74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 1 ™

Part I: Programming Access
Applications

Chapter 1: Overview of Programming for Access
Chapter 2: Extending Applications Using the Windows API
Chapter 3: Programming Class Modules

Chapter 4: Debugging Error Handling and Coding Practices

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 2 $

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 3 $

Overview of Programming
for Access

In this chapter, you take a look at the different mechanisms available for programming for Access
and what it means to program Access applications. You will see that with the ability to use the
Access object model outside of Access, programming for Access is not necessarily the same as pro-
gramming in Access. And, while the possibility is there to develop external applications that con-
sume the Access object model, the primary focus of the book is scenarios that use the Access object
model and Visual Basic for Applications (VBA) from within Access itself.

In this chapter, you:

0 Learn about using managed code and how it can be used to work with Access applications
0 Review object models that are often used with Access

QO Learn about off-the-shelf applications in the context of Access development and what it
means to develop off-the-shelf applications

Writing Code for Access

As a part of the overall Microsoft Office family of products, Access finds itself in an interesting posi-
tion. It provides many tools that Access developers and programmers at all levels use to create robust
database applications for themselves or their users. Access 2007 includes a database engine for stor-
age, forms and reports for presenting data, macro objects for automating simple tasks, and a full-
featured programming model using VBA. Collectively, these components make it possible for you,

as the programmer or developer, to create rich solutions that can be easily deployed to your users.

As fun as it is to write Access applications, Access doesn’t provide everything. For example, it
doesn’t provide an easy way to create e-mail messages with an arbitrary attachment such as
Outlook. It doesn’t provide statistical functions, such as Excel, and it doesn’t provide word

o

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 4 $

Part |: Programming Access Applications

processing functionality, such as Word. It can, however, interact with these applications, as a part of the
overall Office family, using each application’s respective object model to participate in the larger solu-
tion. Chapter 10 provides insight into how Access fits into the larger picture when creating a solution.

In many cases, writing code for Access is different from writing code for other Office applications, such
as Word and Excel. Many Access solutions are designed specifically to work with multiple Office appli-
cations. In our day-to-day work, we use applications that we have written to enable us to send custom
e-mail messages using Outlook or to create a Word document with very specific formatting. In addition,
when you develop a database in Access, often you are developing a full-featured application for use by
multiple users.

The Access Object Model

The code you write for Access forms, reports, and controls targets the Access object model, but to
retrieve data you need to use a data access technology such as Data Access Objects (DAO), or ActiveX
Data Objects (ADO). The requirement for using two object models creates an interesting dichotomy
when you're writing applications for Access, which also sets Access apart from writing code for other
Office applications.

The result of this separation makes it possible to write code for Access applications that can easily be
reused between applications. You might be thinking, “Can’t I write modular code for Excel-based appli-
cations as well?” Of course. But we think you're more likely to do so when writing an Access-based
application. From the pure coding perspective, we are not suggesting that you should always separate
presentation code from data access code (in different files), but rather that it’s possible. However, if

you think about it, we do frequently separate the presentation layer from the data access layer when
we create an application with linked tables.

The DAO Object Model

Data Access Objects, or DAO, has long been used as the native data access technology for Access. Originally
included in the Jet database engine with previous versions of Access, new features appear in DAO for use
with Access 2007. You learn more about these new features, and other features of DAO in Chapter 7.

The ADO Object Model

ActiveX Data Objects, or ADO, is another data access technology available to use with Access. Both tech-
nologies are acceptable and can be used in conjunction with one another, although it’s probably not neces-
sary to do so. DAQ, as the native application programming interface (API) for the Access database engine,
has performance benefits over ADO. That said, ADO is more generic and thus has its own benefits. For
example, ADO provides the ability to create Recordset objects that are not bound to a table or query, but
rather are created at runtime by appending fields. In addition, you can use an ADO recordset as the data
source for a form, combo box, or list box.

Object-Oriented Thinking

Object-oriented programming (OOP) organizes programming tasks into classes. A class is a blueprint of the
thing being modeled. Often, this is something in the real world such as a customer, or an employee. Other

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 5 $

Chapter 1: Overview of Programming for Access

times, it may be something more abstract such as a log file, or a dialog box. Classes are said to be self-
describing because they describe the characteristics of an entity, and its behaviors — that is, what it can do.
The characteristics of a class are known as properties, and the behaviors of a class are known as methods.

A class is different from an object. An object is a unique instance of a class. Over the years, language
changes to Visual Basic, and subsequently VBA, have provided some of the OOP features long used by
C++ programmers to VB and VBA developers.

Making the decision to use classes often represents a different way of thinking from traditional proce-
dural programming. Classes play an important role in some of the concepts discussed throughout the
book. As a result, we discuss programming classes and class design in greater detail in Chapter 3.
Classes form the basis of several other pieces of functionality that follow in this book.

Windows APl Programming

For those tasks that VBA or the Access object model does not provide, you can use the Windows API.
An AP], or application programming interface, is a set of functions grouped together by technology. The
Windows API contains the core set of functions for Windows itself, but there are other APIs as well. For
example, the DAO API consists of the objects, properties, and methods that make up DAO. The APl is
discussed in depth in Chapter 2.

Working with Managed Code

At the beginning of this chapter, we mentioned managed code as an alternative for working with the
Access object model. Managed code refers to code whose memory is managed by the Common
Language Runtime (CLR) of the .NET Framework. This often refers to code written in Visual C#, or
Visual Basic .NET, although this is not a requirement. For example, Visual C++ developers can use
C++/CLI available with Visual Studio 2005 to write managed code.

The focus of this book is writing solutions that utilize Access for its strengths and for building high-quality
applications that are based on Access. Sometimes, this means writing code using other object models such
as Outlook, or Excel, and integrating them as part of an overall solution. Other times, it means writing code
in a different language altogether. Several chapters in this book provide examples using C# to either drive
the Access object model, or as a library that you call from VBA code inside Access. The managed code sam-
ples that are available for download with this book include both C# and VB.NET.

A great amount of material has been written about C# ranging from syntax to constructs to design.
Therefore, we won’t spend much time explaining the language. We don’t expect you to be a C# whiz, but
if you are that’s great! If not, no worries. We explain the code as we go so the managed code solutions pro-
vided are straightforward and understandable. Although the managed code in this book is written using
C#, we have provided the VB.NET equivalents on the corresponding Web site for this book.

Because we use managed code in this book, in addition to VBA, let’s spend some time discussing managed
code in a little more detail.

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 6 $

Part |: Programming Access Applications

What Is Managed Code?

As mentioned, managed code refers to any code that is written where memory is managed by the CLR.
For the purposes of this book, we write managed code in C# — although you could just as well write in
VB.NET. We chose C# because we use it in our daily work in testing Access and find it to be a nice lan-
guage for many programming tasks.

The portion of the CLR that manages memory is known as the garbage collector. The garbage collector is
responsible for detecting when objects are no longer needed, and for disposing of them appropriately. If
you have written code in other languages such as C or C++, you may quickly recognize this as a power-
ful feature, although many C and C++ developers may prefer to manage memory themselves. If you fall
into this camp, the garbage collector in the CLR provides features for tighter control when objects are
cleaned up. Although VBA does not have built-in garbage collection, you are, in effect, managing your
own memory in VBA when you set an object to Nothing such as:

Set objMyObject = Nothing

The opposite of managed code of course is unmanaged code. Unmanaged code is code whose memory is
not managed by a runtime such as the .NET Runtime. This includes code written in C, C++, Visual Basic,
or even VBA.

For more information about managed code, please refer to Appendix C of the Access 2007 VBA
Programmer’s Reference, ISBN 978-047004703.

Versions of Visual Studio

Managed code and the NET Runtime were first available with Visual Studio 2002, which included
version 1.0 of the .NET Framework. Version 1.1 of the .NET Framework was released with Visual
Studio 1.1. The most recent release of Visual Studio, Visual Studio 2005 includes version 2.0 of the .NET
Framework. For users running Windows XP or Windows 2003 Server, you can download either version
of the NET Framework from the Microsoft Web site. If you are running Windows Vista, version 3.0 of
the .NET Framework is now included with the operating system and offers new libraries that further
enhance managed code development.

You can even use one of the Visual Studio Express Editions to write managed code using either VB.NET
or C#. However, be cautious — the Express Editions of the languages do not include the tools required
to create a type library for use with Access and so you have to use a command-line tool that is included
with Express Edition. We talk more about this tool in the next section.

Writing Managed Code Libraries to Use with Access

In addition to features such as garbage collection, the .NET Framework provides many libraries that you can
use in managed code. Collectively, these libraries are known as the Base Class Library (BCL), and include
functionality that is typically found in the Windows API. Because these libraries are available to you when
writing managed code, they are nice to use in a type library that you call from VBA code in Access.

Alibrary you create in a managed language such as C# creates a dynamic link library (DLL) file. And,

while you can create references to DLL files from Access and VBA, you cannot reference a managed DLL
directly. In order to set a reference to a DLL from VBA, it must expose the necessary COM interfaces that

o

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 7 $

Chapter 1: Overview of Programming for Access

are used to provide type information about a class. Managed DLL files do not include these interfaces.

Therefore, in order to create a reference to a managed code library, you must first create a type library for
the DLL. You can use Visual Studio to create the type library or a command-line tool called t1bexp.exe.
This tool is available as part of the Visual Studio SDK, which is freely available on the Microsoft Web site.

So, you're probably thinking, why would we include an additional reference in the application when we
can just use the Windows API? Good question. Managed code makes it pretty straight forward to write
complex libraries that would have required a fair amount of API code to implement in VBA. Examples
of this include:

Using Windows common dialog boxes

Working with the Windows Registry
Writing to the Windows event log

U U 0 0O

Retrieving the version number of a file

Writing managed code libraries to use in an Access solution has its benefits — namely, it’s easier to write
and deploy. However, it is not without its drawbacks. Installing a library written in any language requires
an additional file as a part of the installation. However, we feel that the benefits of using managed code
(when necessary) as part of a solution outweighs the drawbacks.

Referencing the Access Object Model from Managed Code

In addition to creating managed code libraries that you can call from VBA, you can write managed code
that drives the Access object model itself. For example, you might write a report manager solution that
bundles the reports in an Access application together to print multiple reports based on a timer. Such an
application could use the Access object model to get a list of reports in the database and to print them.

You can add two types of references to a managed application — .NET and COM. Because Access is a
COM-based application, the reference to the Access object model is a COM reference. If you add a reference
to the Microsoft Access 12.0 object library in Visual Studio, you'll notice that a few additional references are
given to you. These additional references are ADODB, DAO, Microsoft.Office.Core, and VBIDE. These
references are all used somewhere in the Access object model and as a result are included automatically
when you add the Access object model from your managed code.

In Chapter 14, you see how to create a managed application using C# to create a build of an Access
application including features such as version and build numbers and release dates.

Referencing Other Applications

In order to use object models provided by applications such as Outlook or Project, you typically add a
reference. However, adding references creates dependencies in an application that may not be desired.
For instance, what happens if you add a reference to the Outlook 12.0 object library but your users are
using Outlook 2002 (10.0)?

Issues such as these can be avoided using a technique known as late-binding. Late-binding enables you to
write code without providing type information about an object. And while it also enables you to trap for

o

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 8 $

Part |: Programming Access Applications

error conditions at runtime instead of compile time, it tends to lead to code that is slower to execute.
This lag is negligible on today’s fast processors with a decent amount of memory. The opposite of late-
binding is early-binding. Early-binding provides benefits such as compile-time checking and performance
improvements. This sounds pretty nice, but it causes problems if your users do not have the same appli-
cations installed or the same version. For these times, late-binding becomes very useful.

Discovering References

The easiest way to find a reference to use in your Access application is to view the References dialog box
from the Visual Basic Editor, as shown in Figure 1-1.

References - Database1 Tz
Avalable References: o

| Visual Basic For Applications - Cancel |

v Microsoft Access 12.0 Object Library [—

| OLE Automation

0l Microsoft Office 12.0 Access database endne Obiec] Browse...
AccessibiityCpladmin 1.0 Type Library
AccRibbenBulder 4|

Acrobat Access 3.0 Type Library
AcrolEHelper 1.0 Type Library
Active DS Type Library
ActiveMovie control type library
AdjustDates
Adobe Acrobat 7.0 Browser Control Type Library 1.0
Adobe Acrobat 7.0 Type Library
AFormAut 1.0 Tvoe Library

< 1]

Microsoft Office 12,0 Access database engine Object Library

Location: C:\Program Files\Common Files\microsoft shared\OFFICE 1241
Language: Standard

Figure 1-1

You can add references to COM objects that reside in DLL, EXE, or OCX files, or even to other databases
that you create in Access. By adding references to other databases you can create reusable libraries of
your own written in VBA. We discuss using references to databases in more detail in Chapter 3, and the
issue of updating references in Chapter 14.

If you've opened the References dialog box, shown in Figure 1-1, and scrolled through the list, you'll
quickly notice that there are a lot of files listed. Because there are probably more files listed on your
development machine than those of your users, can you imagine the headache of trying to manage
multiple references in an application? With all of these references to choose from, how do you know
what you can or should use?

Adding References to Office Applications

The applications in the Office family of products are designed to work well together. As such, it’s very
common to find Access applications that include references to Office, Outlook, Excel, and the like. You
can add a reference to other Office applications in the References dialog box. Adding a reference uses
early-binding to an external application.

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 9 $

Chapter 1: Overview of Programming for Access

To use late-binding to another application, you must know its programmatic identifier, or ProgID. The
ProglD is a string that identifies an application for use by another application. The following table pro-
vides the ProgID values for Office applications:

Application ProgID

Access Access.Application
Excel Excel. Application
InfoPath InfoPath.Application
OneNote OneNote.Application
Outlook Outlook.Application
PowerPoint PowerPoint. Application
Project Project.Application
Publisher Publisher.Application
Visio Visio.Application
Word Word.Application

Summary

In this chapter, we provided some thoughts about what it means to write an Access-based solution. We
examined how writing applications for Access is quite different from writing VBA code in other Office

applications. Because Access is used to develop applications, sometimes off-the-shelf, it is often viewed
as a development tool when compared to other applications in Office such as Word and Excel.

To support this view of Access as a development tool, we discussed the following:

Q Object models commonly used while writing Access applications
Q Programming tools and techniques such as the Windows API and object-oriented programming
Q Using managed code that targets the Access object model, as well as using managed code as a

library inside of an Access application

You also saw a glimpse into what lies ahead in the rest of this book. Features that are often found in com-
mercial applications such as configuration, deployment, and help also have their place in Access applica-
tions. More important, you can standardize them across many applications. Over the course of the book
we introduce code that you can use to integrate features such as these into your own applications.

Coming up next, you learn how to use the Windows API and why it can be useful in your applications.

o

74029c01.gxd:WroxPro 9/27/07 1:43 PM Page 10 $

