
Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 1

Introduction to PowerShell

Welcome to Windows PowerShell, the new object-based command-line interface shell and scripting
language built on top of .NET. PowerShell provides improved control and automation of IT admin-
istration tasks for the Windows platform. It is designed to make IT professionals and developers
more productive.

Several books that introduce end-user IT professionals to Windows PowerShell are already avail-
able, but PowerShell development from the perspective of cmdlet, provider, and host developers
has gone largely unmentioned. This book attempts to fill that gap by introducing the reader to the
concepts, components, and development techniques behind building software packages that lever-
age Windows PowerShell. This book is written for developers who want to extend the functionality
of Windows PowerShell and extend their applications using PowerShell.

Traditionally, when developers write a command-line utility, they have to write code for parsing
the parameters, binding the argument values to parameters during runtime. In addition, they have
to write code for formatting the output generated by the command. Windows PowerShell makes
that easy by providing a runtime engine with its own parser. It also provides functionality that
enables developers to add custom formatting when their objects are displayed. By performing
the common tasks associated with writing command-line utilities, Windows PowerShell enables
developers to focus on the business logic of their application, rather than spend development time
solving universal problems.

Windows PowerShell Design Principles
Windows PowerShell was designed in response to years of customer feedback about the adminis-
trative experience on Microsoft Windows. Early on, many users asked why some of the traditional
Unix shells weren’t licensed and included in Windows, and it became apparent that the right answer
was to produce a whole new kind of shell that would leave these legacy technologies behind. This
thinking was distilled into four guiding principles that provided the foundation for PowerShell’s
design effort.

CO
PYRIG

HTED
 M

ATERIA
L

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 2

Chapter 1: Introduction to PowerShell

Preserve the Customer’s Existing Investment
When a new technology is rolled out, it takes time for the technology to be adopted. Moreover, customers
are likely to have already invested a lot in existing technologies. It’s unreasonable to expect people to
throw out their existing investments, which is why PowerShell was designed from the ground up to be
compatible with existing Windows Management technologies.

In fact, PowerShell runs existing commands and scripts seamlessly. You can make use of PowerShell’s
integration with COM, WMI, and ADSI technologies alongside its tight integration with .NET. Indeed,
PowerShell is the only technology that enables you to create and work with objects from these various
technologies in one environment. You can see examples of this and other design principles in a quick
tour of PowerShell later in the chapter.

Provide a Powerful, Object-Oriented Shell
CMD.exe and other traditional shells are text-based, meaning that the commands in these shells take text
as input and produce text as output. Even if these commands convert the text internally into objects, when
they produce output they convert it back to text. In traditional shells, when you want to put together
simple commands in the pipeline, a lot of text processing is done between commands to produce desired
output. Tools such as SED, AWK, and Perl became popular among command-line scripters because of
their powerful text-processing capabilities.

PowerShell is built on top of .NET and is an object-based shell and scripting language. When you pipe
commands, PowerShell passes objects between commands in the pipeline. This enables objects to be
manipulated directly and to be passed to other tools. PowerShell’s tight integration with .NET brings the
functionality and consistency of .NET to IT professionals without requiring them to master a high-level
programming language such as C# or VB.NET.

Extensibility, Extensibility, Extensibility
This design principle aims to make the IT administrator more productive by providing greater control
over the Windows environment and accelerating the automation of system administration. Adminis-
trators can start PowerShell and use it immediately without having to learn anything because it runs
existing commands and scripts, and is therefore easy to adopt. It is an easy to use shell and language for
administrators.

All commands in PowerShell are called cmdlets (pronounced ‘‘commandlet’’), and they use verb-noun
syntax — for example, Start-Service, Stop-Service or Get-Process, Get-WMIObject, and so on. The
intuitive nature of verb-noun syntax makes learning commands easy for administrators. PowerShell
includes more than 100 commands and utilities that are admin focused. In addition, PowerShell provides
a powerful scripting language that supports a wide range of scripting styles, from simple to sophisticated.
This enables administrators to write simple scripts and learn the language as they go. With this combined
functionality and ease of use, PowerShell provides a powerful environment for administrators to perform
their daily tasks.

Tear Down the Barriers to Development
Another design principle of PowerShell is to make it easy for developers to create command-line tools
and utilities. It provides common argument parsing code, parameter binding code that enables

2

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 3

Chapter 1: Introduction to PowerShell

developers to write code only for the admin functionality they are providing. The PowerShell devel-
opment model separates the processing of objects from formatting and outputting. PowerShell provides
a set of cmdlets for manipulating objects, formatting objects, and outputting objects. This eliminates the
need for developers to write this code. PowerShell leverages the power of .NET, which enables develop-
ers to take advantage of the vast library of this framework. It provides common functionality for logging,
error handling, and debugging and tracing capabilities.

A Quick Tour of Windows PowerShell
This section presents a quick tour of Windows PowerShell. We’ll start with a brief look at installing the
program, and then move right into a discussion of cmdlets.

You start Windows PowerShell either by clicking the Windows PowerShell shortcut link or by typing
PowerShell in the Run dialog box (see Figure 1-1).

Figure 1-1: Click the shortcut link and you’ll get the prompt shown here.

Cmdlets
Windows PowerShell enables access to several types of commands, including functions, filters, scripts,
aliases, cmdlets, and executables (applications). PowerShell’s native command type is the cmdlet. A
cmdlet is a simple command used for interacting with any management entity, including the operating
system. You can think of a cmdlet as equivalent to a built-in command in another shell. The traditional
shell generally processes commands as separate executables, but a cmdlet is an instance of a .NET class,
and runs within PowerShell’s process.

3

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 4

Chapter 1: Introduction to PowerShell

Windows PowerShell provides a rich set of cmdlets, including several that enhance the discoverability of
the shell’s features. We begin our tour of Windows PowerShell by learning about a few cmdlets that will
help you get started in this environment. The first cmdlet you need to know about is get-help:

PS C:\> get-help
TOPIC

Get-Help

SHORT DESCRIPTION
Displays help about PowerShell cmdlets and concepts.

LONG DESCRIPTION

SYNTAX
get-help {<CmdletName> | <TopicName>}
help {<CmdletName> | <TopicName>}
<CmdletName> -?

"Get-help" and "-?" display help on one page.
"Help" displays help on multiple pages.

Examples:
get-help get-process : Displays help about the get-process cmdlet.
get-help about-signing : Displays help about the signing concept.
help where-object : Displays help about the where-object cmdlet.
help about_foreach : Displays help about foreach loops in PowerShell.
match-string -? : Displays help about the match-string cmdlet.

You can use wildcard characters in the help commands (not with -?).
If multiple help topics match, PowerShell displays a list of matching
topics. If only one help topic matches, PowerShell displays the topic.

Examples:
get-help * : Displays all help topics.
get-help get-* : Displays topics that begin with get-.
help *object* : Displays topics with "object" in the name.
get-help about* : Displays all conceptual topics.

For information about wildcards, type:
get-help about_wildcard

REMARKS

4

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 5

Chapter 1: Introduction to PowerShell

To learn about PowerShell, read the following help topics:
get-command : Displays a list of cmdlets.
about_object : Explains the use of objects in PowerShell.
get-member : Displays the properties of an object.

Conceptual help files are named "about_<topic>", such as:
about_regular_expression.

The help commands also display the aliases on the system.
For information about aliases, type:

get-help about_alias

PS C:\>

As you can see, get-help provides information about how to get help on PowerShell cmdlets and con-
cepts. This is all well and good, but you also need to be able to determine what commands are available
for use. The get-command cmdlet helps you with that:

PS C:\> get-command

CommandType Name Definition
----------- ---- ----------
Cmdlet Add-Content Add-Content [-P
Cmdlet Add-History Add-History [[-
Cmdlet Add-Member Add-Member [-Me
Cmdlet Add-PSSnapin Add-PSSnapin [-
Cmdlet Clear-Content Clear-Content [
Cmdlet Clear-Item Clear-Item [-Pa
Cmdlet Clear-ItemProperty Clear-ItemPrope
Cmdlet Clear-Variable Clear-Variable
Cmdlet Compare-Object Compare-Object
Cmdlet ConvertFrom-SecureString ConvertFrom-Sec
Cmdlet Convert-Path Convert-Path [-
Cmdlet ConvertTo-Html ConvertTo-Html
Cmdlet ConvertTo-SecureString ConvertTo-Secur
Cmdlet Copy-Item Copy-Item [-Pat

...

As shown in the preceding output, get-command returns all the available commands. You can also find
cmdlets with a specific verb or noun:

PS C:\> get-command -verb get

CommandType Name Definition
----------- ---- ----------
Cmdlet Get-Acl Get-Acl [[-Path]
Cmdlet Get-Alias Get-Alias [[-Nam
Cmdlet Get-AuthenticodeSignature Get-Authenticode
Cmdlet Get-ChildItem Get-ChildItem [[
Cmdlet Get-Command Get-Command [[-A

5

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 6

Chapter 1: Introduction to PowerShell

Cmdlet Get-Content Get-Content [-Pa
Cmdlet Get-Credential Get-Credential [
Cmdlet Get-Culture Get-Culture [-Ve
Cmdlet Get-Date Get-Date [[-Date
Cmdlet Get-EventLog Get-EventLog [-L
Cmdlet Get-ExecutionPolicy Get-ExecutionPol
Cmdlet Get-Help Get-Help [[-Name
Cmdlet Get-History Get-History [[-I
Cmdlet Get-Host Get-Host [-Verbo
Cmdlet Get-Item Get-Item [-Path]
Cmdlet Get-ItemProperty Get-ItemProperty
Cmdlet Get-Location Get-Location [-P
Cmdlet Get-Member Get-Member [[-Na
Cmdlet Get-PfxCertificate Get-PfxCertifica
Cmdlet Get-Process Get-Process [[-N
Cmdlet Get-PSDrive Get-PSDrive [[-N
Cmdlet Get-PSProvider Get-PSProvider [
Cmdlet Get-PSSnapin Get-PSSnapin [[-
Cmdlet Get-Runspace Get-Runspace [[-
Cmdlet Get-Service Get-Service [[-N
Cmdlet Get-TraceSource Get-TraceSource
Cmdlet Get-UICulture Get-UICulture [-
Cmdlet Get-Unique Get-Unique [-Inp
Cmdlet Get-Variable Get-Variable [[-
Cmdlet Get-WmiObject Get-WmiObject [-

When commands are executed, their output is returned to the shell in the form of .NET objects. (In the
case of native commands, the text output of the command is converted to .NET string objects before
being returned.) These objects can be directly queried and manipulated by using the object’s properties
and methods. Fortunately, you don’t have to know the properties and methods of each object in order to
manipulate it. If you’re unfamiliar with an object’s type, you can use the get-member cmdlet to examine
its members:

PS C:\> "Hello" | get-member

TypeName: System.String

Name MemberType Definition
---- ---------- ----------
Clone Method System.Object Clone()
CompareTo Method System.Int32 CompareTo(Object value),...
Contains Method System.Boolean Contains(String value)
CopyTo Method System.Void CopyTo(Int32 sourceIndex,...
EndsWith Method System.Boolean EndsWith(String value)...
Equals Method System.Boolean Equals(Object obj), Sy...
GetEnumerator Method System.CharEnumerator GetEnumerator()
GetHashCode Method System.Int32 GetHashCode()
GetType Method System.Type GetType()
GetTypeCode Method System.TypeCode GetTypeCode()
get_Chars Method System.Char get_Chars(Int32 index)
get_Length Method System.Int32 get_Length()
IndexOf Method System.Int32 IndexOf(Char value, Int3...

6

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 7

Chapter 1: Introduction to PowerShell

IndexOfAny Method System.Int32 IndexOfAny(Char[] anyOf,...
Insert Method System.String Insert(Int32 startIndex...
IsNormalized Method System.Boolean IsNormalized(), System...
LastIndexOf Method System.Int32 LastIndexOf(Char value, ...
LastIndexOfAny Method System.Int32 LastIndexOfAny(Char[] an...
Normalize Method System.String Normalize(), System.Str...
PadLeft Method System.String PadLeft(Int32 totalWidt...
PadRight Method System.String PadRight(Int32 totalWid...
Remove Method System.String Remove(Int32 startIndex...
Replace Method System.String Replace(Char oldChar, C...
Split Method System.String[] Split(Params Char[] s...
StartsWith Method System.Boolean StartsWith(String valu...
Substring Method System.String Substring(Int32 startIn...
ToCharArray Method System.Char[] ToCharArray(), System.C...
ToLower Method System.String ToLower(), System.Strin...
ToLowerInvariant Method System.String ToLowerInvariant()
ToString Method System.String ToString(), System.Stri...
ToUpper Method System.String ToUpper(), System.Strin...
ToUpperInvariant Method System.String ToUpperInvariant()
Trim Method System.String Trim(Params Char[] trim...
TrimEnd Method System.String TrimEnd(Params Char[] t...
TrimStart Method System.String TrimStart(Params Char[]...
Chars ParameterizedProperty System.Char Chars(Int32 index) {get;}
Length Property System.Int32 Length {get;}

Windows PowerShell also enables you to execute existing native operating system commands and scripts.
The following example executes the ipconfig.exe command to find out about network settings:

PS C:\> ipconfig
Windows IP Configuration
Wireless LAN adapter Wireless Network Connection:

Connection-specific DNS Suffix . : ARULHOMELAN
Link-local IPv6 Address : fe80::c4e0:69b3:5d35:9b4b%9
IPv4 Address. : 192.168.1.13
Subnet Mask : 255.255.255.0
Default Gateway : 192.168.1.1

In a traditional shell, when you want to get the IP address output by the IPConfig.exe utility, you
have to perform text parsing. For example, you might do something like get the ninth line of text
from the output and then get the characters starting from the thirty-ninth character until the end of
the line to get the IP address. PowerShell enables you to perform this style of traditional text processing,
as shown here:

PS C:\Users\arulk> $a = ipconfig
PS C:\Users\arulk> $a[8]

IPv4 Address. : 192.168.1.13
PS C:\Users\arulk> $a[10].Substring(39)
192.168.1.13

However, this kind of text processing is very brittle and error prone. If the output of IPconfig.exe
changes, then the preceding script breaks. For example, because PowerShell converts to text output

7

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 8

Chapter 1: Introduction to PowerShell

by exes and scripts as String objects, it is possible to achieve better text processing. In the preceding
example, we are looking for the line that contains IP in the text:

PS C:\> $match = @($a | select-string "IP")
PS C:\> $ipstring = $match[0].line
PS C:\> $ipstring

IPv4 Address. : 192.168.1.13
PS C:\> $index = $ipstring.indexof(": ")
PS C:\> $ipstring.Substring($index+2)
PS C:\> $ipaddress = [net.ipaddress]$ipstring.Substring($index+2)
PS C:\> $ipaddress

In the preceding script, the first line searches for the string IP in the result variable $a. @(. . .) and converts
the result of execution into an array. The reason we do this is because we will get multiple lines that
match the IP in computers that have multiple network adapters. We are going to find out the ipaddress
in the first adapter. The result returned by select-string is a MatchInfo object. This object contains
a member Line that specifies the actual matching line. (I know this because I used get-member to find
out.) This string contains the IP address after the characters ": ". Because the Line property is a String
object, you use the String object’s IndexOf method (again, I used get-member) to determine the location
where the IP address starts. You then use Substring with an index of + 2 (for ": " characters) to get the
IP address string. Next, you convert the IP address string into the .NET IPAddress object, which provides
more type safety. As you can see, Windows PowerShell provides great functionality for doing traditional
text processing.

Next, let’s look at the COM support in PowerShell:

PS C:\> $ie = new-object -com internetexplorer.application
PS C:\> $ie.Navigate2("http://blogs.msdn.com/powershell")
PS C:\> $ie.visible = $true
PS C:\> $ie.Quit()

You can create COM objects using the new-object cmdlet, with the -com parameter specifying the pro-
grammatic ID of the COM class. In the preceding example, we create an Internet Explorer object and
navigate to the blog of the Windows PowerShell team. As before, you can use get-member to find out all
the properties and methods a COM object supports. Do you see a pattern here?

In addition to COM, PowerShell also has great support for WMI.:

PS C:\Users\arulk> $a = get-wmiobject win32_bios
PS C:\Users\arulk> $a

SMBIOSBIOSVersion : Version 1.50
Manufacturer : TOSHIBA
Name : v1.50V
SerialNumber : 76047600H
Version : TOSHIB - 970814

Using get-wmiobject, you can create any WMI object. The preceding example creates an instance of a
Win32_Bios object.

Now that you’ve seen some of PowerShell’s capabilities firsthand, let’s take a look at what goes on under
the hood while you’re providing this functionality to the shell’s user.

8

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 9

Chapter 1: Introduction to PowerShell

High-Level Architecture of Windows
PowerShell

PowerShell has a modular architecture consisting of a central execution engine, a set of extensible cmdlets
and providers, and a customizable user interface. PowerShell ships with numerous default implemen-
tations of the cmdlets, providers, and the user interface, and several third-party implementations are
provided by other groups at Microsoft and by external companies.

The following sections provide details about each of the architectural elements illustrated in Figure 1-2.

Console.exe

Application code

Engine

Provider Infrastructure

Cmdlet Provider Interface

Cmdlet Interface

Get-Process

Application Cmdlets

Host Interface

Runspace API

Pipeline

Get-Item

Application Providers

File System Provider
Registry Provider

XML Provider

PowerShell Snap-ins
PowerShell Snap-ins

Figure 1-2: The high-level architecture of Windows PowerShell

Host Application
The Windows PowerShell engine is designed to be hostable in different application environments. In
order to make use of PowerShell functionality, it needs to be hosted in an application that implements
the Windows PowerShell host interface. The host interface is a set of interfaces that provides functionality
enabling the engine to interact with the user. This includes but is not limited to the following:

❑ Getting input from users

❑ Reporting progress information

❑ Output and error reporting

The hosting application can be a console application, a windows application, or a Web application.
Windows PowerShell includes a default hosting application called PowerShell.exe, which is console
based. If you’re like most developers, you’ll rarely need to write your own host implementation. Instead,

9

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 10

Chapter 1: Introduction to PowerShell

you’ll make use of PowerShell’s host interface to interact with the engine. You only need to write a
hosting application when you have application requirements for an interface that is richer than the inter-
face provided by the default hosting application. Writing a hosting application involves implementing
Windows PowerShell host interfaces and using the Windows PowerShell Runspace and Pipeline APIs
to invoke commands. Together, these two interfaces enable communication between the application
and the Windows PowerShell engine. You’ll learn the details about writing a hosting application in
Chapter 7.

Windows PowerShell Engine
The Windows PowerShell engine contains the core execution functionality and provides the execution
environment for cmdlets, providers, functions, filters, scripts, and external executables. The engine
exposes the functionality through the Runspace interface, which is used by the hosting application to
interact with the engine. At a high level, the engine consists of a runspace, which is like an instance of
the engine, and one or more pipelines, which are instances of command lines. These pipeline components
interact with the cmdlets through the cmdlet interface. All cmdlets need to implement this interface to
participate in the pipeline. Similarly, the pipeline interacts with the providers through a well-defined set
of provider interfaces. We will delve into more details about the engine as we progress in the book.

Windows PowerShell Snap-ins
Windows PowerShell provides an extensible architecture for adding functionality to the shell by means
of snap-ins. A snap-in is a .NET assembly or set of assemblies that contains cmdlets, providers, type
extensions, and format metadata. All the commands and providers that ship as part of the Windows
PowerShell product are implemented as a set of five snap-ins. You can view the list of snap-ins using the
get-pssnapin cmdlet:

PS C:\> get-pssnapin

Name : Microsoft.PowerShell.Core
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains Windows PowerShell manage-
ment cmdlets used to manage components of Windows PowerShell.

Name : Microsoft.PowerShell.Host
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets used by the Win-
dows PowerShell host.

Name : Microsoft.PowerShell.Management
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains management cmdlets used to man-
age Windows components.

Name : Microsoft.PowerShell.Security
PSVersion : 1.0
Description : This Windows PowerShell snap-in contains cmdlets to manage Windows Pow-
erShell security.

Name : Microsoft.PowerShell.Utility

10

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 11

Chapter 1: Introduction to PowerShell

PSVersion : 1.0
Description : This Windows PowerShell snap-in contains utility Cmdlets used to manip-
ulate data.

Summary
This chapter introduced you to some basic cmdlets to help with discoverability. It also described the
high-level architecture of PowerShell. From here, we’ll move on to the first step beyond the cmdlet level:
learning how to develop a custom snap-in package. The techniques in the following chapter lay the
foundation for creating your own cmdlets and providers. You’ll also learn about PowerShell’s model for
distributing and deploying the code you write.

11

Kumaravel c01.tex V2 - 01/07/2008 11:14am Page 12

