
1

There is no doubt that web application security is a current and very news-
worthy subject. For all concerned, the stakes are high: for businesses that
derive increasing revenue from Internet commerce, for users who trust web
applications with sensitive information, and for criminals who can make big
money by stealing payment details or compromising bank accounts. Reputa-
tion plays a critical role: few people want to do business with an insecure web
site, and so few organizations want to disclose details about their own security
vulnerabilities or breaches. Hence, it is not trivial to obtain reliable informa-
tion about the state of web application security today.

This chapter takes a brief look at how web applications have evolved and the
many benefits they provide. We present some metrics about vulnerabilities in
current web applications, drawn from the authors’ direct experience, demon-
strating that the majority of applications are far from secure. We describe the
core security problem facing web applications — that users can supply arbi-
trary input — and the various factors that contribute to their weak security pos-
ture. Finally, we describe the latest trends in web application security and the
ways in which these may be expected to develop in the near future.

Web Application (In)security

C H A P T E R

1

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

The Evolution of Web Applications

In the early days of the Internet, the World Wide Web consisted only of web sites.
These were essentially information repositories containing static documents,
and web browsers were invented as a means of retrieving and displaying those
documents, as shown in Figure 1-1. The flow of interesting information was one-
way, from server to browser. Most sites did not authenticate users, because there
was no need to — each user was treated in the same way and presented with the
same information. Any security threats arising from hosting a web site related
largely to vulnerabilities in web server software (of which there were many). If
an attacker compromised a web server, he would not normally gain access to
any sensitive information, because the information held on the server was
already open to public view. Rather, an attacker would typically modify the files
on the server to deface the web site’s contents, or use the server’s storage and
bandwidth to distribute “warez.”

Figure 1-1: A traditional web site containing static information

Today, the World Wide Web is almost unrecognizable from its earlier form.
The majority of sites on the web are in fact applications (see Figure 1-2). They
are highly functional, and rely upon two-way flow of information between the
server and browser. They support registration and login, financial transactions,
search, and the authoring of content by users. The content presented to users is
generated dynamically on the fly, and is often tailored to each specific user.
Much of the information processed is private and highly sensitive. Security is

2 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 2

therefore a big issue: no one wants to use a web application if they believe their
information will be disclosed to unauthorized parties.

Web applications bring with them new and significant security threats. Each
application is different and may contain unique vulnerabilities. Most applica-
tions are developed in-house, and many by developers who have little under-
standing of the security problems that may arise in the code they are
producing. To deliver their core functionality, web applications normally
require connectivity to internal computer systems that contain highly sensitive
data and are able to perform powerful business functions. Ten years ago, if you
wanted to make a funds transfer, you visited your bank and someone per-
formed it for you; today, you can visit their web application and perform it
yourself. An attacker who compromises a web application may be able to steal
personal information, carry out financial fraud, and perform malicious actions
against other users.

Figure 1-2 A typical web application

Common Web Application Functions
Web applications have been created to perform practically every useful func-
tion one could possibly implement online. Examples of web application func-
tions that have risen to prominence in recent years include:

■■ Shopping (Amazon)

■■ Social networking (MySpace)

Chapter 1 ■ Web Application (In)security 3

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 3

■■ Banking (Citibank)

■■ Web search (Google)

■■ Auctions (eBay)

■■ Gambling (Betfair)

■■ Web logs (Blogger)

■■ Web mail (Hotmail)

■■ Interactive information (Wikipedia)

In addition to the public Internet, web applications have been widely
adopted inside organizations to perform key business functions, including
accessing HR services and managing company resources. They are also fre-
quently used to provide an administrative interface to hardware devices such
as printers, and other software such as web servers and intrusion detection
systems.

Numerous applications that predated the rise of web applications have been
migrated to this technology. Business applications like enterprise resource
planning (ERP) software, which were previously accessed using a proprietary
thick-client application, can now be accessed using a web browser. Software
services such as email, which originally required a separate email client, can
now be accessed via web interfaces like Outlook Web Access. This trend is con-
tinuing as traditional desktop office applications such as word processors and
spreadsheets are migrated to web applications, through services like Google
Apps and Microsoft Office Live.

The time is fast approaching when the only client software that most com-
puter users will need is a web browser. A hugely diverse range of functions
will have been implemented using a shared set of protocols and technologies,
and in so doing will have inherited a distinctive range of common security
vulnerabilities.

Benefits of Web Applications
It is not difficult to see why web applications have enjoyed such a dramatic
rise to prominence. Several technical factors have worked alongside the obvi-
ous commercial incentives to drive the revolution that has occurred in the way
we use the Internet:

■■ HTTP, the core communications protocol used to access the World Wide
Web, is lightweight and connectionless. This provides resilience in the
event of communication errors and avoids the need for the server to
hold open a network connection to every user as was the case in many

4 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 4

legacy client-server applications. HTTP can also be proxied and tun-
neled over other protocols, allowing for secure communication in any
network configuration.

■■ Every web user already has a browser installed on their computer.
Web applications deploy their user interface dynamically to the
browser, avoiding the need to distribute and manage separate client
software, as was the case with pre-web applications. Changes to the
interface only need to be implemented once, on the server, and take
effect immediately.

■■ Today’s browsers are highly functional, enabling rich and satisfying
user interfaces to be built. Web interfaces use standard navigational and
input controls that are immediately familiar to users, avoiding the need
to learn how each individual application functions. Client-side scripting
enables applications to push part of their processing to the client side,
and browsers’ capabilities can be extended in arbitrary ways using
thick-client components where necessary.

■■ The core technologies and languages used to develop web applications
are relatively simple. A wide range of platforms and development tools
are available to facilitate the development of powerful applications by
relative beginners, and a large quantity of open source code and other
resources is available for incorporation into custom-built applications.

Web Application Security

As with any new class of technology, web applications have brought with
them a new range of security vulnerabilities. The set of most commonly
encountered defects has evolved somewhat over time. New attacks have been
conceived that were not considered when existing applications were devel-
oped. Some problems have become less prevalent as awareness of them has
increased. New technologies have been developed that have introduced new
possibilities for exploitation. Some categories of flaws have largely gone away
as the result of changes made to web browser software.

Throughout this evolution, compromises of prominent web applications
have remained in the news, and there is no sense that a corner has been turned
and that these security problems are on the wane. Arguably, web application
security is today the most significant battleground between attackers and
those with computer resources and data to defend, and it is likely to remain so
for the foreseeable future.

Chapter 1 ■ Web Application (In)security 5

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 5

“This Site Is Secure”
There is a widespread awareness that security is an “issue” for web applica-
tions. Consult the FAQ page of a typical application, and you will be reassured
that it is in fact secure. For example:

This site is absolutely secure. It has been designed to use 128-bit Secure Socket
Layer (SSL) technology to prevent unauthorized users from viewing any of your
information. You may use this site with peace of mind that your data is safe with us.

In virtually every case, web applications state that they are secure because
they use SSL. Users are often urged to verify the site’s certificate, admire the
advanced cryptographic protocols in use, and on this basis, trust it with their
personal information.

In fact, the majority of web applications are insecure, and in ways that have
nothing to do with SSL. The authors of this book have tested hundreds of web
applications in recent years. Figure 1-3 shows the proportions of those appli-
cations tested during 2006 and 2007 that were found to be affected by some
common categories of vulnerability. These are explained briefly below:

■■ Broken authentication (67%) — This category of vulnerability encom-
passes various defects within the application’s login mechanism, which
may enable an attacker to guess weak passwords, launch a brute-force
attack, or bypass the login altogether.

■■ Broken access controls (78%) — This involves cases where the appli-
cation fails to properly protect access to its data and functionality,
potentially enabling an attacker to view other users’ sensitive data held
on the server, or carry out privileged actions.

■■ SQL injection (36%) — This vulnerability enables an attacker to sub-
mit crafted input to interfere with the application’s interaction with
back-end databases. An attacker may be able to retrieve arbitrary data
from the application, interfere with its logic, or execute commands on
the database server itself.

■■ Cross-site scripting (91%) — This vulnerability enables an attacker to
target other users of the application, potentially gaining access to their
data, performing unauthorized actions on their behalf, or carrying out
other attacks against them.

■■ Information leakage (81%) — This involves cases where an applica-
tion divulges sensitive information that is of use to an attacker in devel-
oping an assault against the application, through defective error
handling or other behavior.

6 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 6

Figure 1-3 The incidence of some common web application vulnerabilities in
applications recently tested by the authors (based on a sample of more than 100)

SSL is an excellent technology that protects the confidentiality and integrity
of data in transit between the user’s browser and the web server. It helps to
defend against eavesdroppers, and it can provide assurance to the user of the
identity of the web server they are dealing with. But it does not stop attacks
that directly target the server or client components of an application, as most
successful attacks do. Specifically, it does not prevent any of the vulnerabilities
listed previously, or many others that can render an application critically
exposed to attack. Regardless of whether or not they use SSL, most web appli-
cations still contain security flaws.

NOTE Although SSL has nothing to do with the majority of web application
vulnerabilities, do not infer that it is unnecessary to an application’s security.
Properly used, SSL provides an effective defense against several important
attacks. An occasional mistake by developers is to eschew industry-standard
cryptography in favor of a home-grown solution, which as a rule is more
expensive and less effective. Consider the following (actual) FAQ answer, which
rings even louder alarm bells than the orthodox wisdom described previously:

This site is secure. For your safety (and our peace of mind) we do not use
“standard” security procedures such as SSL but proprietary protocols which we
won’t disclose in detail here but permit immediate transfer of any data you
submit to a completely secure location. In other words the data never stays on
a server “floating in cyberspace,” which allows us to keep potential
malfeasants in the dark.

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%

Broken authentication

Broken access controls

SQL injection

Cross-site scripting

Information leakage

67%

78%

36%

91%

81%

Incidence in recently tested applications

100%

Chapter 1 ■ Web Application (In)security 7

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 7

The Core Security Problem:
Users Can Submit Arbitrary Input
As with most distributed applications, web applications face a fundamental
problem which they must address in order to be secure. Because the client is
outside of the application’s control, users can submit completely arbitrary
input to the server-side application. The application must assume that all input
is potentially malicious, and must take steps to ensure that attackers cannot use
crafted input to compromise the application by interfering with its logic and
behavior and gaining unauthorized access to its data and functionality.

This core problem manifests itself in various ways:

■■ Users can interfere with any piece of data transmitted between the
client and the server, including request parameters, cookies, and HTTP
headers. Any security controls implemented on the client side, such as
input validation checks, can be easily circumvented.

■■ Users can send requests in any sequence, and can submit parameters at
a different stage than the application expects, more than once, or not at
all. Any assumption which developers make about how users will
interact with the application may be violated.

■■ Users are not restricted to using only a web browser to access the appli-
cation. There are numerous widely available tools that operate along-
side, or independently of, a browser, to help attack web applications.
These tools can make requests that no browser would ordinarily make,
and can generate huge numbers of requests quickly to find and exploit
problems.

The majority of attacks against web applications involve sending input to
the server which is crafted to cause some event that was not expected or
desired by the application’s designer. Some examples of submitting crafted
input to achieve this objective are as follows:

■■ Changing the price of a product transmitted in a hidden HTML form
field, to fraudulently purchase the product for a cheaper amount.

■■ Modifying a session token transmitted in an HTTP cookie, to hijack the
session of another authenticated user.

■■ Removing certain parameters that are normally submitted, to exploit a
logic flaw in the application’s processing.

■■ Altering some input that will be processed by a back-end database, to
inject a malicious database query and so access sensitive data.

Needless to say, SSL does nothing to stop an attacker from submitting
crafted input to the server. If the application uses SSL, this simply means that

8 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 8

other users on the network cannot view or modify the attacker’s data in tran-
sit. Because the attacker controls her end of the SSL tunnel, she can send any-
thing she likes to the server through this tunnel. If any of the previously
mentioned attacks are successful, then the application is emphatically vulner-
able, regardless of what its FAQ may tell you.

Key Problem Factors
The core security problem faced by web applications arises in any situation
where an application must accept and process untrusted data that may be
malicious. However, in the case of web applications, there are several factors
which have combined to exacerbate the problem, and which explain why
so many web applications on the Internet today do such a poor job of address-
ing it.

Immature Security Awareness

There is a less mature level of awareness of web application security issues
than there is in longer-established areas such as networks and operating sys-
tems. While most people working in IT security have a reasonable grasp of the
essentials of securing networks and hardening hosts, there is still widespread
confusion and misconception about many of the core concepts involved in
web application security. It is common to meet experienced web application
developers to whom an explanation of many basic types of flaws comes as a
complete revelation.

In-House Development

Most web applications are developed in-house by an organization’s own staff
or contractors. Even where an application employs third-party components,
these are typically customized or bolted together using new code. In this situ-
ation, every application is different and may contain its own unique defects.
This stands in contrast to a typical infrastructure deployment in which an
organization can purchase a best-of-breed product and install it in line with
industry-standard guidelines.

Deceptive Simplicity

With today’s web application platforms and development tools, it is possible
for a novice programmer to create a powerful application from scratch in a
short period of time. But there is a huge difference between producing code
that is functional and code that is secure. Many web applications are created

Chapter 1 ■ Web Application (In)security 9

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 9

by well-meaning individuals who simply lack the knowledge and experience
to identify where security problems may arise.

Rapidly Evolving Threat Profile

As a result of its relative immaturity, research into web application attacks and
defenses is a thriving area in which new concepts and threats are conceived at
a faster rate than is now the case for older technologies. A development team
that begins a project with a complete knowledge of current threats may well
have lost this status by the time the application is completed and deployed.

Resource and Time Constraints

Most web application development projects are subject to strict constraints on
time and resources, arising from the economics of in-house, one-off develop-
ment. It is not usually possible to employ dedicated security expertise in the
design or development teams, and due to project slippage security testing by
specialists is often left until very late in the project’s lifecycle. In the balancing
of competing priorities, the need to produce a stable and functional applica-
tion by a deadline normally overrides less tangible security considerations. A
typical small organization may be willing to pay for only a few man-days of
consulting time to evaluate a new application. A quick penetration test will
often find the low-hanging fruit, but it may miss more subtle vulnerabilities
that require time and patience to identify.

Overextended Technologies

Many of the core technologies employed in web applications began life when
the landscape of the World Wide Web was very different, and have since been
pushed far beyond the purposes for which they were originally conceived —
for example, the use of JavaScript as a means of data transmission in many
AJAX-based applications. As the expectations placed on web application func-
tionality have rapidly evolved, the technologies used to implement this func-
tionality have lagged behind the curve, with old technologies stretched and
adapted to meet new requirements. Unsurprisingly, this has led to security
vulnerabilities as unforeseen side effects emerge.

The New Security Perimeter
Before the rise of web applications, organizations’ efforts to secure themselves
against external attack were largely focused on the network perimeter. Defend-
ing this perimeter entailed hardening and patching the services that it needed
to expose, and firewalling access to others.

10 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 10

Web applications have changed all of this. For an application to be accessi-
ble by its users, the perimeter firewall must allow inbound connections to the
server over HTTP/S. And for the application to function, the server must be
allowed to connect to supporting back-end systems, such as databases, main-
frames, and financial and logistical systems. These systems often lie at the core
of the organization’s operations and reside behind several layers of network-
level defenses.

If a vulnerability exists within a web application, then an attacker on the
public Internet may be able to compromise the organization’s core back-end
systems solely by submitting crafted data from his web browser. This data will
sail past all of the organization’s network defenses, in just the same way as
does ordinary, benign traffic to the web application.

The effect of widespread deployment of web applications is that the security
perimeter of a typical organization has moved. Part of that perimeter is still
embodied in firewalls and bastion hosts. But a significant part of it is now
occupied by the organization’s web applications. Because of the manifold
ways in which web applications receive user input and pass this to sensitive
back-end systems, they are the potential gateways for a wide range of attacks,
and defenses against these attacks must be implemented within the applica-
tions themselves. A single line of defective code in a single web application can
render an organization’s internal systems vulnerable. The statistics described
previously, of the incidence of vulnerabilities within this new security perime-
ter, should give every organization pause for thought.

NOTE For an attacker targeting an organization, gaining access to the
network or executing arbitrary commands on servers may well not be what
they really want to achieve. Often, and perhaps typically, what an attacker
really desires is to perform some application-level action such as stealing
personal information, transferring funds, or making cheap purchases. And the
relocation of the security perimeter to the application layer may greatly assist
an attacker in achieving these objectives.

For example, suppose that an attacker wishes to “hack in” to a bank’s systems
and steal money from users’ accounts. Before the bank deployed a web
application, the attacker might have needed to find a vulnerability in a publicly
reachable service, exploit this to gain a toehold on the bank’s DMZ, penetrate
the firewall restricting access to its internal systems, map the network to find
the mainframe computer, decipher the arcane protocol used to access it, and
then guess some credentials in order to log in. However, if the bank deploys a
vulnerable web application, then the attacker may be able to achieve the same
outcome simply by modifying an account number in a hidden field of an HTML
form.

Chapter 1 ■ Web Application (In)security 11

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 11

A second way in which web applications have moved the security perime-
ter arises from the threats that users themselves face when they access a vul-
nerable application. A malicious attacker can leverage a benign but vulnerable
web application to attack any user who visits it. If that user is located on an
internal corporate network, the attacker may harness the user’s browser to
launch an attack against the local network from the user’s trusted position.
Without any cooperation from the user, the attacker may be able to carry out
any action that the user could perform if she were herself malicious.

Network administrators are familiar with the idea of preventing their users
from visiting malicious web sites, and end users themselves are gradually
becoming more aware of this threat. But the nature of web application vulner-
abilities means that a vulnerable application may present no less of a threat to
its users and their organization than a web site that is overtly malicious. Cor-
respondingly, the new security perimeter imposes a duty of care on all appli-
cation owners to protect their users from attacks against them delivered via
the application.

The Future of Web Application Security
Several years after their widespread adoption, web applications on the Internet
today are still rife with vulnerabilities. Understanding of the security threats
facing web applications, and effective ways of addressing these, remains imma-
ture within the industry. There is currently little indication that the problem fac-
tors described previously are going to go away in the near future.

That said, the details of the web application security landscape are not sta-
tic. While old and well understood vulnerabilities like SQL injection continue
to appear, their prevalence is gradually diminishing. Further, the instances
that remain are becoming more difficult to find and exploit. Much current
research is focused on developing advanced techniques for attacking more
subtle manifestations of vulnerabilities which a few years ago could be easily
detected and exploited using only a browser.

A second prominent trend is a gradual shift in attention from traditional
attacks against the server side of the application to those that target other
users. The latter kind of attack still leverages defects within the application
itself, but it generally involves some kind of interaction with another user, to
compromise that user’s dealings with the vulnerable application. This is a
trend that has been replicated in other areas of software security. As awareness
of security threats matures, flaws in the server side are the first to be well
understood and addressed, leaving the client side as a key battleground as the
learning process continues. Of all the attacks described in this book, those
against other users are evolving the most quickly, and are the focus of most
current research.

12 Chapter 1 ■ Web Application (In)security

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 12

Chapter Summary

In a few short years, the World Wide Web has evolved from purely static infor-
mation repositories into highly functional applications that process sensitive
data and perform powerful actions with real-world consequences. During this
development, several factors have combined to bring about the weak security
posture demonstrated by the majority of today’s web applications.

Most applications face the core security problem that users can submit arbi-
trary input. Every aspect of the user’s interaction with the application may be
malicious and should be regarded as such unless proven otherwise. Failure to
properly address this problem can leave applications vulnerable to attack in
numerous ways.

All of the evidence about the current state of web application security indi-
cates that this problem has not been resolved on any significant scale, and that
attacks against web applications present a serious threat both to the organiza-
tions that deploy them and to the users who access them.

Chapter 1 ■ Web Application (In)security 13

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 13

70779c01.qxd:WileyRed 9/14/07 3:12 PM Page 14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

