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ABNORMAL GRAIN GROWTH (Worner et al. 1991; Kang 2005)

Abnormal grain growth involves the excessively rapid growth of a few grains in an
otherwise uniform microstructure. It is a particular problem in the later stages of
sintering. It is characterized by certain grains or crystallographic planes exhibiting
faster growth than average. Figure Al is a sketch of a microstructure formed as a
consequence of abnormal grain growth where one large grain at the top is growing
at the expense of the surrounding smaller grains. Abnormal grain growth is favored
when segregation changes the grain-boundary mobility or grain-boundary energy.
When grain growth occurs, there is an interfacial velocity V;; for the grain boundary
between the i—j grain pair given by the product of the mobility M;; and the force per
unit area on the grain boundary Fj;,

Vij = MFy;

where the grain-boundary velocity varies between individual grain boundaries, as
indicated by the subscript. The force Fj; is given by the product of the interfacial

energy and the curvature,
F ( 1 1 )
i= Y\~ A
/ "\G; G

where G; and G; are the grain size for contacting grains, and v;; is the corresponding
interfacial energy for the i—;j interface. Although not routinely recorded, the inter-
facial energy depends on the misorientation between grains. Effectively, the energy
per unit volume scales with the inverse grain size, so if G; > G;, then the force is
pushing the grain boundary toward the smaller grain center. A critical condition
occurs when the mobility of an individual grain boundary, M;;, greatly exceeds the

Mathematical Relations in Particulate Materials: Ceramics, Powder Metals, Cermets, Carbides,
Hard Materials, and Minerals. Edited by Randall M. German and Seong Jin Park
Copyright © 2008 John Wiley & Sons, Inc.



2 CHAPTER A

Figure A1. Abnormal grain growth during sintering is evident in sintering by the formation of
a very large grain growing into a matrix of much smaller grains. The resulting nonuniform
microstructure is evident in this reproduction from a sintered (Sr, Ba)Nb,Og ceramic after
heating at 1260°C for 4 h, where the grain at the top of this image is much larger than the
surrounding small grains.

average or when the individual grain-boundary energy is excessively low. This critical
condition is expressed by the following inequality:

My 16 (%
My 9 \Vn

where M,, is the mean grain-boundary mobility, v;; is the individual grain-boundary
energy, and v, is the mean grain-boundary energy. With respect to abnormal grain
growth, the two situations of concern are a twofold higher individual grain-boundary
mobility, for example, because of a segregated liquid, or a twofold lower individual
grain-boundary energy, for example, due to segregation or near coincidence in grain
orientation. In sintering practice, most examples of abnormal grain growth are caused
by impurities that segregate on the grain boundaries even at the sintering temperature.
For example, in sintering alumina (Al,O3), abnormal grain growth is favored by a
high combined calcia (CaO) and silica (SiO,) impurity level.

F; = grain-boundary force per unit area between the i—j grain pair, N/ m?
G;, G; = grain size for corresponding grain, m (convenient units: pm)
M;; = grain-boundary mobility between the i—;j grain pair, m3/(s -N)
M,, = mean grain-boundary mobility averaged over the body, m3/(s -N)
V;; = interfacial velocity for the grain boundary between the i—j grain pair, m/s
v; = individual grain-boundary energy between the i—j grain pair, J/m2

¥, = mean grain-boundary energy averaged over the body, J/mz.
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ABRASIVE WEAR

See Friction and Wear Testing.

ACCELERATION OF FREE-SETTLING PARTICLES (Han 2003)

An assumption in Stokes’ law, as applied to both particle-size classification and
particle-size distribution analysis, is that the particles instantaneously reach terminal
velocity. However, this is not the case in practice, and the acceleration of the particle
to the free-settling terminal velocity adds an error in a particle-size analysis. The
approach to the Stokes’ law terminal velocity vy is described by the following
equation for spherical particles initially at rest:

where v is the velocity after time ¢ when the particle starts from rest, 1 is the
fluid viscosity, p is the theoretical density of the particle, and D is the particle
diameter. A plot of this equation is given in Figure A2, where the actual velocity is
normalized to the terminal velocity for the case of a 1-mm stainless steel particle
settling in water.
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Figure A2. A plot of the relative particle velocity (when starting from rest) versus time to show
the acceleration of a particle settling by Stokes’ law. The particle velocity is relative to the term-
inal velocity. This calculation is for a 1-mm stainless steel ball settling in water.
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D = particle diameter, m (convenient units: p.m)
t = time, s
v = velocity (starting with v = 0 at # = 0), m/s
vy = Stokes’ law terminal velocity, m/s
n = fluid viscosity, Pa-s
p = theoretical density of the particle, kg/m’ (convenient units: g/cm?).

ACTIVATED SINTERING, EARLY-STAGE SHRINKAGE
(German and Munir 1977)

Activated sintering is associated with a treatment, usually by an additive, that greatly
increases sintering densification at lower temperatures than typically required. In acti-
vated sintering the initial sintering shrinkage depends on the rate of diffusion in the
activator, which is segregated to the interparticle grain boundary. Figure A3 provides
a schematic of the sintering geometry used to model first-stage activated sintering.
The growth of the interparticle bond results in attraction of the particle centers,
which gives compact shrinkage AL/L as follows:

Ly Ly  D*RT

where AL is the change in length, Ly is the initial length, L is the instantaneous length
during sintering, g is a collection of geometric terms, () is the atomic volume, & is the
width of the second-phase activator layer coating the grain boundary, C is the solubi-
lity of the materials being sintered in the second-phase activator, ysy is the solid—
vapor surface energy, D, is the diffusivity of the material being sintered in the
activator (note this changes dramatically with temperature), ¢ is the sintering time,
D is the particle size, R is the gas constant, and T is the absolute temperature.

Activator
Layer

Figure A3. Simple two-particle geometry for activated sintering, where the activator is segre-
gated to the interparticle grain boundary to form a layer of width 6 for a neck of diameter X and
a grain or particle of diameter D.
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Faster diffusion in the activator induces early sintering gains, but this mandates that
the solid be soluble in the activator. The controlling step is the diffusivity in the acti-
vator layer. The difference in effectiveness between various activators is explained by
their differing diffusivities and solubilities.

C = volumetric solubility in the activator, m3/m3 (dimensionless)
D
Dy
L = instantaneous length, m (convenient units: mm)

median particle size, m (convenient units: pm)

diffusivity of the base material in the activator layer, m?/s

Ly = initial length, m (convenient units: mm)
R = universal gas constant, 8.31 J/(mol - K)
T = absolute temperature, K
g = collection of geometric terms, dimensionless

= isothermal sintering time, s
AL = change in length, m (convenient units: mm)
AL/Ly = sintering shrinkage, dimensionless (convenient units: %)

) = atomic volume, m3/n101

0 = activator phase width on the grain boundary, m (convenient units:
nm or pm)

¥sv = solid—vapor surface energy, J/m>.

ACTIVATION ENERGY

See Arrhenius Relation.

ADSORPTION

See BET Specific Surface Area.

AGGLOMERATE STRENGTH (Pietsch 1984)

Powder that is wetted by a relatively small quantity of liquid or polymer will agglom-
erate. If the fluid phase is not solidified or hardened, then the crush strength o for an
agglomerated mass of powder depends on the fractional porosity € and the degree of
pore saturation S,

1—¢
De

o="TSyv

where the saturation S is the fraction of pore volume that is filled with liquid (often as
small as 0.01), y.v is the liquid—vapor surface energy, and D is the particle size.
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Unless the agglomerate is wetted by a high-strength polymer, the strength of a typical
agglomerated powder is dominated by capillarity effects.

D = particle diameter, m (convenient units: p.m)
S = degree of pore saturation, dimensionless fraction [0, 1]
& = fractional porosity, dimensionless [0, 1]
Yov = liquid—vapor surface energy, J/m?
o = strength of the agglomerate, Pa.

[Also see Capillarity.]

AGGLOMERATION FORCE

When a small powder is exposed to water or other condensable vapor, a liquid bridge
can form at the contact points between particles. Initially the liquid bridges are small
and do not merge, giving a structure termed the pendular state. As long as the liquid is
wetting, then at low concentrations the resulting capillary bonds provide an attractive
force. As an approximation, the attractive force F between contacting particles varies
with the liquid—vapor surface energy 7, y, and particle size D, as follows:

D = particle diameter, m (convenient units: m)
F = attractive force between contacting particles, N
vv = liquid—vapor surface energy, J/mz.

AGGLOMERATION OF NANOSCALE PARTICLES

See Nanoparticle Agglomeration.

ANDREASEN SIZE DISTRIBUTION (Andreasen 1930)

Originally isolated in colloidal particle-packing studies, the Andreasen particle size
distribution is applicable to all powders where a high packing density is desired.
The cumulative particle-size distribution is expressed in terms of the weight fraction
of particles F(D) given as the fractional weight of powders with a size less than par-
ticle size D. The Andreasen size distribution is described as follows:

D q
F(D)=A (D_L>
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where A is a fitting parameter, D; is the largest particle size in the distribution, and q is
the distribution exponent. For the highest packing densities, it is observed that the
exponent g tends to range near 0.6. As an alternative, the cumulative particle-size dis-
tribution can be expressed with respect to a limiting size by defining a distribution
constant B = A/Dj, giving

F(D) = BD!

A = fitting parameter, dimensionless
B = distribution constant, 1/m?
D = particle size, m (convenient units: pm)
D, = size of the largest particle, m (convenient units: pm)
F(D) = cumulative weight-based particle-size distribution, dimensionless [0, 1]
q = distribution exponent, dimensionless.

APPARENT DIFFUSIVITY (Porter and Easterling 1981)

In cases where both volume diffusion Dy and grain-boundary diffusion Dp are acting
to induce sintering shrinkage, the data from shrinkage experiments only provide a
means to extract an apparent diffusivity, not an absolute diffusivity. For a constant
temperature, the combined or apparent diffusivity D, depends on the two contri-
butions as follows:

0
Dy :DV—I—%DB

where G is the grain size of the microstructure, 6 is the grain-boundary width (usually
assumed to be 5 to 10 times the atomic size), and S is an adjustable parameter near
unity (typically ranges from 0.5 to 1.5). Both diffusivities are functions of
temperature.

D, = apparent diffusivity, m%s
Dy = grain boundary diffusivity, m?%/s
Dy = volume diffusivity, m?%s
G = grain size, m (convenient units: m)
B = adjustable parameter, dimensionless
0 = grain-boundary width, m (convenient units: wm or nm).

ARCHARD EQUATION (Archard 1957)

Sliding wear is commonly treated in terms of the loss of material as a function of
the hardness, sliding distance, and normal load. The coefficient of friction between
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the substrate and sliding component is a factor that can greatly change wear rates. The
Archard equation calculates the wear behavior by assuming asperity removal, where a
single circular cross section is acted upon by an intense wear event. Fragments form and
contribute to the mass loss based on the assumption that the hardness and yield strength
of the material are proportional. The resulting wear equation is given as follows:

KWL

e="n

where Q is the volume of material removed from the test or wear material, k is a
wear constant that provides a measure of the wear resistance, W is the normal
(perpendicular to the surface) load causing wear, L is the total sliding length for the
wear event, and H is the material hardness (assuming units of Pa or N/m2, where it
is assumed the opposing material is much harder). The first derivative of this equation
with respect to time then says the wear rate (volume per unit time) is proportional to the
sliding velocity.

H = hardness, Pa (convenient units: MPa)

L = sliding length, m (convenient units: mm)

Q = wear volume, m’ (convenient units: mm’ )

W = normal load, N (convenient units: kN or MN)
k = wear constant, dimensionless.

[Also see Friction and Wear Testing.]

ARCHIMEDES DENSITY

A standard means to determine the volume of an irregular shape is based on fluid
displacement when the component is immersed in a fluid such as water. The measure-
ment must prevent fluid intrusion into surface-connected pores to extract an accurate
volume. Combined with the dry mass determined prior to the test, a density
calculation follows. First, the sample is weighed dry (W), then again after oil impreg-
nation of the evacuated pores (W), and finally the oil-impregnated sample is immersed
in water for the final weight (W3). Usually a wire is used to suspend the sample in the
water and its weight Wy, must be measured in water too. Then the actual or Archimedes
density p can be calculated from the weight determinations as follows:

Wiy,

p_WZ*(W3*WW)

where ¢y is the density of water in kg/m3, which is temperature dependent as
given here,

w = 1001.7 — 0.2315T
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with T being the water temperature in °C. Dividing the measured density by the theor-
etical density gives the fractional density. One variant uses water impregnation instead
of oil to fill the pores, which still involves two immersion events, but there is no oil
trapped in the pores.

T = water temperature, °C
W, = dry mass of the sample prior to testing, kg (convenient units: g)
W, = wet mass of the sample after filling pores with fluid, kg (convenient
units: g)
W3 = mass of the component immersed in water, kg (convenient units: g)
Wy, = mass of the suspension wire, kg (convenient units: g)

¢w = temperature-corrected density of water, kg/ m’
(convenient units: g/ cm’)

p = component density, kg/m’ (convenient units: g/cm?).

[Also see Fractional Density.]

ARRHENIUS RELATION

The change in atomic motion due to a temperature increase or decrease during
sintering is described by an Arrhenius relation. It corresponds to an approxi-
mation of the integral area under the tail of the Boltzmann energy distribution
for the higher energies. Inherently the Arrhenius relation gives the fraction of
atoms with an energy of Q or greater at any time. This integral determines the
cumulative probability that an atom has more energy than that required to
move, as determined by the activation energy Q. For example, the volume-diffu-
sion coefficient Dy is determined from the atomic vibrational frequency Dy, absolute
temperature 7, universal gas constant R, and the activation energy @, which
corresponds to the energy required to induce atomic diffusion via vacancy
exchange, giving,

Y
Dy = Dy exp (— ﬁ)

Variants on this relation exist for grain-boundary diffusion, surface diffusion, evapor-
ation, creep, and other high-temperature processes.

D, = diffusion frequency factor, m2/s

Dy = volume-diffusion coefficient, mz/s
Q = activation energy, J/mol (convenient units: kJ/mol)
R = universal gas constant, 8.31 J/(mol - K)
T = absolute temperature, K.
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ATMOSPHERE MOISTURE CONTENT

See Dew Point.

ATMOSPHERE-STABILIZED POROSITY

See Gas-generated Final Pores.

ATOMIC FLUX IN VACUUM SINTERING (Johns et al. 2007)

When sintering in a vacuum, a rate of gas impingement exists on any surface, and
that rate depends on the pressure and temperature in the sintering furnace. The
corresponding atomic flux is the frequency at which gas molecules collide with
the surface. Considering an external surface (not inside the pore), the number
of gas molecules that strike the surface per unit time and per unit area is the flux J
estimated as,

P
v 2wkTm

where P is the gas pressure, k is Boltzmann’s constant, 7 is the absolute temperature,
and m is the molecular weight of the species. In a similar manner, oxide reduction in a
partial pressure of hydrogen or vacuum surface carburization both depend on this
same flux. If the density of desired reaction sites is known for the exposed surface,
then it is possible to estimate from the flux the time required for the desired effect;
the characteristic time is the density of surface sites (number per unit area) divided
by the flux.

J = flux, atom/ (m?-s) or molecule/ (m?-s)

P = gas pressure, Pa

T = absolute temperature, K

k = Boltzmann’s constant, 1.38 - 10~ %3 J/(atom - K)
m = molecular weight, kg/atom or kg/molecule.

ATOMIC-SIZE RATIO IN AMORPHOUS METALS

The formation of a glassy metal, or bulk amorphous metal, depends on several
factors, with the atomic-size ratio of the constituents being one of the important
factors. If atoms are very different in size, as well as having differences in valence
and crystal structure, then it is difficult to crystallize a solid on cooling a
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homogeneous liquid so formation of the amorphous state is favored. Accordingly, one
factor that helps in the formation of an amorphous metal is a large atomic-size ratio
(Rp/Ry). This ratio is linked to the solute concentration Cy needed to form an amor-
phous phase as follows:

where Rjp is the solute (minor constituent) atomic radius and Ry is the solvent (major
constituent) atomic radius. Less solute additive is needed to access the amorphous
structure during cooling, as the atomic sizes are substantially different (such that
the size ratio is significantly different from unity).

Cp = solute concentration to form an amorphous phase, m3/m3 (dimensionless)
Ra
Rp = atomic radius of the solute phase, m (convenient units: nm or A).

atomic radius of the solvent phase, m (convenient units: nm or 10\)

ATOMIZATION SPHEROIDIZATION TIME

See Spheroidization Time.

ATOMIZATION TIME

See Solidification Time.

AVERAGE COMPACTION PRESSURE

See Mean Compaction Pressure.

AVERAGE PARTICLE SIZE

See Mean Particle Size.

AVRAMI EQUATION (Avrami 1939)

The Avrami equation is used to describe the rate of phase transformation in a process
that first involves nucleation of the new phase followed by transformation with a
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Figure A4. A plot of the Avrami equation showing a typical fit to reaction kinetics using a time
exponent of unity.

progressively slower rate as the source species for the reaction are exhausted. As
illustrated in Figure A4, the general shape is a lazy-S curve showing the fraction
or percent transformed versus time. It is fit by an equation of the form:

y=1—exp(—Kr")

where y is the fraction transformed, ¢ is the time, n and K are constants for a given
reaction. Typically the parameter K is temperature dependent (Arrhenius temperature
dependence with an activation energy representative of the underlying mechanism)
and n ranges from 1 to 4.

K = temperature-dependent reaction rate, 1/s"

n = time exponent, dimensionless

t = reaction time, s

y = fraction of phase transformed, dimensionless [0, 1].



