
Chapter 1

Welcome to the World of
Differential Equations

In This Chapter
� Breaking into the basics of differential equations

� Getting the scoop on derivatives

� Checking out direction fields

� Putting differential equations into different categories

� Distinguishing among different orders of differential equations

� Surveying some advanced methods

It’s a tense moment in the physics lab. The international team of high-
powered physicists has attached a weight to a spring, and the weight is

bouncing up and down.

“What’s happening?” the physicists cry. “We have to understand this in terms
of math! We need a formula to describe the motion of the weight!”

You, the renowned Differential Equations Expert, enter the conversation
calmly. “No problem,” you say. “I can derive a formula for you that will
describe the motion you’re seeing. But it’s going to cost you.”

The physicists look worried. “How much?” they ask, checking their grants
and funding sources. You tell them.

“Okay, anything,” they cry. “Just give us a formula.”

You take out your clipboard and start writing.

“What’s that?” one of the physicists asks, pointing at your calculations.
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“That,” you say, “is a differential equation. Now all I have to do is to solve it,
and you’ll have your formula.” The physicists watch intently as you do your
math at lightning speed.

“I’ve got it,” you announce. “Your formula is y = 10 sin (5t), where y is the
weight’s vertical position, and t is time, measured in seconds.”

“Wow,” the physicists cry, “all that just from solving a differential equation?”

“Yep,” you say, “now pay up.”

Well, you’re probably not a renowned differential equations expert — not yet,
at least! But with the help of this book, you very well may become one. In this
chapter, I give you the basics to get started with differential equations, such
as derivatives, direction fields, and equation classifications.

The Essence of Differential Equations
In essence, differential equations involve derivatives, which specify how a
quantity changes; by solving the differential equation, you get a formula for
the quantity itself that doesn’t involve derivatives.

Because derivatives are essential to differential equations, I take the time in
the next section to get you up to speed on them. (If you’re already an expert
on derivatives, feel free to skip the next section.) In this section, however,
I take a look at a qualitative example, just to get things started in an easily
digestible way.

Say that you’re a long-time shopper at your local grocery store, and you’ve
noticed prices have been increasing with time. Here’s the table you’ve been
writing down, tracking the price of a jar of peanut butter:

Month Price

1 $2.40

2 $2.50

3 $2.60

4 $2.70

5 $2.80

6 $2.90
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Looks like prices have been going up steadily, as you can see in the graph
of the prices in Figure 1-1. With that large of a price hike, what’s the price of
peanut butter going to be a year from now?

You know that the slope of a line is ∆y/∆x (that is, the change in y divided by
the change in x). Here, you use the symbols ∆p for the change in price and ∆t
for the change in time. So the slope of the line in Figure 1-1 is ∆p/∆t.

Because the price of peanut butter is going up 10 cents every month, you
know that the slope of the line in Figure 1-1 is:

t
p

∆
∆

= 10¢/month

The slope of a line is a constant, indicating its rate of change. The derivative
of a quantity also gives its rate of change at any one point, so you can think of
the derivative as the slope at a particular point. Because the rate of change of
a line is constant, you can write:

dt
dp

t
p

∆
∆

= = 10¢/month

In this case, dp/dt is the derivative of the price of peanut butter with respect
to time. (When you see the d symbol, you know it’s a derivative.)

And so you get this differential equation:

dt
dp

= 10¢/month

1 2 3 4

Time

Pr
ic

e
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2.40

2.50

2.60

2.70

2.80

2.90

Figure 1-1:
The price of

peanut
butter by

month.
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The previous equation is a differential equation because it’s an equation that
involves a derivative, in this case, dp/dt. It’s a pretty simple differential equa-
tion, and you can solve for price as a function of time like this:

p = 10t + c

In this equation, p is price (measured in cents), t is time (measured in months),
and c is an arbitrary constant that you use to match the initial conditions of
the problem. (You need a constant, c, because when you take the derivative of 
10t + c, you just get 10, so you can’t tell whether there’s a constant that should
be added to 10t — matching the initial conditions will tell you.)

The missing link is the value of c, so just plug in the numbers you have for
price and time to solve for it. For example, the cost of peanut butter in month 1
is $2.40, so you can solve for c by plugging in 1 for t and $2.40 for p (240 cents),
giving you:

240 = 10 + c

By solving this equation, you calculate that c = 230, so the solution to your
differential equation is:

p = 10t + 230

And that’s your solution — that’s the price of peanut butter by month. You
started with a differential equation, which gave the rate of change in the price
of peanut butter, and then you solved that differential equation to get the
price as a function of time, p = 10t + 230.

Want to see the solution to your differential equation in action? Go for it! Find
out what the price of peanut butter is going to be in month 12. Now that you
have your equation, it’s easy enough to figure out:

p = 10t + 230

10(12) + 230 = 350

As you can see, in month 12, peanut butter is going to cost a steep $3.50,
which you were able to figure out because you knew the rate at which the
price was increasing. This is how any typical differential equation may work:
You have a differential equation for the rate at which some quantity changes
(in this case, price), and then you solve the differential equation to get
another equation, which in this case related price to time.

Note that when you substitute the solution (p = 10t + 230) into the differential
equation, dp/dt indeed gives you 10 cents per month, as it should.
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Derivatives: The Foundation of
Differential Equations

As I mention in the previous section, a derivative simply specifies the rate at
which a quantity changes. In math terms, the derivative of a function f(x),
which is depicted as df(x)/dx, or more commonly in this book, as f'(x), indi-
cates how f(x) is changing at any value of x. The function f(x) has to be con-
tinuous at a particular point for the derivative to exist at that point.

Take a closer look at this concept. The amount f(x) changes in a small distance
along the x axis ∆x is:

f(x + ∆x) – f(x)

The rate at which f(x) changes over the change ∆x is:

x
f x x f x

∆
∆+ -^ ^h h

So far so good. Now to get the derivative dy/dx, where y = f(x), you must let
∆x get very small, approaching zero. You can do that with a limiting expres-
sion, which you can evaluate as ∆x goes to zero. In this case, the limiting
expression is:

∆
limdx

dy
x

f x x f x
∆

∆
x 0

=
+ -

"

^ ^h h

In other words, the derivative of f(x) is the amount f(x) changes in ∆x, divided
by ∆x, as ∆x goes to zero.

I take a look at some common derivatives in the following sections; you’ll see
these derivatives throughout this book.

Derivatives that are constants
The first type of derivative you’ll encounter is when f(x) equals a constant, c.
If f(x) = c, then f(x + ∆x) = c also, and f(x + ∆x) – f(x) = 0 (because all these
amounts are actually the same), so df(x)/dx = 0. Therefore:

f x c dx
df x

0= =^
^

h
h
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How about when f(x) = cx, where c is a constant? In this case, f(x) = cx, and 
f(x + ∆x) = cx + c ∆x.

So f(x + ∆x) – f(x) = c ∆x and (f(x + ∆x) – f(x))/∆x = c. Therefore:

f x cx dx
df x

c= =^
^

h
h

Derivatives that are powers
Another type of derivative that pops up is one that includes raising x to the
power n. Derivatives with powers work like this:

f x x dx
df x

n xn n 1= = -
^

^
h

h

Raising e to a certain power is always popular when working with differential
equations (e is the natural logarithm base, e = 2.7128 . . ., and a is a constant):

f x e dx
df x

a eax ax= =^
^

h
h

And there’s also the inverse of ea, which is the natural log, which works like
this:

lnf x x dx
df x

x
1

= =^ ^
^

h h
h

Derivatives involving trigonometry
Now for some trigonometry, starting with the derivative of sin(x):

sin cosf x x dx
df x

x= =^ ^
^

^h h
h

h

And here’s the derivative of cos(x):

cos sinf x x dx
df x

x= = -^ ^
^

^h h
h

h

Derivatives involving multiple functions
The derivative of the sum (or difference) of two functions is equal to the sum
(or difference) of the derivatives of the functions (that’s easy enough to
remember!):

f x a x b x dx
df x

dx
d a x

dx
d b x

! != =^ ^ ^
^ ^ ^

h h h
h h h
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The derivative of the product of two functions is equal to the first function
times the derivative of the second, plus the second function times the deriva-
tive of the first. For example:

f x a x b x dx
df x

a x dx
d b x

b x dx
d a x

= = +^ ^ ^
^

^
^

^
^

h h h
h

h
h

h
h

How about the derivative of the quotient of two functions? That derivative is
equal to the function in the denominator times the derivative of the function
in the numerator, minus the function in the numerator times the derivative
of the function in the denominator, all divided by the square of the function
in the denominator:

f x
b x
a x

dx
df x

b x

b x dx
d a x

a x dx
d b x

2= =
-

^
^

^ ^

^

^
^

^
^

h
h

h h

h

h
h

h
h

Seeing the Big Picture 
with Direction Fields

It’s all too easy to get caught in the math details of a differential equation,
thereby losing any idea of the bigger picture. One useful tool for getting an
overview of differential equations is a direction field, which I discuss in more
detail in Chapter 2. Direction fields are great for getting a handle on differen-
tial equations of the following form:

,dx
dy

f x y= _ i

The previous equation gives the slope of the equation y = f(x) at any point x. A
direction field can help you visualize such an equation without actually having
to solve for the solution. That field is a two-dimensional graph consisting of
many, sometimes hundreds, of short line segments, showing the slope — that
is, the value of the derivative — at multiple points. In the following sections,
I walk you through the process of plotting and understanding direction fields.

Plotting a direction field
Here’s an example to give you an idea of what a direction field looks like.
A body falling through air experiences this force:

F = mg – γ v

13Chapter 1: Welcome to the World of Differential Equations
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In this equation, F is the net force on the object, m is the object’s mass, g is
the acceleration due to gravity (g = 9.8 meters/sec2 near the Earth’s surface),
γ is the drag coefficient (which adds the effect of air friction and is measured
in newtons sec/meter), and v is the speed of the object as it plummets
through the air.

If you’re familiar with physics, consider Newton’s second law. It says that 
F = ma, where F is the net force acting on an object, m is its mass, and a is its
acceleration. But the object’s acceleration is also dv/dt, the derivative of the
object’s speed with respect to time (that is, the rate of change of the object’s
speed). Putting all this together gives you:

F ma m dt
dv mg v= = = - c

Now you’re back in differential equation territory, with this differential equa-
tion for speed as a function of time:

dt
dv g m v= -

c

Now you can get specific by plugging in some numbers. The acceleration due
to gravity, g, is 9.8 meters/sec2 near the Earth’s surface, and let’s say that the
drag coefficient is 1.0 newtons sec/meter and the object has a mass of 4.0 kilo-
grams. Here’s what you’d get:

.dt
dv v9 8 4= -

To get a handle on this equation without attempting to solve it, you can plot
it as a direction field. To do so you create a two-dimensional plot and add
dozens of short line segments that give the slope at those locations (you can
do this by hand or with software). The direction field for this equation
appears in Figure 1-2. As you can see in the figure, there are dozens of short
lines in the graph, each of which give the slope of the solution at that point.
The vertical axis is v, and the horizontal axis is t.

Because the slope of the solution function at any one point doesn’t depend
on t, the slopes along any horizontal line are the same.

Connecting slopes into an integral curve
You can get a visual handle on what’s happening with the solutions to a dif-
ferential equation by looking at its direction field. How? All those slanted line
segments give you the solutions of the differential equations — all you have
to do is draw lines connecting the slopes. One such solution appears in
Figure 1-3. A solution like the one in the figure is called an integral curve of
the differential equation.
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Recognizing the equilibrium value
As you can see from Figure 1-3, there are many solutions to the equation that
you’re trying to solve. As it happens, the actual solution to that differential
equation is:

v = 39.2 + ce–t/4

In the previous solution, c is an arbitrary constant that can take any value.
That means there are an infinite number of solutions to the differential 
equation.

But you don’t have to know that solution to determine what the solutions
behave like. You can tell just by looking at the direction field that all solutions
tend toward a particular value, called the equilibrium value. For instance, you
can see from the direction field graph in Figure 1-3 that the equilibrium value
is 39.2. You also can see that equilibrium value in Figure 1-4.
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Classifying Differential Equations
Tons of differential equations exist in Math and Science Land, and the way
you tackle them differs by type. As a result, there are several classifications
that you can put differential equations into. I explain them in the following
sections.

Classifying equations by order
The most common classification of differential equations is based on order.
The order of a differential equation simply is the order of its highest deriva-
tive. For example, check out the following, which is a first order differential
equation:

dx
dy

x5=

Here’s an example of a second order differential equation:

dx
d y

dx
dy

x19 42

2

+ = +

And so on, up to order n:

. . .dx
d y

dx
d y

dx
d y

dx
dy

x9 16 14 12 19 4 0n

n

n

n

1

1

2

2

- + + + - + =-

-

As you might imagine, first order differential equations are usually the most
easily managed, followed by second order equations, and so on. I discuss
first order, second order, and higher order differential equations in a bit more
detail later in this chapter.

Classifying ordinary versus 
partial equations
You can also classify differential equations as ordinary or partial. This classifi-
cation depends on whether you have only ordinary derivatives involved or
only partial derivatives.
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An ordinary (non-partial) derivative is a full derivative, such as dQ/dt, where
you take the derivative of all terms in Q with respect to t. Here’s an example
of an ordinary differential equation, relating the charge Q(t) in a circuit to the
electromotive force E(t) (that is, the voltage source connected to the circuit):

L
dt

d Q
R dt

dQ
C Q E t1

2

2

+ + = ^ h

Here, Q is the charge, L is the inductance of the circuit, C is the capacitance
of the circuit, and E(t) is the electromotive force (voltage) applied to the cir-
cuit. This is an ordinary differential equation because only ordinary deriva-
tives appear.

On the other hand, partial derivatives are taken with respect to only one vari-
able, although the function depends on two or more. Here’s an example of a
partial differential equation (note the squiggly d’s):

, ,
x

u x t
t

u x t
α 2

2

2

2

2

2

2
=

_ _i i

In this heat conduction equation, α is a physical constant of the system that
you’re trying to track the heat flow of, and u(x, t) is the actual heat.

Note that u(x, t) depends on both x and t and that both derivatives are partial
derivatives — that is, the derivatives are taken with respect to one or the
other of x or t, but not both.

In this book, I focus on ordinary differential equations, because partial differ-
ential equations are usually the subject of more advanced texts. Never fear
though: I promise to get you your fair share of partial differential equations.

Classifying linear versus 
nonlinear equations
Another way that you can classify differential equations is as linear or non-
linear. You call a differential equation linear if it exclusively involves linear
terms (that is, terms to the power 1) of y, y', y", and beyond to y(n). For exam-
ple, this equation is a linear differential equation:

L
dt

d Q
R dt

dQ
C Q E t1

2

2

+ + = ^ h
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Note that this kind of differential equation usually will be written this way
throughout this book. And this form makes the linear nature of this equation
clear:

LQ" R Q C Q E t1
+ + =l ^ h

On the other hand, nonlinear differential equations involve nonlinear terms in
any of y, y', y", up to y(n). The following equation, which describes the angle of
a pendulum, is a nonlinear differential equation that involves the term sin θ
(not just θ):

sin
dt
d

L
gθ θ 02

2

+ =

Handling nonlinear differential equations is generally more difficult than han-
dling linear equations. After all, it’s often tough enough to solve linear differ-
ential equations without messing things up by adding higher powers and
other nonlinear terms. For that reason, you’ll often see scientists cheat when
it comes to nonlinear equations. Usually they make an approximation that
reduces the nonlinear equation to a linear one.

For example, when it comes to pendulums, you can say that for small angles,
sin θ ≈ θ. This means that the following equation is the standard form of the
pendulum equation that you’ll find in physics textbooks:

dt
d

L
gθ θ 02

2

+ =

As you can see, this equation is a linear differential equation, and as such,
it’s much more manageable. Yes, it’s a cheat to use only small angles so that
sin θ ≈ θ, but unless you cheat like that, you’ll sometimes be reduced to using
numerical calculations on a computer to solve nonlinear differential equa-
tions; obviously these calculations work, but it’s much less satisfying than
cracking the equation yourself (if you’re a math geek like me).

Solving First Order Differential Equations
Chapters 2, 3, and 4 take a look at differential equations of the form f'(x) = 
f(x, y); these equations are known as first order differential equations
because the derivative involved is of first order (for more on these types
of equations, see the earlier section “Classifying equations by order.”

19Chapter 1: Welcome to the World of Differential Equations
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First order differential equations are great because they’re usually the most
solvable. I show you all kinds of ways to handle first order differential equa-
tions in Chapters 2, 3, and 4. The following are some examples of what you
can look forward to:

� As you know, first order differential equations look like this: f'(x) = f(x, y).
In the upcoming chapters, I show you how to deal with the case where
f(x, y) is linear in x — for example, f'(x) = 5x — and then nonlinear in x,
as in f'(x) = 5x2.

� You find out how to work with separable equations, where you can
factor out all the terms having to do with y on one side of the equation
and all the terms having to do with x on the other.

� I also help you solve first order differential equations in cool ways, such
as by finding integrating factors to make more difficult problems simple.

Direction fields, which I discuss earlier in this chapter, work only for equa-
tions of the type f'(x) = f(x, y) — that is, where only the first derivative is
involved — because the first derivative of f(x) gives you the slope of f(x) at
any point (and, of course, connecting the slope line segments is what direc-
tion fields are all about).

Tackling Second Order and Higher Order
Differential Equations

As noted in the earlier section “Classifying equations by order,” second order
differential equations involve only the second derivative, d2y/dx2, also known
as y". In many physics situations, second order differential equations are
where the action is.

For example, you can handle physics situations such as masses on springs or
the electrical oscillations of inductor-capacitor circuits with a differential
equation like this:

y" – ay = 0

In Part II, I show you how to tackle second order differential equations with a
large arsenal of tools, such as the Wronskian matrix determinant, which will tell
you if there are solutions to a second (or higher) order differential equation.
Other tools I introduce you to include the method of undetermined coefficients
and the method of variation of parameters.
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After first and second order differential equations, it’s natural to want to keep
the fun going, and that means you’ll be dealing with higher order differential
equations, which I also cover in Part II. With these high-end equations, you
find terms like dny/dxn, where n > 2.

The derivative dny/dxn is also written as y(n). Using the standard syntax, deriv-
atives are written as y', y", y''', yiv, yv, and so on. In general, the nth derivative
of y is written as y(n).

Higher order differential equations can be tough; many of them don’t have
solutions at all. But don’t worry, because to help you solve them I bring to
bear the wisdom of more than 300 years of mathematicians.

Having Fun with Advanced Techniques
You discover dozens of tools in Part III of this book; all of these tools have been
developed and proved powerful over the years. Laplace Transforms, Euler’s
method, integrating factors, numerical methods — they’re all in this book.

These tools are what this book is all about — applying the knowledge of hun-
dreds of years of solving differential equations. As you may know, differential
equations can be broken down by type, and there’s always a set of tools devel-
oped that allows you to work with whatever type of equation you come up
with. In this book, you’ll find a great many powerful tools that are just waiting
to solve all of your differential equations — from the simplest to the seemingly
impossible!
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