CHAPTER 1

UNIFORM RANDOM NUMBER
GENERATION

This chapter gives an overview of the main techniques and algorithms for generating
uniform random numbers, including those based on linear recurrences, modulo 2
arithmetic, and combinations of these. A range of theoretical and empirical tests
is provided to assess the quality of a uniform random number generator. We refer
to Chapter 3 for a discussion on methods for random variable generation from
arbitrary distributions — such methods are invariably based on uniform randem
number generators.

1.1 RANDOM NUMBERS

At the heart of any Monte Carlo method is a random number generator: a
procedure that produces an infinite stream

Uy, Ug, Us, . .. i Dist

of random variables that are independent and identically distributed (iid) according
to some probability distribution Dist. When this distribution is the uniform dis-
tribution on the interval (0,1) {that is, Dist = U{0, 1)), the generator is said to be
a uniform random number generator. Most computer languages already con-
tain a built-in uniform random number generator. The user is typically requested
only to input an initial number, called the seed, and upon invocation the random
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2 UNIFORM RANDOM NUMBER GENERATION

numniber generator produces a sequence of independent uniform random variables on
the interval (0,1). In MatLag, for example, this is provided by the rand function.
The concept of an infinite iid sequence of random variables is a mathematical
abstraction that may be impossible to implement on a computer. The best one can
hope to achieve in practice is to produce a sequence of *random” numbers with
statistical properties that are indistinguishable from. those of a true sequence of
iid random variables. Although physical generation methods based on universal
hackground radiation or ¢uantum mechanics seem to offer a stable source of such
true randomness, the vast majority of current random number generators are based
on simple algorithms that can be easily implemented on a computer. Following
L’Ecuyer [19], such algorithms can be represented as a tuple (&, f, 1,14, g), where

e & is a finite set of states,
e fis a function from & to 8,

® 4 is a probability distribution on 8,

U iz the output space; for a uniform random number generator U is the
interval (0,1), and we will assume so from now on, unless otherwise specified,

¢ ¢ is a function from & to 4.

A randorn number generator then has the following structure:
Algorithm 1.1 (Generic Random Number Generator)

1. Initialize: Draw the seed Sy from the distribution g on S. Set = 1.

2. Transition: Set §; = f(5;_1).

4. OQutput: Set U; = g(5;).

4. Repeat; Set t =t + 1 and return fo Step 2.

The algorithm produces a sequence I/}, Uy, Uy, . . . of pseudorandom numbers
— we will refer to them simply as random numbers. Starting from a certain
sced, the sequence of states (and hence of random numbers) must repeat itself,
because the state space is finite. The smallest number of steps taken before enter-
ing a previously visited state is called the period length of the random number
generator,

1.1.1 Properties of a Good Random Number Generator

What constitutes a good random nunber generator depends on many factors. It
is always advisable to have a variety of random number generators available, as
different, applications may require different properties of the random generator.
Below are some desirable, or indeed essential, properties of a good uniform random
number generator; see also [39].

1. Pass statistical tests: The ultimate gosl is that the generator should produce
a stream of uniform random numbers that is indistinguishable from a genuine
uniform iid sequence. Although from a theoretical point of view this criterion
is too imprecise and even infeasible {see Remark 1.1.1), from a practical point
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of view this means that the generator should pass a battery of simple statis-
tical tests designed to detect deviations from uniformity and independence.
We discuss such tests in Section 1.5.2.

2. Theoretical support: A good generator should be based on sound mathemat-
ical principles, allowing for a rigorous analysis of essential properties of the
generator. Examples are linear congruential generators and multiple-recursive
generators discussed in Sections 1.2.1 and 1.2.2. '

3. Reproducible: An important property is that the stream of random numbers
is reproducible without having to store the complete stream in memory. This
is essential for testing and variance reduction techniques. Physical generation
methods cannot be repeated unless the entire stream is recorded.

4. Fast and efficient: The generator should produce random numbers in a fast
and efficient manner, and require little storage in computer memory. Many
Monte Carlo techniques for optimization and estimation require billions or
more random nmumbers. Current physical generation methods are ne match
for simple algorithmic generators in terms of speed.

5. Large period: The period of a random nmumber generator should be extremely
large -— on the order of 10%® — in order to avoid problems with duplication
and dependence. Evidence exists [36] that in order to produce N random
numbers, the period length needs to be at least 102, Most early algorithmic
random number generators were fundamentally inadequate in this respect.

6. Multiple streams: In many applications it is necessary to run multiple in-
dependent random streams in parallel. A good random number generator
should bhave easy provisions for multiple independent streams.

7. Cheap and easy: A good random number generator should be cheap and not
require expensive external equipment. In addition, it should be easy to install,
implement, and run. In general such a random number generator is also more
easily portable over different computer platforms and architectures.

8. Not produce @ or 1@ A desirable property of a random number generator is
that both 0 and 1 are excluded from the sequence of random numbers. This
is to avoid division by 0 or other numerical complications.

Remark 1.1.1 {Computational Complexity) From a theoretical point of
view, a finite-state random number generator can always be distinguished from
a true iid sequence, after observing the sequence longer than its period. Howr-
ever, from a practical point of view this may not be feasible within a “reasonable”
amount of time. This idea can be formalized through the notion of computational
complerity; see, for example, {33].

1.1.2 Choosing a Good Random Number Generator

As Pierre L'Ecuyer puts it [12], choosing a good random generator is like choosing
a new car; for some people or applications speed is preferred, while for others
robustness and reliability are more important. For Monte Carlo simulation the
distributional properties of random generators are paramount, whereas in coding
and cryptography unpredictability is crucial.
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Nevertheless, as with cars, there are many poorly designed and outdated mod-
els available that should be avoided. Indeed several of the standard generators
that come with popular programming languages and computing packages can be
appallingly poor [13].

Two classes of generators that have overall good performance are;

1. Combined multiple recursive generators, some of which have excellent statis-
tical properties, are simple, have large period, support multiple streams, and
are relatively fast. A popular choice is L'Ecuyer’s MRG32k3a (see Section 1.3),
which has been implemented as one of the core generators in MarLas (from
version 7}, V8L, SAS, and the simulation packages SS.J, Arena, and Automod.

2. Twisted general feedback shift register generators, some of which have very
good equidistributional properties, are among the fastest generators available
(due to their essentially binary implementation), and can have extremely long
periods. A popular choice is Matsumoto and Nishimura's Mersenne twister
MT19937ar (see Section 1.2.4}, which is currently the default generator in
MaTuag.

In general, a good uniform number generator has owerall good performance, in
terms of the criteria mentioned above, but is not usually the top performer over
all these criteria. In choosing an appropriate generator it pays to remember the
fallowing.

e Faster generators are not necessarily better (indeed, often the contrary is
true).

o A small period is in general bad, hut a larger period is not necessarily better.

¢ (Good equidistribution is a necessary requirement for a good generator but
not a sufficlent requirement.

1.2 GENERATORS BASED ON LINEAR RECURRENCES

The most common methods for generating pscudorandom sequences use simple
linear recurrence relations.

1.2.1 Linear Congruential Generators

A linear congruential generator (LCG) is a random number generator of the
form of Algorithm .1, with state 5; = X; = {0, ..., m—1} for some strictly positive
integer m called the modulus, and state transitions

Xi=(eXeqa+chmodm, £=1,2,..., (1.1)

where the multiplier o and the increment ¢ are integers. Applying the modulo-m
operator in {1.1) means that ¢X,_; +¢ is divided by m, and the remainder is taken
as the value for X;. Note that the multiplier and increment may be chosen in the
set {0,...,m—1}. When ¢ = 0, the generator is sometimes called a multiplicative
congruential generator. Most existing implementations of LCGs are of this form
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--- in general the increment does not have a large impact on the quality of an LCG.
The output function for an LCG is simply

X
Uf,:_t‘
m

B EXAMPLE 1.1 (Minimal Standard LCG)

An often-cited LCG is that of Lewis, Goodman, and Miller [24], who proposed
the choice @ = 7° = 16807, ¢ = 0, and m = 23! — 1 = 2147483647. This LCG
passes many of the standard statistical tests and has heen successfully used in
many applications. For this reason it is sometimes viewed as the minimal stendard
LCG, against which other generators should be judged.

Although the generator has good properties, its period (23! — 2} and statistical
properties no longer meet the requirements of modern Monte Carlo applications:
see, for example, [20)].

A comprehensive list of classical LCGs and their properties can be found on Karl
Entacher's website:

http://random.mat.sbg.ac.at/results/karl/server/

The following recommendations for LCGs are reported in [20]:

o All LCGs with modulus 2P for some integer p are badly behaved and should
not be used.

s All LCGs with modutus up to 251 a2 x 10® fail several tests and should be
avoided.

1.2.2 Multiple-Recursive Generators

A multiple-recursive generator (MRG) of order % is a random number gen-
erator of the form of Algorithm 1.1, with state S; = X; = {(X;_py1,..., X} €
{0,...,m — 1}* for some modulus m and state transitions defined by

Xi={mXe 14+ +arXep)modm, t=kk+1,..., (1.2)

where the multipliers {a;,¢ = 1,...,%} lie in the set {0,...,m — 1}. The output
function is often taken as

X
Ug=—t.
e

The maximum period length for this generator is m* — 1, which is obtained if (a)

m is a prime number and (b) the polynomial p(z) = 2% — Zi:]l a; 2%t is primitive

using modulo m arithmetic. Methods for testing primitivity can be found in [8,
Pages 30 and 439]. To yield fast algorithms, all but a few of the {a;} should be 0.

MRGs with very large periods can be implemented efficiently by combining sev-
eral smaller-period MRGs (see Section 1.3).
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1.2.3 Matrix Congruential Generators

An MRG can be interpreted and implemented as a matrix multiplicative con-
gruential generator, which is a randomn number generator of the form of Algo-
rithm 1.1, with state S; = X, € {0,...,m — 1}* for some modulus m, and state
transitions

Xe=({AX; ) mod m, £=12,..., {1.3)

where A is an invertible & x & matrix and X; i1s a k& x 1 vector. The output function

is often taken as
10} .__.K‘ 1.4
t ] ( )

yielding a vector of uniform numbers in (0,1). Hence, here the output space U for
the algorithm is (@, 1)*¥. For fast random nuwmber generation, the matrix A should
he sparse.

To see that the multiple-recursive generator is a special case, take

0 1 e X
: : o P £9%
A=1: - oo and X, = . : (1.5)
G ] o1 :
arp Ggp—1 - 0 Xipr—1

Obviously, the matrix multiplicative congruential generator is the %-dimensional
generalization of the multiplicative congruential generator. A similar generaliza-
tion of the multiplicative recursive generator — replacing the multipliers {q,;} with
matrices, and the scalars {X,} with vectors in {1.2) —, yields the class of matrix
multiplicative recursive generators; see, for example, {34].

1.2.4 Modulo 2 Linear Generators

Good random generators must have very large state spaces. For an LCG this
means that the modulus rn must be a large integer. However, for multiple recursive
and matrix generators it is not necessary to take a large modulus, as the state
space cau be as large as m®, Because binary operations are in general faster than
floating point operations (which are in turn faster than integer operations), it makes
senge to congider random number generators that are based on linear recurrences
maodulo 2. A general framework for such random number generators is given in
[18], where the state is a k-bit vector X, = (X 1,..., Xex) | that is mapped via a
linear transformation to a w-bit cutput vector Y, = (Y3 1,...,11‘,,,)—'—, from which
the random number Uy € (0,1) is obtained by bitwise decimaiion as follows. More
precisely, the procedure is as follows.

Algorithm 1.2 (Generic Linear Recurrence Meodulo 2 Generator)

1. Initialize: Draw the seed Xq from the distribution p on the state space & =
{0,1}*. Sett=1.

2. Transition: Set X; = 4X;_1.
g, Output: Set Y, = BX; and return

u?

Uy=) Yie2™*.
=1

4. Repeat: Sctt =1+ 1 and return to Step 2.
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Here, A and B are kxk and wxk binary matrices, respectively, and all operations
are performed modulo 2. In algebraic language, the operations are performed over
the finite field ¥y, where addition corresponds to the bitwise XOR operation (in
particular, 1 + 1 = 0). The integer w can be thought of as the word length of the
computer (that is, w = 32 or 64). Usually {(but there are exceptions, see [18]) k is
taken much larger than .

B EXAMPLE 1.2 (Linear Feedback Shift Register (Generator)

The Tausworthe or linear feedback shift register (LFSR) generator is an MRG
of the form (1.2) with m = 2, but with cutput function

w
—f
Up=> Xeape127",
E=1

for some w < k and s = 1 {often one takes s = w). Thus, a binary sequence
Xo,X1,... is generated according to the recurrence {1.2), and the ¢{-th “word”
(Xiar. .oy Xesgw_1) . £=0,1,... is interpreted as the binary representation of the
t-th random number.

This generator can be put in the framework of Algorithm 1.2. Namely, the
state at iteration ¢ is given by the vector X; = {Xy,,..., Xtsug_1) ', and the state
is updated by advancing the recursion (1.2) over s time steps. As a result, the
transition matrix A in Algorithm 1.2 is equal to the s-th power of the “l-step”
transition matrix given in {1.5). The output vector Y, is obtained by simply taking
the first w bits of X;; hence B = [I, Oy (t—w)], Where I, is the identity matrix
of dimension w and O,k —w) the w X (k — w) matrix of zeros.

For fast generation most of the multipliers {a;} are 0; in many cases there is
often only one other non-zero multiplier a, apart from g, in which case

Xi =Xy @0 Xy g, (1.6)

where @ signifies addition modulo 2. The same recurrence holds for the states
{vectors of bits}; that is,
X=X Xk,

where addition is defined componentwise.

The LFSR algorithm derives its name from the fact that it can be implemented
very efliciently on a computer via feedback shift registers — binary arrays that
allow fast shifting of bits; see, for example, [18, Algorithm L] and [7, Page 40].

Generalizations of the LFSR generator that all fit the framework of Algorithm 1.2
include the generalized feedback shift register generators [25] and the twisted
versions thereof [30], the most popular of which are the Mersenne twisters {31].
A particular instance of the Mersenne twister, MT19937, has becorne widespread,
and has been implemented in software packages such as SP3S and MaTLag. It hasa
huge period length of 2197 _ 1 is very fast, has good equidistributional properties,
and passes most statistical tests. The latest version of the code may be found at

http://www.math.sci.hiroshima-u.ac.jp/ m-mat/MT/emt.himl

Two drawbacks ave that the initialization procedure and indeed the implementa-
tion itself is not straightforward. Another potential problem is that the algorithm
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recovers too slowly from the states near zero. More precisely, after a state with
very few 1s is hit, it may take a long time {several hundred thousand steps) before
getting back to some state with a more equal division between 0s and 1s. Some
other weakness are discussed in [20, Page 23].

The development of good and fast module 2 generators is important, both from
a practical and theoretical point of view, and is still an active area of research,
not in the least because of the close connection to coding and cryptography. Some
recent developments include the WELL {well-equidistributed long-period linear}
generators by Panneton et al. [35], which correct some weaknesses in MT19937, and
the SIMD-oriented fast Mersenne twister [38], which is significantly faster than
the standard Mersenne twister, has better equidistribution properties, and recovers
faster from states with many Os.

1.3 COMEINED GENERATORS

A significant leap forward in the development of random mumber generators was
made with the introduction of combined generators. Here the output of several
generators, which individually may be of poor guality, is combined, for example by
shuffling, adding, and/or selecting, to make a superior quality generator.

B EXAMPLE 1.3 (Wichman—Hill)

One of the earliest combined generators is the Wichman-Hill generator [41], which
combines three LOGs:

X = (171 Xy 1) mod iy (1 = 30269) .
Y; = (172 Yi—1 ) mod my {mg = 30307) ,
Zy = (170 Z,—1 ) mod mg {ms = 30323) .

These random integers are then combined into a single random number

Utzﬁ-i-ﬁ-i-& mod 1.
bias | e msg

The period of the sequence of triples (X, Y;, Z;) is shown [42] to be (my — 1){mg —
1){(m3 —1)/4 == 6.95 x 10*?, which is much larger than the individual periods. Zeisel
[43] shows that the gencrator is in fact equivalent (produces the same output) as
a multiplicative congruential generator with modulus m = 27817185604309 and
multiplier @ = 16555425264690,

The Wichman--Hill algorithm performs quite well in simple statistical tests, but
since its period is not sufficiently large, it fails various of the more sophisticated
tests, and is no longer suitable for high-performance Monte Carlo applications.

One class of combined generators that has been extensively studied is that of
the combined multiple-recursive generators, where a small number of MRGs
are combined. This class of generators can be analyzed theoretically in the same
way as single MRG: under appropriate initialization the output stream of random
numbers of a combined MRG is exactly the same as that of some larger-period
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MRG [23]. Hence, to assess the quality of the generator one can employ the same
well-understood thecretical analysis of MRGs. As a result, the multipliers and
moduli in the combined MRG can be searched and chosen in a systematic and
principled manuer, leading to random number generators with excellent statistical
properties, An important added bonus is that such algorithms lead to easy multi-
stream generators [21].

In [12] L'Ecuyer conducts an extensive numerical search and detailed theoretical
analysis to find good combined MRGs. One of the combined MRGs that stood out
was MRG32k3a, which employs two MRGs of order 3,

X; = (1403580 X;_p — 810728 X,_3) mod m; () = 232 — 209 = 4294967087) ,
Y = (527612 Y, — 1370589 Y;—3) mod ma  (ms = 2%% — 22853 = 4294944443) ,

and whose output is

X —Ye+

if X, <Y,
m1+1 1 LR S
“=1x v
LA ifX;>Y:.
my + 1

The period length is approximately 3 x 10%7, The generator MRG32k3a passes all
statistical tests in today’s most comprehensive test suit TestI/@1 [20] (see also Sec-
tion 1.5} and has been implemented in many software packages, including MaTLAB,
Mathematica, Intel’s MKL Library, SAS, VSL, Arena, and Automod. It is also the
core generator in L'Ecuyer’s 88J simulation package, and is easily extendable to
generate multiple random streams. An implementation in MATLAB is given bhelow.

#MRG32k3a.m

m1=2"32-209; m2=2"32-22853;
ax2p=1403580; ax3n=810728;
aylp=527612; ay3n=1370589;

X=[12345 12345 12345]; % Initial X
Y={12345 12345 12345]; % Initial Y

N=100; % Compute the sequence for N steps
=zeros(1,N};
for t=1:N
Xt=mod (ax2p*X(2)-ax3n+X(3) ,m1);
Yt=mod (ay1p*Y(1)-ay3n+Y(3),m2);
if Xt <= Yt
Ut)=(Xt - Yt + ml)/(ml+1};
else
Ut)=(Xt - Yt)/(mi+l);
end
X(2:3)=X(1:2); X{1)=Xt; Y(2:3)=Y{(1:2); Y{1)=Yt;
end




10

UNIFORM RANDOM NUMBER GENERATION

Different fypes of generators can also be combined. For example, Marsaglia's
KI15899 (keep it simple stupid) generator [26] combines two shift register generators
with an LCG. This generator performs very well in TestU01 {20}, The following
MATLAE code implements the KISS99 generator.

for

end

% KISS99.m

% Seeds: Correct variable types crucial!

A=uint32{12345); B=uint32(65435); ¥=12345; Z=uint32(34221);
N=100; % Compute the sequence for N steps

U=zeros(1,N);

t=1:N

% Two Multiply with Carry Generators
A=36969*bitand (4,uint32(65535) )+bitshift (A,-16);
B=18000*bitand{B,uint32(65535))+bitshift (B,-16);
% MWC: Low and High 16 bits are A and B
X=bitshift(A,16)+B;

% CONG: Linear Congruential Generator

Y = mod{69069+Y+1234567 ,4294967296) ;

% SHR3: 3-Shift Register Generator
Z=bitxor(Z,bitshift(Z,17));
Z=bitxor(Z,bitshift(Z,-13));
Z=bitxor(Z,bitshift{(Z,5)};

% Combine them to form the KISS99 generator
KISS=mod{doublie{bitxor (X,uint32{Y)))+double(Z)},4294967296) ;
U{t)=KISS5/4284967296; % U[0,1] output

1.4

OTHER GENERATORS

Many variations on linear congruential methods have heen proposed. (f the ones
not discussed in the previous section we mention the following:

Multiply with carry: This is a variation of the LCG where the increment ¢
changes per iteration. Specifically, the recurrence is given by

Xi=(aX;—1+ i) mod m,
where ¢; (the carry) satisfies, for a given lag k,

e =|@Xip+to_1)/m], tzk.

XOR shift: This is a generalization of an LFSR generator, and is a special
case of a matrix MRG [34], where the state at iteration £ is given by a binary
vector X; satisfying the linear recursion

Xe=AXe g, & & AXe s,

where k1,..., k%, are strictly positive integers and Aq,..., A, are either iden-
tity matrices or the products of XCOR shift matrices.
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o Lagged Fibonacci generators: This is a generalization of the LFSR generator
(1.6}, where the XOR operator & is replaced by a general binary operator, for
example, the product.

More details on these generators can be found, for example, in [18, 29). The above
gencrators in general do not pass all statistical tests for randomness in the test
suite TestU#1, but combining them, as for example in the KISS99 generator, may
produce high-quality generators. The multiply with carry and lagged Fibonacei
generators are known to have poor theoretical properties [11, 40].

Congruential generators based on nonlinear recurrences,

Xi=¢(X;1,..., X ) modm,

for some nonlinear function g are currently not in much use in Monte Carlo sim-
ulations, since they tend to be slower, are more difficult to analyze theoretically,
and often fail empirical tests for uniformity. However, nonlinear generators are
important in cryptography, as the output sequence of linear congruential methods
ig easy to predict — in particular, the parameters of a linear congruential method
can be easily estimated from previously generated output; see, for example, {29].

A famous nonlinear method in cryptography is that of Blum, Blum, and Shub
[2), who proposed the quadratic recurrence

X, =X2  modm,

where m = p¢ and p and g are (large) primes that divided by 4 give a remainder of
3 (so-called Blum primes; for example, p = 12676506002232294014967039381519
and ¢ = 1267650600228229401496704318359). Each iteration of the Blurn-Blum-
Shub generator produces only one bit of output, being either the even or odd bit
parity, or the last hit (least significant bit) of X,. It is shown in [2] that the cutput
sequence of such a generator is not predictable in polynomial time. The generator
is not appropriate for Monte Carlo simulation, due to its low speed.

Another example of a nonlinear congruential generator is the inverse congru-
ential generator where the recurrence is of the form

Xi=(aX,_ | +c)modm,

where X~ is the multiplicative inverse of X modulo m (that is, XX~ =1 mod m
if it exists, or 0 otherwise). A survey of nonlinear generators may be found in {4].

1.5 TESTS FOR RANDOM NUMBER GENERATORS

The quality of random number generators can be assessed in two ways. The first
is to investigate the theoretical properties of the random number generator. Such
properties include the period length of the generator and varicus measures of uni-
formity and independence. This type of random number generator testing is called
theoretical, as it does not require the actual output of the generator but only
its algorithmic structure and parameters. Powerful theoretical tests are only fea-
sible if the generators have a sufficiently simple structure, such as those of linear
congruential and multiple-recursive methods and combined versions thereof.

A second type of test involves the application of a battery of statistical tests to
the output of the generator, with the objective to detect deviations from uniformity
and independence. Such tests are said to be empirical.
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1.5.1 Spectral Test

One of the most useful theoretical tests concerns the structural properties of the
generator. Suppose that Uy, U4, ..., is the sequence of numbers produced by a
randorn nuimber generator. It is well known {3, 5, 9, 27] that if the penerator is of
LCG or MRG type, then vectors of successive vatues Uy = (Up,..., Uy )T, Uy =

(Uh,...,Uq)7,..., lie on a d-dimensional lattice; that is, a set L C R? of the form
d
L= {Zz,;bt-, 2Ly 2d € Z},
i=1
for some set of linearly independent basis vectors by,...,b;. In other words,

the elements of L are simply linear combinations of the basis vectors, using only
integer coefficients. The lattice L is said to be generated by the basis matrix
B= (blj"‘abd)'

For an MRG satisfying the recursion (1.2), the basis vectors can be chosen as

[15]
by = {(1,0,...,0, X1 4., X14-1) /0

bk = (0,0,...,1,Xk,k,...,Xk‘d_1)T/m
bit1 = (0,0,...,0,1,...,00T

by = (0,0,...,0,0,...,1)7,

where X; 5, X, 1, ... is the sequence of states produced by the generator when start-
ing with states X; =1, X, =0, ¢t £ 4,1 < k.

For a good generator the set L N (0,1)¢ should cover the d-dimensional unit
hypercube (0,1)¢ in a uniform manner. One way to quantify this is to measure the
distance between hyperplanes in the lattice L. The maximal distance between such
hyperplanes is called the spectral gap, denoted here as g4. A convenient way to
compute the spectral gap is to consider first the dual lattice of L, which is the
lattice generated by the inverse matrix of B. The dual lattice is denoted by L*.
Each vector v in L* defines a family of equidistant hyperplanes in L, at a distance
1/|lv| apart. Hence, the length of the shortest non-zero vector in L* corresponds
tol / d-

For any d-dimensional lattice with v points there is a lower bound g} on the
gpectral gap for dimension . Specifically, for dimensions less than 8 it can be shown
(see, for example, [8, Section 3.3.4]) that ga > g3 = v,/ -m~1/4
take the values

1, (4/3)1/‘2, 21/'3$ 21/2} 23/5’ (64/3)1/6, 43/7’ 9

, where v1,...,7%

An often-used figure of merit for the quality of a random number generator is

the quotient

_ 91 _ 1
Sq= ¢ /2!

94 ggmilin}
or the minimum of K of such values: § = mingg i Sq, where K < 8. High values
of § (close to 1) indicate that the generator has good structural properties.

The following example illustrates the main points; see also [8, Section 3.3.4].
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B EXAMPLE 1.4 (Lattice Structure and Spectral Gap)

Consider the LCG (1.1} with @ = 3, ¢ = 0, and m = 31. For d = 2, the correspond-
ing lattice is generated by the basis matrix

_{1l/m D
B= (a/ m 1) ’
since this LCG is an MRG with k= 1 and X, ; = a/m. The dual lattice, which is
depicted in Figure 1.1, is generated by the basis matrix

-1 _ m 0
().

. b .
b b M
\ M
* * *

-6 —-40 | -20 Q 20 | 40 60
. e .
2 ¢

o, \

Figure 1.1 The dual lattice L*.

The shortest non-zero vector in L* is (—3,1)T; hence, the spectral gap for dimen-
sion 2 is g2 = 1/v/10 = 0.316. Figure 1.2 shows the normalized vector g2 (—3,1)7
to be perpendicular to hyperplanes in L that are a distance go apart. The figure of
merit Sy is here 3'/4(5/31)1/2 = 0.53.

T . T T T
0.8] . ’
061 . ’ 1
e 2 M
0.4 L . -\-\-\-\-H\"'\-\._‘_H - i
o2l » ' :
. . ;
| | [ ! I
0.2 0.4 0.6 0.8

Figure 1.2 The lattice L truncated to the unit square. The length of the arrow
corresponds to the spectral gap.
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In order to select a good random number generator, it i3 important that the
spectral gap 1 computed over a range of dimensions d. Some generators may
display good structure at lower dimensions and bad structure at higher dimensions
(the opposite is also possible). A classical example is IBM’s RANDU LCG, with
a=2% 13 ¢=0,and m = 21, which has reasonable structure for d = 1 and 2,
but bad structure for d = 3; the latter is illustrated in Figure 1.3.
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Figure 1.3 Structural deficiency of RANDU.

Structural properties of combined MRGs can be analyzed in the same way, as
such generators are equivalent (under appropriate initialization conditions) to a
single MRG with large modulus [23].

The computational effort required to compute the spectral gap grows rapidly
with the dimension d and becomes impractical for dimensions over about 60. A
fast implementation for analyzing the lattice structure of LCGs and MRGs is the
LatMRG software package described in [17].

Modulo 2 linear generators do not have a lattice structure in Euclidean space,
but they do in the space of formal power series. Much of the theory and algorithms
developed for lattices in R? carries over to the modulo 2 case [14].

Other theoretical tests of random number generators include discrepancy tests
[32] and serial correlation tests [8, Section 3.3.3]. See also [1].

1.5.2 Empirical Tests

While theoretical tests are important for the climination of bad generators and the
search for potentially good generators [6, 12], the ultimate goal remains to find
uniform random number generators whose output is statistically indistinguishable
{(within reasonable computational time) from a sequence of iid uniform randem

variables. Hence, any candidate generator should pass a wide range of statistical

tests that examine uniformity and independence. The general structure of such
tests is often of the following form.
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Algorithm 1.3 (Two-Stage Empirical Test for Randomness) Suppose that
U = {l/;} represents the output stream of the uniform random generastor. Let
Hy be the hypothesis that the {U.} are #id from a U(0,1) distribution. Let Z be
some deterministic function of U.

1. Generate N independent copies 21, ..., Zn of Z and evaluate a test statistic
T =T(Z,...,Zyn) for testing Hy versus the alternative that Hy is not true,
Suppose that under Hy the test statistic T has distribution or asymptotic {for
large N ) distribution Disty.

2. Generate K independent copies Ty, ..., Ty of T and perform a goodness of fit
test to test the hypothesis that the {T;} are #id from Distg.

Such a test procedure is called a two-stage or second-order statistical test.
The first stage corresponds to an ordinary statistical test, such as a x? goodness of
fit test, and the second stage combines K such tests by means of anather goodness
of fit test, such as the Kolmogorov-Smirnov or Anderson-Darling test; see also
Section 8.7.2. The following example demonstrates the procedure.

B EXAMPLE 1.5 (Binary Rank Test for the drand48 Generator)

The default random number generator in the C library is drand48, which imple-
ments an LCG with a = 25214903917, 72 = 2%, und ¢ = 11. We wish to examine
if the output stream of this generator passes the binary rank test described in Sec-
tion 1.5.2.11. For this test, the sequence Uy, Us,. .. is first transformed to a binary
sequence B\, By, ..., for example, by taking B; = Ly, <1721, and then the {B;} are
arranged in a binary array, say with 32 rows and 32 columns. The first row of the
matrix is By, ..., B3a, the second row is Bgs, ... By, etc. Under Hy the distribution
of the rank (in modulo 2 arithmetic) R of this random matrix is given in (1.9). We
generate NV = 200 copies of R, and divide these into three classes: R < 30, R = 31,
and B = 32. The expected number of ranks in these classes is by (1.9} equal to
Ey =200 x 0.1336357, Bz = 200 x 0.5775762, and Fj3 = 200 x 0.2887881. This is
compared with the observed number of ranks Q1, O, and Oy, via the x? goodness
of fit statistic

3 a2
T=Z;(—(%. (1.7)

Under Hy, the random variable T approximately has a x3 distribution (the mumber
of degrees of freedom is the number of classes, 3, minus 1). This completes the first
stage of the empirical test,

Tn the second stage, K = 20 replications of T' are generated. The test statistics
for the x? test were 2.5556, 11.3314, 146.2747, 24.9729, 1.6850, 50.7449, 2.6507,
12.9015, 40.9470, 8.3449, 11.8191, 9.4470, 91.1219, 37.7246, 18.6256, 1.2965, 1.2267,
0.8346, 23.3909, 14.7596.

Notice that the null hypothesis would not be rejected if it were based only on
the first outcome, 2.5556, as the p-value, Py (T > 2.5556) = 0.279 is quite large
{and therefore the observed outcome is not uncommon under the null hypothesis).
However, other values, such as 50.7449 are very large and lead to very small p-
values (and a rejection of Hy). The second stage combines these findings into a
single number, using a Kolmogorov—Smirnov test, to test whether the distribution

&5 336

EF 341
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of T does indeed follow a x3 distribution. The empirical cdf (of the 20 values
for T) and the cdf of the x2 distribution are depicted in Figure 1.4. The figure
shows a clear disagreement between the two cdfs. The maximal gap between the
cdfs is 0.6846 in this case, leading to a Kolmogorov—Smirnov test statisiic value
of v/20 x 0.6846 == 3.06, which gives a p-value of arcund 3.7272 x 1079, giving
overwhelming evidence that the ocutput sequence of the drand48 generator does
not behave like an iid U(0, 1) sequence.

1.
08 —— Empirical
: -
__06f %
£
o4
0.2]
0 1 1 1 1
0 50 100 150 200
z

Figure 1.4 Kolmogorov—Smirnov test for the binary rank test using the drand4s
generaior.

By comparison, we repeated the same procedure using the default MATLABR gen-
erator. The result of the Kolmogorov-Smirnov test is given in Figure 1.5. In this
case the empirical and theoretical cdfs have a close match, and the p-value is large,
indicating that the default MATLAE generator passes the binary rank test,

= Empirical
2
Xo

Figure 1.5 Kolmogorov—Smirnov test for the binary rank test using the default MATLAB
random number generator (in this case the Mersenne twister),
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Today’s mast complete library for the empirical testing of random nuiaber gen-
erators is the Test{/01 software library by L'Ecuyer and Simard [20]. The library
is comprised of three predefined test suites: Small Crusk, Crush, and Big Crush,
in increasing order of complexity. Testl/01 includes the standard fests by Knuth
{8, Section 3.3.2], and adapted version of the Diehard suite of tests by Marsaglia
[28], the ones implemented by the National Institute of Standards and Technology
(NIST) [37], and various other tests.

We conclude with a selection of empirical tests. Below, Uy, U, ... is the original
test sequence. The null hypothesis Hy is that {U;} ~ya U(0,1). Other random
variables and processes derived from the {U;} are:

o Yo, Y1,...,withY; = [mU;],i =0,1,.. ., for some integer (size) m = 1. Under
Hj the {Y;} are iid with a discrete uniform distribution on {0,1,...,m — 1}.

o Ug,Uy,..., with U; = (Usg,...,Uigpa-1), ¢ = 0,1,... for some dimension
d = 1. Under Hg the {U,} are independent random vectors, each uniformly
distributed on the d-dimensional hypercube (0, 1)%,

e Yo, Y1,...,with Y, = (Yiu,...,Yiara—1), i = 0, 1,... for some dimension
d = 1. Under Hy the {¥;} are independent random vectors, each from the
discrete uniform distribution on the d-dimensional set {0,1,...,m — 1}%

1.5.2.1 Equidistribution (or Frequency) Tests 'This is to test whether the {U;} have
a U(0,1) distribution. Two possible approaches are:

1. Apply a Kolmogorov—8mirnov test to ascertain whether the empirical cdf of
Up,...,Up_1 matches the theoretical cdf of the U(0, 1) distribution; that is,
F#)=2, 07 <€ L

2. Apply a x° test on Yy,..., Y, 4, comparing for each k = 0,...,m — 1 the
observed number of cccurrences in class &k, O = 2?2—01 Ity,=k). with the
expected mumber Ey, = n/m. Under Hy the x? statistic (1.7) asymptotically
has {(as n — oo} a x2,_, distribution.

1.5.22 Serial Tests This is to test whether successive values of the random
number generator are uniformly distributed. More precisely, generate vectors
Yo,--.,Yn_1 for a given dimmension 4 and size m. Count the number of times
that the vector Y satisfies Y = y, for y € {0,...,m — 1}¢, and compare with
the expected count n/m¢® via a x* goodness of fit test. It is usually recommended
that each class should have enough samples, say at least 5 in expectation, so that
n = bm%; however, see [22] for sparse serial tests. Typically, d is small, say 2 or 3.

1.5.23 Nearest Pairs Tests This is to detect spatial clustering (or repulsion) of
the {U,} vectors. Generate points (vectors) Uy,...,U,_; in the d-dimensional
unit hypercube (0,1)%. For each pair of points U; = (Us,..., Uiz}’ and U; =
(Usyooes Ujd)T let Dy; be the distance between them, defined by

1/p
Dy; = | mind Vs = Usal, 1= U = Usel b 7 i 1<p< o0
I maxg_; min{|Us - Uil 1~ [Uix — U} if p=oc,

for some 1 < p < oo, This corresponds to the L” norm on the torus (0,1}¢, wherehy
opposite sides of the unit hypercube are identified.
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For ¢ 2 0, let N, be the number of pairs (%, j) with ¢ < 7 such that D;; < (¢/2)2/9,
where A = n(n — 1)Vy/2 and Vy = [2T'(1 + 1/p)]%/T(1 + d/p) (corresponding to
the volume of the unit d-ball in Z® norm). It can be shown [16] that under Hj
the stochastic process {N;,0 € t € 1} converges in distribution {as n — 20)
to a Poisson process with rate 1, for any fixed choice of ¢;. It follows that if
T1,T3,... are the jump tirues of {N;}, then the spacings 4; =T} - T;_1,i=1,2...
are approximately iid Exp(1) distributed and the transformed spacings Z; = 1 —
exp(—4;), i =1,2... are approxirnately iid U(0, 1) distributed.

The g-nearest pair test assesses the hypothesis that the first ¢ transformed
spacings, Z1,...,7Z,, are iid from U{0,1), by using a Kolmogorov—Smirnov or
Anderson—Darling test statistic. By creating ¥ copies of the test statistic, a two-
stage test can be obtained.

Typically, ranges for the testing parameters are 1 € ¢ £ 8, 1 € N < 30,
2<d <8, and 10° € n £ 108, The choice p = o is often convenient in terms of
computational speed. It is recommended [16] that n > 4¢°/N.

1524 Gap Tests Let T7,13,... denote the times when the output process
Up, U, ..., visits a specified interval (o, 8) C (0,1), and let %y, Za,... denote the
gap lengths hetween subsequent visits; that is, Z, =T, -7, —1,i=1,2,..., with
Tp = 0. Under Hy, the {Z;} are iid with a Geomg(p) distribution, with p = 3 — o
that is, '

BZ=2z)=p(l-p)°, 2=0,1,2,....

The gap test assesses this hypothesis by tallying the number of gaps that fall in
certain classes. In particular, a x? test is performed with classes Z = 0,Z =
l,....2 =7r~1,and Z z r, with probabilities p(1 —p)*, 2 = 0,...,r — 1 for the
first 7 classes and (1 — p}" for the last class. The integers n and r should be chosen
g0 that the expected number per class is 3z 5.

When « =0 and 3 = 1/2, this is sometimes called runs above the mean, and
when o = 1/2 and § = 1 this is sometimes called runs below the mean.

1.5.2.5 Poker or Partition Tests Consider the sequence of d-dimensional vectors
Y;....,Y,, each taking values in {0,...,m — 1}‘*. For such a vector Y, let Z be
the number of distinct components; for example if Y = (4,2,6,4,2,5,1,4), then
4 = 5. Under Hy, Z has probability distribution

m(m—l)---(m—z+1){j}

me

MZ=z)= , z=1,...,min{d, m}. (1.8)

Here, {%} represents the Stirling number of the second kind, which gives the
number of ways a set of size d can be partitioned into z non-empty subsets. For
example, {;} = 7. Such Stirling numbers can be expressed in terms of binomial

coefficients as
d 1 < z
{z} =5 ;(_l)z—-k (k) ey
;=0

Using the above probabilities, the validity of Hy can now be tested via a y2 test.

1.5.2.6 Coupon Coliector's Tests Consider the sequence ¥7,Y3,.. ., each Y; taking
valuesin {0, ..., m—1}. Let T be the first time that a “complete” set {0,...,m—1}
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is obtained among ¥1,...,Y¥p. The probability that (¥1,...,Y:) is incomplete is,
by (1.8), equal to P(T > t) = L — m!{}}/m?, so that

ml[t—1
]P(T:t)zﬁ{m—l}} t:?'ﬂ,'fn+]_,.”.
The coupon collector’s test proceeds by generating successive times T7,...,7,

and applying a x? goodness of fit test using classes T = ¢, ¢t = m,...,r — 1 and
T > r — 1, with probabilities given above.

1.5.2.7 Permutation Tests Consider the d-dimensional random vector U =
(Thh,.. ‘,Ud)—r. Order the components from smallest to largest and let IT be the
corresponding ordering of indices. Under Hy,
1
P(Il=m)= 3 for all permutations w .
The permutation test assesses this uniformity of the permutations via a x? goodness
of fit test with d! permutation classes, each with class probability 1/d!.

1528 Run Tests Consider the sequence U,,Us,.... Let Z be the run-up
length; that is, Z = min{k : Upy1 < Ur}. Under Hy, P(Z 2 2) = 1/2), s0
that

1 1
P(Z =2)= = — —mmoems =1,2,....
( Z) 21 (Z-‘r 1)|? < 7=
In the run test, n of such run lengths Zi,...,Z, are obtained, and a x? test is

performed on the counts, using the above probabilities. It is important o start
from fresh after each run. In practice this is done by throwing away the nimber
immediately after a run. For example the second run is started with Uz, 42 rather
than Uz, 11, since the latter is not U{0, 1) distributed, as it is by definition smaller
than Uz, .

1.5.2.9 Maximum-of-d Tests Generate Uy,..., U, for some dimension 4. For
each U = ({/1,...,U3)" let Z = max{Th,...,Us} be the maximum. Under Hy, Z
has edf

Fl2)=PZ<2)=2% 0<2€1.

Apply the Kolmogorov-Smirnov test to Z1,.. ., Z, with distribution function F(z).
Another option is to define Wi = Z¢ and apply the equidistribution test to
Wy, ..., W,.

1.52.10 Colfision Tests Consider a sequence of d-dimensional vectors Y+q,..., Yy,
each taking values in {0,...,m— 1}% There are r = m? possible values for each Y.
Typically, r 3 & Think of throwing b balls into # urns. As there are many more
urns than balls, most balls will land in an empty urn, but sometimes a “collision”
oceurs. Let €' be the number of such coltisions. Under Hj the probability of ¢
collisions (that is, the probability that exactly b — ¢ urns are occupied) is given, as
n (1.8), by

R B R TSIAN

b

P(C =r¢) , ¢=0,...,b=1.
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A x? goodness of fit test can be applied to compare the empirical distribution of n
such collision values, C, ..., Cy, with the above distribution under Hy. One may
need to group various of the classes €' = ¢ in order to obtain a sufficient number of
observations in each class.

15211 Rank of Binary Matrix Tests Transform: the sequence I, U5, ... to a bi-
nary sequence By, Bs,... and arrange these in a binary array of dimension r x ¢
{assume < ¢). Under Hy the distribution of the rank {in modulo 2 arithmetic} Z
of this matrix is given by

1_29,(_'1_21.1
P(Z = z) = 2le~ z)’“‘)H( )éu ) 2=0,1,...,1. (1.9)

This can be seen, for example, by defining s Markov chain {Z,,¢ = 0,1,2,...},
starting at 0 and with transition probabilities p;; = 27°7 and p; ;4 = 1 — 271,
i =0,...,r. The interpretation is that Z; is the rank of a £ x ¢ matrix which is
constructed from a (¢t — 1) x ¢ matrix by adding a 1 x ¢ random binary row; this row
is either dependent on the ¢ — 1 previous rows (rank stays the same) or not (rank
is increased by 1). The distribution of Z, corresponds to (1.9).

For ¢ = r = 32 we have

F(Z < 30) =+ 0.1336357
P(Z = 31} a 0.5775762
P(Z = 32) ~ 0.2887881 .

These probabilities can be compared with the observed frequencies, via a x? good-
ness of fit test.

152,12 Birthday Spacings Tests Consider the sequence Y7, ...,7Y,, taking valucs
in {0,...,m — 1}. Sort the sequence as Yy € ... € ¥{;) and define spacings
S] = Y(g) — Y(l),..‘,Sn_l = Yv(n) — Y'(n_l), and S'n- = }/(1) + m— Y(n]‘ Sort the
spacings and denote them as (1) < ... < 8.

Let R be the number of times that we have S;) = S;;_q) for j=1,...,n. The
distribution of B depends on mn and n, but for example when m = 225 and n = 512,
we have [8, Page T1]:

P(R = 0) ~ 0.368801577
P(R = 1) = 0.369035243
P(R = 2) =~ 0.183471182
P(R > 3) ~ 0.078691997 .

The idea is to repeat the test many times, say N = 1000, and perform a x? test
on the collected data. Asymptotically, for large n, B has a Poi(A) distribution, with
A = n®/(4m), where X should not be large; see [8, Page 570]. An alternative is to
use ¥ = 1 and base the decision whether to reject Hy or not on the approximate
p-value P(R 2 r) = 1 — S2i_{e 2N /k! (reject Hy for small values). As a rule
of thumb [19] the Poisson approximation is accurate when m = (4ANA); that is,
Nn3 g md/4
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Further Reading

The problem of producing a collection of random numbers has been extensively
studied, thongh as von Neumann said: “Any one who considers arithmetical meth-
ads of producing random digits is, of course, in a state of sin.” Nevertheless, we
can produce mimbers that are “sufficiently random” for much of the Monte Carlo
simulation that oceurs today. A comprehensive overview of random number gener-
ation can be found in [15]. The poor lattice siructure of certain linear congruential
generators was pointed out. in [36)], adding the concept of “good lattice structure”
to the list of qualities a generator ought to have. Afflerbach [1] discusses a num-
ber of theoretical criteria for the assessment of random number generators. The
celebrated Merscnne twister was introduced in [31], paving the way for generators
with massive periods, which have becoine a necessity in the random number hungry
world of Monte Carlo. A discussion of good multiple-recursive generators can be
found in [12]. Niederreiter [33] covers many theoretical aspects of random number
sequences, and Knuth [8] gives a classic treatment, discussing both the generation
of random numbers and evaluation of the quality of same through the use of the-
oretical and ernpirical tests. The book by Tezuka [39] is exclusively on random
numbers and proves a handy aid when implementing generators and tests. Books
by Fishman {5] and Gentle [7] discuss the generation of random numbers for use in
Monte Carlo applications. Qur treatment of the spectral test draws from [5}.
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