (Eq. (1.37)).

For a sphere in a 2-1 electrolyte solution, it follows from Eq. (1.44) that y/(x)
asymptotes

AkT kT [Ceo+ D12 —1
l//( )__ / e =".¢6 % e (1181)
e | CGen+H2+1

where 7’ is defined by Eq. (1.45). The effective surface potential /¢ is thus given
by

AkT Cer+H2—1
Yeir =—7 =—6 W (1.182)
e e (§e‘0 —|—§) +1
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FIGURE 1.16 Potential distribution y(x) around a positively charged plate with scaled
surface potential y, = ze/o/kT in a symmetrical electrolyte solution for y, =1, 2, and 5. Solid
lines are exact results (Eq. (1.37)), dashed lines are asymptotic results (Eq. (1.178)), and
dotted lines are the Debye—Hiickel approximation (Eq. (1.25)).

and the scaled effective surface potential ¥ = zey./kT is given by

2 oYo +l 1/2 _ 1
Y=4'=6 —(; ?)1 - (1.183)
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For the case of a mixed solution of 1-1 electrolyte of bulk concentration »n; and
2-1 electrolyte of bulk concentration n,, Eq. (1.48) in the region far from the sur-
face, that is, at large rx, takes the form

_ ‘”‘_qu/ x| 4KT 1 {(1 —n/3)e% + ,1/3}1/2 1
e <1_’7/3) [{(l—n/3)eyo+n/3}‘/2+1

e*K}C

e

(1.184)

where 1 and "’ are defined by Egs. (1.50) and (1.51), respectively. The effective
surface potential Y. is thus given by

4T , 4T ([ 1 {(1 = n/3)e +n/3}"* — 1
Ver =— 7" =—— : 7 (1.185)
e e \1=n/3) {1 —n/3)ew +n/3}'* +1
and the scaled effective surface potential ¥ = zey./kT is given by
1\ {0 —n/3er +n/3)' 7 1
Y:4y”:4< ) o (1.186)
L=n/3) [{(1 = n/3)er +n/3}'* +1
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We obtain the scaled effective surface potential Y for a plate having a surface
potential 1/, (or scaled surface potential y,) immersed in a solution of general elec-
trolytes [9]. Integration of the Poisson—Boltzmann equation for the electric potential
Y(x) is given by Eq. (1.65), namely,

Yo dy
= [ & 1.187
= /y SO ( )

where y =ey/kT and f(x) is defined by Eq. (1.56). Equation (1.187) can be
rewritten as

Yo 1 1 Yo 1
KX = fm - = dy + - dy
y Y v Y (1.188)
= /yo {L - 1}dy + Injy,| — Inly|
v Uy °
Note here that the asymptotic form y(x) must be
y(x) = constant x exp( — Kkx) (1.189)
or

Kx = constant — In|y| (1.190)

Therefore, the integral term of (1.188) must become independent of y at large x.
Since y tends to zero in the limit of large x, the lower limit of the integration may be
replaced by zero. We thus find that the asymptotic form y(x) satisfies

= [ {]f(y)—i}dy+1n|yo| ~ Inly| (1.191)
It can be shown that the asymptotic form of y(x) satisfies
yx) =Ye ™ (1.192)
with
Y =y, exp U‘ {11}dy} (1.193)
o U vy

Equation (1.193) is the required expression for the scaled effective surface potential
(or the asymptotic constant) Y. Wilemski [11] has derived an expression for Y (Eq.
(15) with Eq. (12) in his paper [11]), which can be shown to be equivalent to Eq.
(1.193). For a planar surface having scaled surface potentials y, in a z-z symmetrical
electrolyte solution, Eq. (1.193) reproduces Eq. (1.180). Similarly, for the case of a
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planar surface having a scaled surface potential y, in a 2-1 electrolyte solution, Eq.
(1.193) reproduces Eq. (1.183), while for the case of a mixed solution of 1-1 electro-
lyte of concentration n; and 2-1 electrolyte of concentration n,, it gives Eq. (1.186).

1.6.2 Sphere

The asymptotic expression for the potential of a spherical particle of radius a in a
symmetrical electrolyte solution of valence z and Debye—Hiickel parameter x at a
large distance r from the center of the sphere may be expressed as

Y(r) = Yo

4 i(ra)
e (1.194)

y(r) = %z//(r) — Y‘;’e*“(’*“) (1.195)

where r is the radial distance measured from the sphere center, Y. is the effec-
tive surface potential, and Y = zeyr.q/kT is the scaled effective surface potential of a
sphere. From Eq. (1.122) we obtain

" :ki. 8 tanh(y, /4)
e |4 {1 - (@ra+ 1)/ (ka+ 1P)anh3(y,/4)}

7 (1.196)

or

8 tanh(y,/4)
14 {1 — ((2xa + 1)/(xa + 1)*)tanh’(y, /4)}

It can be shown that ¢ reduces to the real surface potential 1, in the low-po-
tential limit.

We obtain an approximate expression for the scaled effective surface potential Y
for a sphere of radius @ having a surface potential , (or scaled surface potential
Yo =eYy,/kT) immersed in a solution of general electrolytes [9]. The Poisson—
Boltzmann equation for the scaled electric potential y(r) = eys/kT is approximately
given by Eq. (1.137), namely,

Y = (1.197)

172

Yo
—Ins = / Ay (1.198)
y
with
a
s =—exp( — xk(r — a)) (1.199)
r

where F(y) is defined by Eq. (1.133). It can be shown that the scaled effective sur-
face potential Y = ey /kT is given by

Yo 1 1
= — - 1.2
Y = y,exp [ /0 { o) y}dy} (1.200)
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Equation (1.200) is the required expression for the scaled effective surface po-
tential (or the asymptotic constant) ¥ and reproduces Eq. (1.197) for a sphere of
radius a having a surface potential \, in a symmetrical electrolyte solution of va-
lence z. The relative error of Eq. (1.200) is less than 1% for ka > 1.

1.6.3 Cylinder

The effective surface potential ¢ or scaled effective surface potential Y= zey ¢/
kT of a cylinder in a symmetrical electrolyte solution of valence z can be obtained
from the asymptotic form of the potential around the cylinder, which in turn is de-
rived from Eq. (1.157) as [7]

y(r)=Yc (1.201)
with
N K()(Kr)
c= Ko(ea) (1.202)
and
- 8 tanh(y, /4) (1.203)

14 {1 (1 - Pranhi(y,/4))

where r is the distance from the axis of the cylinder and

N Ko(KCl)
 Ki(xa)

(1.204)

We obtain an approximate expression for the scaled effective surface potential Y
for a cylinder of radius @ having a surface potential . (or scaled surface potential
Y=ey./kT) immersed in a solution of general electrolytes . The Poisson—
Boltzmann equation for the scaled electric potential y(r) = eys/kT is approximately
given by Eq. (1.176), namely,

Yo d
—lnc:/ & (1.205)
y

where F(y) is defined by Eq. (1.168). It can be shown that the scaled effective sur-
face potential Y = ey./kT is given by

Yo 1 1

Equation (1.206) reproduces Eq. (1.203) for a cylinder in a symmetrical electrolyte
solution of valence z. The relative error of Eq. (1.206) is less than 1% for ka > 1.
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1.7 NEARLY SPHERICAL PARTICLE

So far we have treated uniformly charged planar, spherical, or cylindrical particles.
For general cases other than the above examples, it is not easy to solve analytically
the Poisson—Boltzmann equation (1.5). In the following, we give an example in
which one can derive approximate solutions.

We give below a simple method to derive an approximate solution to the linear-
ized Poisson—Boltzmann equation (1.9) for the potential distribution ys(r) around a
nearly spherical spheroidal particle immersed in an electrolyte solution [12]. This
method is based on Maxwell’s method [13] to derive an approximate solution to the
Laplace equation for the potential distribution around a nearly spherical particle.

Consider first a prolate spheroid with a constant uniform surface potential ,, in
an electrolyte solution (Fig. 1.17a). The potential s is assumed to be low enough to
obey the linearized Poisson—-Boltzmann equation (1.9). We choose the z-axis as the
axis of symmetry and the center of the prolate as the origin. Let @ and b be the major
and minor axes of the prolate, respectively. The equation for the surface of the pro-
late is then given by

x2+ 2 ZZ
be +5=1 (1.207)

We introduce the spherical polar coordinate (r, 6, ¢), that is, P=x*+ y2 + 7% and
z=rcos 0, and the eccentricity of the prolate

e, =1/1—(b/a)’ (1.208)

Then, when the spheroid is nearly spherical (i.e., for low ep), Eq. (1.207) be-

comes
2
e
r—a<1—2psin20>—a 3

ez (1
1+p{2(300520—1)—1} (1.209)

(a) Prolate (b) Oblate

FIGURE 1.17 Prolate spheroid (a) and oblate spheroid (b). @ and b are the major and
minor semiaxes, respectively. The z-axis is the axis of symmetry.
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which is an approximate equation for the surface of the prolate with low eccentric-
ity e, (which is correct to order eﬁ).

The solution to Eq. (1.9) must satisfy the boundary conditions that i tends to zero
as r— oo and ¥y =, at the prolate surface (given by Eq. (1.209)). We thus obtain

— C_I _K(r_”) _ (1 + Ka) 2 ﬂ —;c(r—a) _ kz(KV) 29
Y(r,0) =, e v, 3 %) ¢ o (cd) (Bcos” 0 —1)
(1.210)

where k,(z) is the modified spherical Bessel function of the second kind of order n.
We can also obtain the surface charge density o(#) from Eq. (1.210), namely,

eZ
a(f) = —8r80%: —arsocosa% atr =a 1+§"{%(3cos29— - 1}]
(1.211)

on or

where « is the angle between n and r. It can be shown that cosa = 1 + O(ef)). Then
we find from Eqgs. (1.210) and (1.211) that

9 1 €
a®) _ 1+—+—p{1—{2+2ka+(ka)2
Er&oKW o Ka

3Ka
(1.212)

{9 + 9ka + 4(xa)® + (ka)*}

—(1 + Ka) 203+ 3xa + (@)}

(3cos? O — 1)H

Figure 1.18 shows equipotential lines (contours) around a prolate spheroid on the
z—x plane at y =0, calculated from Eq. (1.210) at ka = 1.5 and kb = 1.

FIGURE 1.18 Equipotential lines (contours) around a prolate spheroid on the z—x plane at
y=0. Calculated from Eq. (1.210) at ka = 1.5 and kb = 1 (arbitrary size).
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We next consider the case of an oblate spheroid with constant surface potential
W, (Fig. 1.17b). The surface of the oblate is given by

x+y

— b2 =1 (1.213)

where the z-axis is again the axis of symmetry, a and b are the major and minor
semiaxes, respectively. Equation (1.213) can be approximated by

62 62
r:a<1+5°sin29>—a[l—?{ (3 cos? 9—1)—1” (1.214)

where the eccentricity e, of the oblate is given by

=1\/(a/b)* — 1 (1.215)

After carrying out the same procedure as employed for the case of the prolate
spheroid, we find that y/(r, 8) and the o—/, relationship, both correct to order eg, are
given by

_y by A + kD) 240 b)) _ ka(kr) 1,
W(r,0) =y, e Vo7 {r Her (D) (Bcos?6—1)

(1.216)

a(0) 4L 1 2
&80k, kb 3k b

2 3
{9 + 9Kb + 4(xcb)* + (zrcb) F 3 cost 6 1)}]
2{3 + 3b + (kb)*}

(1.217)
—(1 + xb)

which can also be obtained directly from Eqgs. (1.210) and (1.212) by interchanging
a < b and replacing eg by —€2
The last term on the right-hand side of Eqgs. (1.210), (1.212), (1.216), and (1.217)

corresponds to the deviation of the particle shape from a sphere.
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