
CHAPTER 1

Review of Probability Theory

1.1 INTRODUCTION

Probability theory provides a rational and efficient means of
characterizing the uncertainty which is prevalent in geotech-
nical engineering. This chapter summarizes the background,
fundamental axioms, and main results constituting modern
probability theory. Common discrete and continuous distri-
butions are discussed in the last sections of the chapter.

1.2 BASIC SET THEORY

1.2.1 Sample Spaces and Events

When a system is random and is to be modeled as such, the
first step in the model is to decide what all of the possible
states (outcomes) of the system are. For example, if the
load on a retaining wall is being modeled as being random,
the possible load can range anywhere from zero to infinity,
at least conceptually (while a zero load is entirely possible,
albeit unlikely, an infinite load is unlikely—we shall see
shortly that the likelihood of an infinite load can be set to
be appropriately small). Once the complete set of possible
states has been decided on, interest is generally focused on
probabilities associated with certain portions of the possible
states. For example, it may be of interest to determine the
probability that the load on the wall exceeds the sliding
resistance of the wall base, so that the wall slides outward.
This translates into determining the probability associated
with some portion, or subset, of the total range of possible
wall loads (we are assuming, for the time being, that the
base sliding resistance is known). These ideas motivate the
following definitions:

Definitions
Experiment: Any process that generates a set of data. The

experiment may be, for example, the monitoring of the

volume of water passing through an earth dam in a unit
time. The volume recorded becomes the data set.

Sample Space: The set of all possible outcomes of an
experiment. The sample space is represented by the
symbol S .

Sample Point: An outcome in the sample space. For
example, if the experiment consists of monitoring the
volume of water passing through an earth dam per hour,
a sample point would be the observation 1.2 m3/h. An-
other would be the observation 1.41 m3/h.

Event: A subset of a sample space. Events will be denoted
using uppercase letters, such as A, B , . . . . For example,
we might define A to be the event that the flow rate
through an earth dam is greater than 0.01 m3/h.

Null Set: The empty set, having no elements, is used to
represent the impossible “event” and is denoted ∅. For
example, the event that the flow rate through an earth
dam is both less than 1 and greater than 5 m3/h is
impossible and so the event is the null set.

These ideas will be illustrated with some simple examples.

Example 1.1 Suppose an experiment consists of observ-
ing the results of two static pile capacity tests. Each test
is considered to be a success (1) if the pile capacity ex-
ceeds a certain design criterion and a failure (0) if not.
This is an experiment since a set of data is derived from it.
The actual data derived depend on what is of interest. For
example:

1. Suppose that only the number of successful pile tests
is of interest. The sample space would then be S =
{0, 1, 2}. The elements 0, 1, and 2 of the set S are
sample points. From this sample space, the following
events (which may be of interest) can be defined; ∅,
{0}, {1}, {2}, {0, 1}, {0, 2}, {1, 2}, and S = {0, 1, 2}
are possible events. The null set is used to denote
all impossible events (for example, the event that the
number of successful tests, out of two tests, is greater
than 2).

2. Suppose that the order of occurrence of the suc-
cesses and failures is of interest. The sample space
would then be S = {11, 10, 01, 00}. Each outcome
is a doublet depicting the sequence. Thus, the ele-
ments 11, 10, 01, and 00 of S are sample points.
The possible events are ∅, {11}, {10}, {01}, {00},
{11, 10}, {11, 01}, {11, 00}, {10, 01}, {10, 00}, {01, 00},
{11, 10, 01}, {11, 10, 00}, {11, 01, 00}, {10, 01, 00}, and
{11, 10, 01, 00}.

Note that the information in 1 could be recovered from
that in 2, but not vice versa, so it is often useful to
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4 1 REVIEW OF PROBABILITY THEORY

define the experiment to be more general initially, when
possible. Other types of events can then be derived after
the experiment is completed.

Sample spaces may be either discrete or continuous:

Discrete Case: In this case, the sample space consists of a
sequence of discrete values (e.g., 0, 1, . . .). For example,
the number of blow counts in a standard penetration test
(SPT). Conceptually, this could be any integer number
from zero to infinity.

Continuous Case: In this case, the sample space is com-
posed of a continuum of sample points and the number of
sample points is effectively always infinite—for example,
the elastic modulus of a soil sample. This could be any
real number on the positive real line.

1.2.2 Basic Set Theory

The relationship between events and the corresponding
sample space can often be illustrated graphically by means
of a Venn diagram. In a Venn diagram the sample space
is represented as a rectangle and events are (usually)
drawn as circles inside the rectangle. For example, see
Figure 1.1, where A1, A2, and A3 are events in the sample
space S .

We are often interested in probabilities associated with
combinations of events; for example, the probability that
a cone penetration test (CPT) sounding has tip resistance
greater than x at the same time as the side friction is
less that y . Such events will be formed as subsets of the
sample space (and thus are sets themselves). We form these
subsets using set operators. The union, intersection, and
complement are set theory operators which are defined as
follows:

The union of two events
E and F is denoted
E ∪ F .

FE
S

A2

A3

A1
S

Figure 1.1 Simple Venn diagram.

The intersection of two
events E and F is denoted
E ∩ F .

FE
S

The complement of an
event E is denoted E c .

S

E
Ec

Two events E and F are said to be mutually exclusive, or
disjoint, if E ∩ F = ∅. For example, E and E c are disjoint
events.

Example 1.2 Three piles are being statically loaded to
failure. Let Ai denote the event that the i th pile has a
capacity exceeding specifications. Using only sets and set
theory operators (i.e., using only Ai , i = 1, 2, 3, and ∩ , ∪ ,
and c), describe each of the following events. In each
case, also draw a Venn diagram and shade the region
corresponding to the event.

1. At least one pile has capacity exceeding the specifi-
cation.

2. All three piles have capacities exceeding the specifi-
cation.

3. Only the first pile has capacity exceeding the specifi-
cation.

4. Exactly one pile has capacity exceeding the specifica-
tion.

5. Either only the first pile or only both of the other piles
have capacities exceeding the specification.

SOLUTION

1. A1 ∪ A2 ∪ A3
A2

A3

A1
S

2. A1 ∩ A2 ∩ A3
A2

A3

A1
S
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3. A1 ∩ Ac
2 ∩ Ac

3 A2

A3

A1
S

4. (A1 ∩ Ac
2 ∩ Ac

3)
∪ (Ac

1 ∩ A2 ∩ Ac
3)

∪ (Ac
1 ∩ Ac

2 ∩ A3)

A2

A3

A1
S

5. (A1 ∩ Ac
2 ∩ Ac

3)
∪ (Ac

1 ∩ A2 ∩ A3)
A2

A3

A1
S

It is clear from the Venn diagram that, for example, A1 ∩
Ac

2 ∩ Ac
3 and Ac

1 ∩ A2 ∩ A3 are disjoint events, that is,
(A1 ∩ Ac

2 ∩ Ac
3) ∩ (Ac

1 ∩ A2 ∩ A3) = ∅.

1.2.3 Counting Sample Points

Consider experiments which have a finite number of pos-
sible outcomes. For example, out of a group of piles, we
could have three failing to meet specifications but cannot
have 3.24 piles failing to meet specifications. That is, the
sample space, in this case, consists of only whole numbers.
Such sample spaces are called discrete sample spaces. We
are often interested in computing the probability associated
with each possible value in the sample space. For example,
we may want to be able to compute the probability that ex-
actly three piles fail to meet specifications at a site. While
it is not generally easy to assign probabilities to something
like the number of soft soil lenses at a site, some discrete
sample spaces consist of equi-likely outcomes, where all
possible outcomes have the same probability of occurrence.
In this case, we only need to know the total number of pos-
sible outcomes in order to assign probabilities to individual
outcomes (i.e., the probability of each outcome is equal to
1 over the total number of possible outcomes). Knowing
the total number of possible outcomes is often useful, so
some basic counting rules will be considered here.

Multiplication Rule The fundamental principle of count-
ing, often referred to as the multiplication rule, is:

If an operation can be performed in n1 ways, and if for each of
these, a second operation can be performed in n2 ways, then the
two operations can be performed together in n1 × n2 different
ways.

Example 1.3 How many possible outcomes are there
when a soil’s relative density is tested twice and the
outcome of each test is either a pass or a fail? Assume
that you are interested in the order in which the tests pass
or fail.

SOLUTION On the first test, the test can proceed in
any one of n1 = 2 ways. For each of these, the second
test can proceed in any one of n2 = 2 ways. Therefore,
by the multiplication rule, there are n1 × n2 = 2 × 2 = 4
possible test results. Consequently, there are four points in
the sample space. These are (P,P), (P,F), (F,P), and (F,F)
(see also Example 1.1).

The multiplication principle extends to k operations as
follows:

If an operation can be performed in n1 ways, and if for each of
these a second operation can be performed in n2 ways, and for
each of the first two a third operation can be performed in n3

ways, and so forth, then the sequence of k operations can be
performed together in

n = n1 × n2 × · · · × nk (1.1)

different ways.

Example 1.4 Extending the previous example, suppose
that a relative-density test classifies a soil into five possible
states, ranging from “very loose” to “very dense.” Then if
four soil samples are tested, and the outcomes of the four
tests are the ordered list of their states, how many possible
ways can the tests proceed if the following conditions are
assumed to hold?

1. The first sample is either very loose or loose, and
all four tests are unique (i.e., all four tests result in
different densities).

2. The first sample is either very loose or loose, and tests
may yield the same results.

3. The first sample is anything but very loose, and tests
may yield the same results.

SOLUTION

1. 2 × 4 × 3 × 2 = 48
2. 2 × 5 × 5 × 5 = 250
3. 4 × 5 × 5 × 5 = 500
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Permutations Frequently, we are interested in sample
spaces that contain, as elements, all possible orders or
arrangements of a group of objects. For example, we may
want to know the number of possible ways 6 CPT cones
can be selected from a collection of 20 cones of various
quality. Here are some examples demonstrating how this
can be computed.

Example 1.5 Six piles are being driven to bedrock and
the energy required to drive them will be recorded for
each. That is, our experiment consists of recording the six
measured energy levels. Suppose further that the pile results
will be ranked from the one taking the highest energy to
the one taking the lowest energy to drive. In how many
different ways could this ranked list appear?

SOLUTION The counting process can be broken up into
six simpler steps: (1) selecting the pile, out of the six, taking
the highest energy to drive and placing it at the top of the
list; (2) selecting the pile taking the next highest energy to
drive from the remaining five piles and placing it next on the
list, and so on for four more steps. Since we know in how
many ways each of these operations can be done, we can
apply the multiplication rule: n = 6 × 5 × 4 × 3 × 2 × 1 =
720. Thus, there are 720 ways that the six piles could be
ranked according to driving energy.

In the above example, the number of possible arrange-
ments is 6!, where ! is the factorial operator. In general,

n! = n × (n − 1) × · · · × 2 × 1 (1.2)

if n is a nonzero integer. Also 0! = 1 by definition. The
reasoning of the above example will always prevail when
counting the number of possible ways of arranging all
objects in a sequence.

Definition A permutation is an arrangement, that is, an
ordered sequence, of all or part of a set of objects. If we
are looking for the number of possible ordered sequences
of an entire set, then

The number of permutations of n distinct objects is n!.

If only part of the set of objects is to be ordered, the
reasoning is similar to that proposed in Example 1.5, except
that now the number of “operations” is reduced. Consider
the following example.

Example 1.6 A company has six nuclear density meters,
labeled A through F. Because the company wants to keep
track of the hours of usage for each, they must each be
signed out. A particular job requires three of the meters to
be signed out for differing periods of time. In how many

ways can three of the meters be selected from the six if the
first is to be used the longest, the second for an intermediate
amount of time, and the third for the shortest time?

SOLUTION We note that since the three meters to be
signed out will be used for differing amounts of time, it
will make a difference if A is selected first, rather than
second, and so on. That is, the order in which the meters are
selected is important. In this case, there are six possibilities
for the first meter selected. Once this is selected, the second
meter is select from the remaining five meters, and so on.
So in total we have 6 × 5 × 4 = 120 ways.

The product 6 × 5 × 4 can be written as

6 × 5 × 4 × 3 × 2 × 1

3 × 2 × 1

so that the solution to the above example can be written as

6 × 5 × 4 = 6!

(6 − 3)!

In general, the number of permutations of r objects selected
from n distinct objects, where order counts, is

Pn
r = n!

(n − r)!
(1.3)

Combinations In other cases, interest is in the number of
ways of selecting r objects from n distinct objects without
regard to order.

Definition A combination is the number of ways that
objects can be selected without regard to order.

Question: If there is no regard to order, are there going
to be more or less ways of doing things?

Example 1.7 In how many ways can I select two letters
from A, B, and C if I do it (a) with regard to order and (b)
without regard to order?

SOLUTION
In Figure 1.2, we see that there are fewer combinations
than permutations. The number of combinations is reduced

to order

AC
BA
BC
CA
CB

BC

AC

AB

Without regard
to order

AB

With regard

Figure 1.2 Selecting two letters from A, B, and C.
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from the number of permutations by a factor of 2 × 1 = 2,
which is the number of ways the two selected letters can
be permuted among themselves.

In general we have:

The number of combinations of n distinct objects taken r at a
time is written (

n

r

)
= n!

r!(n − r)!
(1.4)

Example 1.8 A geotechnical engineering firm keeps a list
of eight consultants. Not all consultants are asked to provide
a quote on a given request. Determine the number of ways
three consultants can be chosen from the list.

SOLUTION (
8

3

)
= 8!

3!5!
= 8 × 7 × 6

3 × 2 × 1
= 56

Sometimes, the multiplication rule, permutations, and/or
combinations must be used together to count the number of
points in a sample space.

Example 1.9 A company has seven employees specializ-
ing in laboratory testing and five employees specializing in
field testing. A job requires two employees from each area
of specialization. In how many ways can the team of four
be formed?

SOLUTION (
7

2

)
×
(

5

2

)
= 210

1.3 PROBABILITY

1.3.1 Event Probabilities

The probability of an event A, denoted by P [A], is a number
satisfying

0 ≤ P [A] ≤ 1

Also, we assume that

P [∅] = 0, P [S ] = 1

Probabilities can sometimes be obtained using the counting
rules discussed in the previous section. For example, if
an experiment can result in any one of N different but
equally likely outcomes, and if exactly m of these outcomes
correspond to event A, then the probability of event A is
P [A] = m/N .

Example 1.10 Sixty soil samples have been taken at a
site, 5 of which were taken of a liquefiable soil. If 2 of
the samples are selected at random from the 60 samples,
what is the probability that neither sample will be of the
liquefiable soil?

SOLUTION We could solve this by looking at the number
of ways of selecting the 2 samples from the 55 nonlique-
fiable soil and dividing by the total number of ways of
selecting the 2 samples,

P
[
0 liquefiable

] =
(55

2

)
(60

2

) = 99

118

Alternatively, we could solve this by considering the prob-
ability of selecting the “first” sample from the 55 nonliq-
uefiable samples and of selecting the second sample from
the remaining 54 nonliquefiable samples,

P
[
0 liquefiable

] = 55

60
× 54

59
= 99

118
Note, however, that we have introduced an “ordering” in
the second solution that was not asked for in the original
question. This ordering needs to be carefully taken account
of if we were to ask about the probability of having one
of the samples being of a liquefiable soil. See the next
example.

Example 1.11 Sixty soil samples have been taken at a
site, 5 of which were taken of a liquefiable soil. If 2 of
the samples are selected at random from the 60 samples,
what is the probability that exactly 1 sample will be of the
liquefiable soil?

SOLUTION We could solve this by looking at the number
of ways of selecting one sample from the 5 liquefiable
samples and 1 sample from the 55 nonliquefiable samples
and dividing by the total number of ways of selecting the
two samples:

P
[
1 liquefiable

] =
(5

1

)(55
1

)
(60

2

) = 2

(
5

60

)(
55

59

)
= 55

354

We could also solve it by considering the probability of
selecting the first sample from the 5 liquefiable samples and
the second from the 55 nonliquefiable samples. However,
since the question is only looking for the probability of
one of the samples being liquefiable, we need to add in the
probability that the first sample is nonliquefiable and the
second is liquefiable:

P
[
1 liquefiable

] = 5

60
× 55

59
+ 55

60
× 5

59

= 2

(
5

60

)(
55

59

)
= 55

354
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BA
S

Figure 1.3 Venn diagram illustrating the union A ∪ B .

1.3.2 Additive Rules

Often we must compute the probability of some event which
is expressed in terms of other events. For example, if A is
the event that company A requests your services and B is
the event that company B requests your services, then the
event that at least one of the two companies requests your
services is A ∪ B . The probability of this is given by the
following relationship:

If A and B are any two events, then

P [A ∪ B] = P [A] + P [B] − P [A ∩ B] (1.5)

This relationship can be illustrated by the Venn diagram in
Figure 1.3. The desired quantity, P [A ∪ B], is the area of
A ∪ B which is shaded. If the shaded area is computed
as the sum of the area of A, P [A], plus the area of B ,
P [B], then the intersection area, P [A ∩ B], has been added
twice. It must then be removed once to obtain the correct
probability. Also,

If A and B are mutually exclusive, that is, are disjoint
and so have no overlap, then

P [A ∪ B] = P [A] + P [B] (1.6)

If A1, A2, . . . , An are mutually exclusive, then

P [A1 ∪ · · · ∪ An ] = P [A1] + · · · + P [An ] (1.7)

Definition We say that A1, A2, . . . , An is a partition of the
sample space S if A1, A2, . . . , An are mutually exclusive
and collectively exhaustive. Collectively exhaustive means
that A1 ∪ A2 ∪ · · · · · · ∪ An = S . If A1, A2, . . . , An is a
partition of the sample space S , then

P [A1 ∪ · · · ∪ An ] = P [A1] + · · · + P [An ] = P [S ] = 1
(1.8)

The above ideas can be extended to the union of more than
two events. For example:

For any three events A, B , and C , we have

P [A ∪ B ∪ C ] =P [A] + P [B] + P [C ] − P [A ∩ B]

− P [A ∩ C ] − P [B ∩ C ]

+ P [A ∩ B ∩ C ] (1.9)

This can be seen by drawing a Venn diagram and keeping
track of the areas which must be added and removed in
order to get P [A ∪ B ∪ C ]. Example 1.2 illustrates the
union of three events.

For the complementary events A and Ac , P [A] + P [Ac] =
1. This is often used to compute P [Ac] = 1 − P [A].

Example 1.12 A data-logging system contains two iden-
tical batteries, A and B. If one battery fails, the system
will still operate. However, because of the added strain, the
remaining battery is now more likely to fail than was orig-
inally the case. Suppose that the design life of a battery is
three years. If at least one battery fails before the end of the
battery design life in 7% of all systems and both batteries
fail during that three-year period in only 1% of all systems,
what is the probability that battery A will fail during the
battery design life?

SOLUTION Let FA be the event that battery A fails and
FB be the event that battery B fails. Then we are given that

P [FA ∪ FB ] = 0.07, P [FA ∩ FB ] = 0.01,

P [FA] = P [FB ]

and we are looking for P [FA]. The Venn diagram in
Figure 1.4 fills in the remaining probabilities. From this
diagram, the following result is straightforward: P [FA] =
0.03 + 0.01 = 0.04.

Example 1.13 Based upon past evidence, it has been de-
termined that in a particular region 15% of CPT soundings
encounter soft clay layers, 12% encounter boulders, and 8%
encounter both. If a sounding is selected at random:

1. What is the probability that it has encountered both a
soft clay layer and a boulder?

2. What is the probability that it has encountered at least
one of these two conditions?

0.01 0.030.03

FBFA

Figure 1.4 Venn diagram of battery failure events.
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3. What is the probability that it has encountered neither
of these two conditions?

4. What is the probability that it has not encountered a
boulder?

5. What is the probability that it encounters a boulder
but not a soft clay layer?

SOLUTION Let C be the event that the sounding encoun-
tered a soft clay layer. Let B be the event that the sound-
ing encountered a boulder. We are given P [C ] = 0.15,
P [B] = 0.12, and P [C ∩ B] = 0.08, from which the Venn
diagram in Figure 1.5 can be drawn:

1. P [C ∩ B] = 0.08

2. P [C ∪ B] = P [C ] + P [B] − P [C ∩ B]
= 0.15 + 0.12 − 0.08
= 0.19

3. P
[
C c ∩ Bc] = P

[
(C ∪ B)c]

= 1 − P [C ∪ B]
= 1 − 0.19
= 0.81

4. P [Bc] = 1 − P [B] = 1 − 0.12 = 0.88

5. P [B ∩ C c] = 0.04 (see the Venn diagram)

1.4 CONDITIONAL PROBABILITY

The probability of an event is often affected by the occur-
rence of other events and/or the knowledge of information
relevant to the event. Given two events, A and B , of an ex-
periment, P [B | A] is called the conditional probability of
B given that A has already occurred. It is defined by

P [B | A] = P [A ∩ B]

P [A]
(1.10)

That is, if we are given that event A has occurred, then A
becomes our sample space. The probability that B has also
occurred within this new sample space will be the ratio of
the “area” of B within A to the “area” of A.

0.81

S
BC

0.08 0.040.07

Figure 1.5 Venn diagram of CPT sounding events.

Example 1.14 Reconsidering Example 1.12, what is the
probability that battery B will fail during the battery design
life given that battery A has already failed?

SOLUTION We are told that FA has occurred. This means
that we are somewhere inside the FA circle of Figure 1.4,
which has “area” 0.04. We are asked to compute the
conditional probability that FB occurs given that FA has
occurred. This will be just the ratio of the area of FB and
FA to the area of FA,

P [FB |FA] = P [FA ∩ FB ]

P [FA]
= 0.01

0.04
= 0.25

Example 1.15 A single soil sample is selected at random
from a site. Three different toxic compounds, denoted A,
B , and C , are known to occur in samples at this site with
the following probabilities:

P [A] = 0.01, P [A ∩ C ] = 0.003,

P [A ∩ B] = 0.0025, P [C ] = 0.0075,

P [A ∩ B ∩ C ] = 0.001, P [B ∩ C ] = 0.002,

P [B] = 0.05

If both toxic compounds A and B occur in a soil sample, is
the toxic compound C more likely to occur than if neither
toxic compounds A nor B occur?

SOLUTION From the given information we can draw the
Venn diagram in Figure 1.6.

We want to compare P [C |A ∩ B] and P [C |Ac ∩ Bc],
where

P [C | A ∩ B] = P [C ∩ A ∩ B]

P [A ∩ B]
= 0.001

0.0025
= 0.4

S

A
B

C

0.0055

0.002
0.001

0.0035

0.0465

0.939

0.0015

0.001

Figure 1.6 Venn diagram of toxic compound occurrence events.
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P
[
C | Ac ∩ Bc] = P [C ∩ Ac ∩ Bc]

P [Ac ∩ Bc]

= 0.0035

0.939 + 0.0035
= 0.0037

so the answer to the question is, yes, if both toxic com-
pounds A and B occur in a soil sample, then toxic com-
pound C is much more likely to also occur.

Sometimes we know P [B | A] and wish to compute
P [A ∩ B]. If the events A and B can both occur, then

P [A ∩ B] = P [B | A] P [A] (1.11)

Example 1.16 A site is composed of 60% sand and 40%
silt in separate layers and pockets. At this site, 10% of sand
samples and 5% of silt samples are contaminated with trace
amounts of arsenic. If a soil sample is selected at random,
what is the probability that it is a sand sample and that it
is contaminated with trace amounts of arsenic?

SOLUTION Let A be the event that the sample is sand.
Let B be the event that the sample is silt. Let C be the
event that the sample is contaminated with arsenic. Given
P [A] = 0.6, P [B] = 0.4, P [C | A] = 0.1, and P [C | B] =
0.05. We want to find P [A ∩ C ]:

P [A ∩ C ] = P [A] P [C | A] = 0.6 × 0.1 = 0.06

Two events A and B are independent if and only if
P [A ∩ B] = P [A] P [B]. This also implies that P [A | B] =
P [A], that is, if the two events are independent, then
they do not affect the probability of the other occurring.
Note that independent events are not disjoint and disjoint
events are not independent! In fact, if two events are
disjoint, then if one occurs, the other cannot have oc-
curred. Thus, the occurrence of one of two disjoint events
has a severe impact on the probability of occurrence of
the other event (its probability of occurrence drops to
zero).

If, in an experiment, the events A1, A2, . . . , Ak can all
occur, then

P [A1 ∩ A2 ∩ · · · ∩ Ak ]

= P [A1] P [A2 | A1] P [A3 | A1 ∩ A2]

· · · P
[
Ak | A1 ∩ · · · ∩ Ak−1

]
= P [Ak ] P

[
Ak−1 | Ak

]
· · · P [A1 | Ak ∩ · · · ∩ A2] (1.12)

On the right-hand side, we could have any ordering of the
A’s. If the events A1, A2, . . . , Ak are independent, then this

simplifies to

P [A1 ∩ A2 ∩ · · · ∩ Ak ] = P [A1] P [A2] · · · P [Ak ]
(1.13)

Example 1.17 Four retaining walls, A, B, C, and D, are
constructed independently. If their probabilities of sliding
failure are estimated to be P [A] = 0.01, P [B] = 0.008,
P [C ] = 0.005, and P [D] = 0.015, what is the probability
that none of them will fail by sliding?

SOLUTION Let A be the event that wall A will fail. Let
B be the event that wall B will fail. Let C be the event that
wall C will fail. Let D be the event that wall D will fail.
Given P [A] = 0.01, P [B] = 0.008, P [C ] = 0.005, P [D] =
0.015, and that the events A, B , C , and D are independent.
We want to find P [Ac ∩ Bc ∩ C c ∩ Dc]:

P
[
Ac ∩ Bc ∩ C c ∩ Dc]

= P
[
Ac]P

[
Bc] P

[
C c]P

[
Dc]

(since A, B , C , and D are independent)

= (1 − P [A])(1 − P [B])(1 − P [C ])(1 − P [D])

= (1 − 0.01)(1 − 0.008)(1 − 0.005)(1 − 0.015)

= 0.9625

1.4.1 Total Probability

Sometimes we know the probability of an event in terms
of the occurrence of other events and want to compute
the unconditional probability of the event. For example,
when we want to compute the total probability of failure
of a bridge, we can start by computing a series of simpler
problems such as:

1. Probability of bridge failure given a maximum static
load

2. Probability of bridge failure given a maximum dy-
namic traffic load

3. Probability of bridge failure given an earthquake
4. Probability of bridge failure given a flood

The total probability theorem can be used to combine the
above probabilities into the unconditional probability of
bridge failure. We need to know the above conditional prob-
abilities along with the probabilities that the “conditions”
occur (e.g., the probability that the maximum static load
will occur during the design life).

Example 1.18 A company manufactures cone penetration
testing equipment. Of the piezocones they use, 50% are
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produced at plant A, 30% at plant B, and 20% at plant C.
It is known that 1% of plant A’s, 2% of plant B’s, and 3%
of plant C’s output are defective. What is the probability
that a piezocone chosen at random will be defective?

Setup
Let A be the event that the piezocone was produced at plant
A. Let B be the event that the piezocone was produced
at plant B . Let C be the event that the piezocone was
produced at plant C . Let D be the event that the piezocone
is defective. Given

P [A] = 0.50, P [D | A] = 0.01,

P [B] = 0.30, P [D | B] = 0.02,

P [C ] = 0.20, P [D | C ] = 0.03

We want to find P [D]. There are at least two possible
approaches.

Approach 1
A Venn diagram of the sample space is given in Figure 1.7.
The information given in the problem does not allow the
Venn diagram to be easily filled in. It is easy to see the
event of interest, though, as it has been shaded in. Then

P [D] = P [(D ∩ A) ∪ (D ∩ B) ∪ (D ∩ C )]

= P [D ∩ A] + P [D ∩ B] + P [D ∩ C ]

since A ∩ D , B ∩ D , and C ∩ D are disjoint

= P [D | A] · P [A] + P [D | B] · P [B]

+ P [D | C ] · P [C ]

= 0.01(0.5) + 0.02(0.3) + 0.03(0.2)

= 0.017

Approach 2
Recall that when we only had probabilities like P [A] , P [B] ,
. . . , that is, no conditional probabilities, we found it helpful
to represent the probabilities in a Venn diagram. Unfortu-
nately, there is no easy representation of the conditional
probabilities in a Venn diagram: (In fact, conditional prob-

A B C

D

S

Figure 1.7 Venn diagram of piezocone events.

abilities are ratios of probabilities that appear in the Venn
diagram.) Conditional probabilities find a more natural
home on event trees. Event trees must be constructed care-
fully and adhere to certain rules if they are going to be
useful in calculations. Event trees consist of nodes and
branches. There is a starting node from which two or
more branches leave. At the end of each of these branches
there is another node from which more branches may leave
(and go to separate nodes). The idea is repeated from
the newer nodes as often as required to completely de-
pict all possibilities. A probability is associated with each
branch and, for all branches except those leaving the start-
ing node, the probabilities are conditional probabilities.
Thus, the event tree is composed largely of conditional
probabilities.

There is one other rule that event trees must obey:
Branches leaving any node must form a partition of the
sample space. That is, the events associated with each
branch must be disjoint—you cannot be on more than one
branch at a time—and must include all possibilities. The
sum of probabilities of all branches leaving a node must
be 1.0. Also keep in mind that an event tree will only be
useful if all the branches can be filled with probabilities.

The event tree for this example is constructed as follows.
The piezocone must first be made at one of the three plants,
then depending on where it was made, it could be defective
or not. The event tree for this problem is thus as given
in Figure 1.8. Note that there are six “paths” on the tree.
When a piezocone is selected at random, exactly one of
these paths will have been followed—we will be on one
of the branches. Recall that interest is in finding P [D].
The event D will have occurred if either the first, third,
or fifth path was followed. That is, the probability that the
first, third, or fifth path was followed is sought. If the first
path is followed, then the event A ∩ D has occurred. This
has probability found by multiplying the probabilities along
the path,

P [A ∩ D] = P [D | A] · P [A] = 0.01(0.5) = 0.005

A

B

C

D

D

D

Dc

Dc

Dc

0.01

0.99
0.02

0.98
0.03

0.97

0.5

0.3

0.2

Figure 1.8 Event tree for piezocone events.
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Looking back at the calculation performed in Approach 1,
P [D] was computed as

P [D] = P [D | A] · P [A] + P [D | B] · P [B]

+ P [D | C ] · P [C ]

= 0.01(0.5) + 0.02(0.3) + 0.03(0.2)

= 0.017

which, in terms of the event tree, is just the sum of
all the paths that lead to the outcome that you desire,
D . Event trees make “total probability” problems much
simpler. They give a “picture” of what is going on and
allow the computation of some of the desired probabilities
directly.

The above is an application of the total probability
theorem, which is stated generally as follows:

Total Probability Theorem If the events B1, B2, . . . , Bk

constitute a partition of the sample space S (i.e., are disjoint
and collectively exhaustive), then for any event A in S

P [A] =
k∑

i=1

P [Bi ∩ A] =
k∑

i=1

P [A | Bi ] P [Bi ] (1.14)

1.4.2 Bayes’ Theorem

Sometimes we want to improve an estimate of a probability
in light of additional information. Bayes’ theorem allows
us to do this. It arises from the observation that P [A ∩ B]
can be written in two ways:

P [A ∩ B] = P [A | B] · P [B]

= P [B | A] · P [A] (1.15)

which implies that P [B | A] · P [A] = P [A | B] · P [B], or

P [B | A] = P [A | B] · P [B]

P [A]
(1.16)

Example 1.19 Return to the manufacturer of piezocones
from above (Example 1.18). If a piezocone is selected at
random and found to be defective, what is the probability
that it came from plant A?

Setup
Same as before, except now the probability of interest is
P [A | D]. Again, there are two possible approaches.

Approach 1
The relationship

P [A | D] = P [A ∩ D]

P [D]

A B C

D

Figure 1.9 Venn diagram of conditional piezocone events.

can be seen as a ratio of areas in the Venn diagram
in Figure 1.9, from which P [A | D] can be computed as
follows:

P [A | D]

= P [A ∩ D]

P [D]

= P [A ∩ D]

P [(A ∩ D) ∪ (B ∩ D) ∪ (C ∩ D)]

= P [A ∩ D]

P [A ∩ D] + P [B ∩ D] + P [C ∩ D]

since A ∩ D , B ∩ D , and C ∩ D are disjoint

= P [D | A] P [A]

P [D | A] P [A] + P [D | B] P [B] + P [D | C ] P [C ]

= 0.01(0.5)

(0.01)(0.5) + 0.02(0.3) + 0.03(0.2)
= 0.005

0.017

= 0.294

Note that the denominator had already been calculated in
the previous question; however the computations have been
reproduced here for illustrative purposes.

Approach 2
The probability P [A | D] can be easily computed from the
event tree. We are looking for the probability that A has
occurred given that D has occurred. In terms of the paths
on the tree, we know that (since D has occurred) one
of the first, third, or fifth path has been taken. We want
the probability that the first path was taken out of the
three possible paths. Thus, we must compute the relative
probability of taking path 1 out of the three paths:

P [A | D]

= P [D | A] P [A]

P [D | A] P [A] + P [D | B] P [B] + P [D | C ] P [C ]

= 0.01(0.5)

(0.01)(0.5) + 0.02(0.3) + 0.03(0.2)
= 0.005

0.017

= 0.294

Event trees provide a simple graphical approach to solving
problems involving conditional probabilities.
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The above is an application of Bayes’ Theorem, which
is stated formally as follows.

Bayes’ Theorem If the events B1, B2, . . . , Bk constitute
a partition of the sample space S (i.e., are disjoint and
collectively exhaustive), then for any event A of S such
that P [A] �= 0

P
[
Bj | A

] = P
[
Bj ∩ A

]
∑k

i=1 P [Bi ∩ A]

= P
[
A | Bj

]
P
[
Bj
]

∑k
i=1 P [A | Bi ] P [Bi ]

= P
[
A | Bj

]
P
[
Bj
]

P [A]

(1.17)

for any j = 1, 2, . . . , k .

Bayes’ theorem is useful for revising or updating prob-
abilities as more data and information become available.
In the previous example on piezocones, there was an initial
probability that a piezocone would have been manufactured
at plant A: P [A] = 0.5. This probability is referred to as the
prior probability of A. That is, in the absence of any other
information, a piezocone chosen at random has a probability
of having been manufactured at plant A of 0.5. However, if
a piezocone chosen at random is found to be defective (so
that there is now more information on the piezocone), then
the probability that it was manufactured at plant A reduces
from 0.5 to 0.294. This latter probability is referred to as the
posterior probability of A. Bayesian updating of probabili-
ties is a very powerful tool in engineering reliability-based
design.

For problems involving conditional probabilities, event
trees are usually the easiest way to proceed. However, event
trees are not always easy to draw, and the purely mathemat-
ical approach is sometimes necessary. As an example of a
tree which is not quite straightforward, see if you can draw
the event tree and answer the questions in the following
exercise. Remember that you must set up the tree in such
a way that you can fill in most of the probabilities on the
branches. If you are left with too many empty branches and
no other given information, you are likely to have confused
the order of the events; try reorganizing your tree.

Exercise When contracting out a site investigation, an
engineer will check companies A, B , and C in that sequence
and will hire the first company which is available to
do the work. From past experience, the engineer knows
that the probability that company A will be available is
0.2. However, if company A is not available, then the
probability that company B will be available is only 0.04. If
neither company A nor B is available, then the probability

that company C will be available is 0.4. If none of the
companies are available, the engineer is forced to delay the
investigation to a later time.

(a) What is the probability that one of the companies A or
B will be available?

(b) What is the probability that the site investigation will
take place on time?

(c) If the site investigation takes place on time, what is the
probability that it was not investigated by company C?

Example 1.20 At a particular site, experience has shown
that piles have a 20% probability of encountering a soft
clay layer. Of those which encounter this clay layer, 60%
fail a static load test. Of the piles which do not encounter
the clay layer, only 10% fail a static load test.

1. What is the probability that a pile selected at random
will fail a static load test?

2. Supposing that a pile has failed a static load test, what
is the updated probability that it encountered the soft
clay layer?

SOLUTION For a pile, let C be the event that a soft
clay layer was encountered and let F be the event that
the static load test was failed. We are given P [C ] = 0.2,
P [F | C ] = 0.6, and P [F | C c] = 0.1.

1. We have the event tree in Figure 1.10 and thus
P [F ] = 0.2(0.6) + 0.8(0.1) = 0.2.

2. From the above tree, we have

P [C | F ] = 0.2 × 0.6

0.2
= 0.6

1.4.3 Problem-Solving Methodology

Solving real-life problems (i.e., “word problems”) is not
always easy. It is often not perfectly clear what is meant
by a worded question. Two things improve one’s chances
of successfully solving problems which are expressed using
words: (a) a systematic approach, and (b) practice. It is
practice that allows you to identify those aspects of the
question that need further clarification, if any. Below, a
few basic recommendations are outlined.

0.2

0.8

0.6

0.4

0.1

0.9

F

Fc

F

Fc
Cc

C

Figure 1.10 Event tree for pile encounter events.
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1. Solving a word problem generally involves the com-
putation of some quantity. Clearly identify this quan-
tity at the beginning of the problem solution. Before
starting any computations, it is good practice to write
out your concluding sentence first. This forces you to
concentrate on the essentials.

2. In any problem involving the probability of events,
you should:

(a) Clearly define your events. Use the following guide-
lines:

(i) Keep events as simple as possible.
(ii) if your event definition includes the words and,

or, given, if, when, and so on, then it is NOT
a good event definition. Break your event into
two (or more, if required) events and use the
∩ , ∪ , or | operators to express what you had
originally intended. The complement is also a
helpful operator, see (iii).

(iii) You do not need to define separate events for,
for example, “an accident occurs” and “an ac-
cident does not occur”. In fact, this will often
lead to confusion. Simply define A to be one
of the events and use Ac when you want to re-
fer to the other. This may also give you some
hints as to how to proceed since you know that
P [Ac] = 1 − P [A].

(b) Once your events are defined, you need to go through
the worded problem to extract the given numerical
information. Write this information down in the
form of probabilities of the events that you defined
above. For example, P [A] = 0.23, P [B | A] = 0.6,
and so on. Note that the conditional probabilities, are
often difficult to unravel. For example, the following
phrases all translate into a probability statement of
the form P [A | B]:

If . . . occurs, the probability of . . . doubles. . . .
In the event that . . . occurs, the probability of . . .

becomes 0.6.
When . . . occurs, the probability of . . . becomes 0.43.
Given that . . . occurs, the probability of . . . is 0.3.

In this case, you will likely be using one of the
conditional probability relationship (P [A ∩ B] =
P [B | A] P [A]), the total probability theorem, or
Bayes’ Theorem.

(c) Now review the worded problem again and write
down the probability that the question is asking for
in terms of the events defined above. Although the
question may be in worded form, you should be
writing down something like P [A ∩ B] or P [B | A].
Make sure that you can express the desired probabil-
ity in terms of the events you defined above. If you

cannot, then you need to revise your original event
definitions.

(d) Finally, use the rules of combining probabilities
(e.g., probabilities of unions or intersections, Bayes’
Theorem) to compute the desired probability.

1.5 RANDOM VARIABLES AND PROBABILITY
DISTRIBUTIONS

Although probability theory is based on the idea of events
and associated set theory, it becomes very unwieldy to
treat random events like “time to failure” using explicit
event definitions. One would conceivably have to define
a separate event for each possible time of failure and so
would soon run out of symbols for the various events.
For this reason, and also because they allow the use of a
wealth of mathematical tools, random variables are used to
represent a suite of possible events. In addition, since most
engineering problems are expressed in terms of numerical
quantities, random variables are particularly appropriate.

Definition Consider a sample space S consisting of a set
of outcomes {s1, s2, . . .}. If X is a function that assigns a real
number X (s) to every outcome s ∈ S , then X is a random
variable. Random variables will be denoted with uppercase
letters.

Now what does this mean in plain English? Essentially
a random variable is a means of identifying events in
numerical terms. For example, if the outcome s1 means
that an apple was selected and s2 means that an orange
was selected, then X (s1) could be set equal to 1 and
X (s2) could be set equal to 0. Then X > 0 means that
an apple was selected. Now mathematics can be used on
X , that is, if the fruit-picking experiment is repeated n
times and x1 = X1(s) is the outcome of the first experiment,
x2 = X2(s) the outcome of the second, and so on, then
the total number of apples picked is

∑n
i=1 xi . Note that

mathematics could not be used on the actual outcomes
themselves; for example, picking an apple is a real event
which knows nothing about mathematics nor can it be used
in a mathematical expression without first mapping the
event to a number.

For each outcome s , there is exactly one value of x =
X (s), but different values of s may lead to the same x . We
will see examples of this shortly.

The above discussion illustrates in a rather simple way
one of the primary motivations for the use of random
variables—simply so that mathematics can be used. One
other thing might be noticed in the previous paragraph.
After the “experiment” has taken place and the outcome is
known, it is referred to using lowercase, xi . That is xi has
a known fixed value while X is unknown. In other words
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x is a realization of the random variable X . This is a rather
subtle distinction, but it is important to remember that X is
unknown. The most that we can say about X is to specify
what its likelihoods of taking on certain values are—we
cannot say exactly what the value of X is.

Example 1.21 Two piles are to be randomly selected for
testing from a group of 60 piles. Five of the piles are 0.5 m
in diameter, the rest are 0.3 m in diameter. If X is the
number of 0.5-m-diameter piles selected for testing, then X
is a random variable that assigns a number to each outcome
in the sample space according to:

Sample Space X

NN 0
NL 1
LN 1
LL 2

The sample space is made up of pairs of possible outcomes,
where N represents a “normal” diameter pile (0.3 m) and L
represents a large -diameter pile (0.5 m). For example, LN
means that the first pile selected was large and the second
pile selected was normal. Notice that the outcomes {NL}
and {LN } both lead to X = 1.

Sample spaces corresponding to random variables may
be discrete or continuous:

Discrete: A random variable is called a discrete random
variable if its set of possible outcomes is countable. This
usually occurs for any random variable which is a count
of occurrences or of items, for example, the number of
large-diameter piles selected in the previous example.

Continuous: A random variable is called a continuous
random variable if it can take on values on a continuous
scale. This is usually the case with measured data, such
as cohesion.

Example 1.22 A few examples:

1. Let X be the number of blows in a standard penetra-
tion test—X is discrete.

2. Let Y be the number of piles driven in one day—Y
is discrete.

3. Let Z be the time until consolidation settlement ex-
ceeds some threshold—Z is continuous.

4. Let W be the number of grains of sand involved in
a sand cone test—W is discrete but is often approxi-
mated as continuous, particularly since W can be very
large.

1.5.1 Discrete Random Variables

Discrete random variables are those that take on only dis-
crete values {x1, x2, . . .}, that is, have a countable number
of outcomes. Note that countable just means that the out-
comes can be numbered 1, 2, . . . , however there could still
be an infinite number of them. For example, our experiment
might be to count the number of soil tests performed before
one yields a cohesion of 200 MPa. This is a discrete random
variable since the outcome is one of 0, 1, . . . , but the num-
ber may be very large or even (in concept) infinite (implying
that a soil sample with cohesion 200 MPa was never found).

Discrete Probability Distributions As mentioned previ-
ously, we can never know for certain what the value of
a random variable is (if we do measure it, it becomes a
realization—presumably the next measurement is again un-
certain until it is measured, and so on). The most that we
can say about a random variable is what its probability is
of assuming each of its possible values. The set of prob-
abilities assigned to each possible value of X is called a
probability distribution. The sum of these probabilities over
all possible values must be 1.0.

Definition The set of ordered pairs (x , fX (x )) is the prob-
ability distribution of the discrete random variable X if, for
each possible outcome x ,

1. 0 ≤ fX (x ) ≤ 1

2.
∑
all x

fX (x ) = 1

3. P [X = x ] = fX (x )

Here, fX (x ) is called the probability mass function of X .
The subscript is used to indicate what random variable is
being governed by the distribution. We shall see when we
consider continuous random variables why we call this a
probability “mass” function.

Example 1.23 Recall Example 1.21. We can compute
the probability mass function of the number of large piles
selected by using the counting rules of Section 1.2.3.
Specifically,

fX (0) = P [X = 0] =
(5

0

)(55
2

)
(60

2

) = 0.8390

fX (1) = P [X = 1] =
(5

1

)(55
1

)
(60

2

) = 0.1554

fX (2) = P [X = 2] =
(5

2

)(55
0

)
(60

2

) = 0.0056
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and thus the probability mass function of the random
variable X is

x fX (x )

0 0.8390
1 0.1554
2 0.0056

Discrete Cumulative Distributions An equivalent de-
scription of a random variable is the cumulative distribution
function (cdf), which is defined as follows:

Definition The cumulative distribution function FX (x ) of
a discrete random variable X with probability mass function
fX (x ) is defined by

FX (x ) = P [X ≤ x ] =
∑
t≤x

fX (t) (1.18)

We say that this is equivalent to the probability mass
function because one can be obtained from the other,

fX (xi ) = FX (xi ) − FX (xi−1) (1.19)

Example 1.24 In the case of an experiment involving
tossing a fair coin three times we can count the number
of heads which appear and assign that to the random vari-
able X . The random variable X can assume four values 0,
1, 2, and 3 with probabilities 1

8 , 3
8 , 3

8 , and 1
8 (do you know

how these probabilities were computed?). Thus, FX (x ) is
defined as

FX (x ) =




0 if x < 0

1
8 if 0 ≤ x < 1

4
8 if 1 ≤ x < 2

7
8 if 2 ≤ x < 3

1 if 3 ≤ x

and a graph of FX (x ) appears in Figure 1.11. The values of
FX (x ) at x = 0, 1, . . . are shown by the closed circles.

Discrete probability mass functions are often represented
using a bar plot, where the height of each bar is equal to the
probability that the random variable takes that value. For
example, the bar plot of the pile problem (Examples 1.21
and 1.23) would appear as in Figure 1.12.

1.5.2 Continuous Random Variables

Continuous random variables can take on an infinite number
of possible outcomes—generally X takes values from the
real line �. To illustrate the changes involved when we

0 1 2 3 4 5
x

0
1/

8
2/

8
3/

8
4/

8
5/

8
6/

8
7/

8
1

F
X

(x
)

Figure 1.11 Cumulative distribution function for the three-coin
toss.

x1 20

0.1554

0.0056

0.8390
f(

x)

Figure 1.12 Bar plot of fX (x ) for number of large piles
selected, X .

go from the discrete to the continuous case, consider the
probability that a grain silo experiences a bearing capacity
failure at exactly 4.3673458212. . . years from when it is
installed. Clearly the probability that it fails at exactly that
instant in time is essentially zero. In general the probability
that it fails at any one instant in time is vanishingly small.
In order to characterize probabilities for continuous random
variables, we cannot use probabilities directly (since they
are all essentially zero); we must use relative likelihoods.
That is, we say that the probability that X lies in the small
interval between x and x + dx is fX (x ) dx , or

P [x < X ≤ x + dx ] = fX (x ) dx (1.20)

where fX (x ) is now called the probability density function
(pdf) of the random variable X . The word density is used
because “density” must be multiplied by a length measure
in order to get a “mass.” Note that the above probability
is vanishingly small because dx is vanishingly small. The
function fX (x ) is now the relative likelihood that X lies in a
very small interval near x . Roughly speaking, we can think
of this as P [X = x ] = fX (x ) dx .
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Continuous Probability Distributions

Definition The function fX (x ) is a probability density
function for the continuous random variable X defined over
the set of real numbers if

1. 0 ≤ fX (x ) < ∞ for all −∞ < x < + ∞,

2.
∫ ∞

−∞
fX (x ) dx = 1 (i.e., the area under the pdf is 1.0),

and

3. P [a < X < b] =
∫ b

a
fX (x ) dx (i.e., the area under

fX (x ) between a and b).

Note: it is important to recognize that, in the continuous
case, fX (x ) is no longer a probability. It has units of
probability per unit length. In order to get probabilities,
we have to find areas under the pdf, that is, sum values of
fX (x ) dx .

Example 1.25 Suppose that the time to failure, T in years,
of a clay barrier has the probability density function

fT (t) =
{

0.02e−0.02t if t ≥ 0
0 otherwise

This is called an exponential distribution and distributions
of this exponentially decaying form have been found to
well represent many lifetime-type problems. What is the
probability that T will exceed 100 years?

SOLUTION The distribution is shown in Figure 1.13. If
we consider the more general case where

fT (t) =
{

λe−λt if t ≥ 0
0 otherwise

0 50 100 150 200
t (years)

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

f T
 (

t)

P[T > 100]

Figure 1.13 Exponential distribution illustrating P [T > 100].

then we get

P [T > 100] = P [100 < T < ∞] =
∫ ∞

100
λe−λt dt

= −e−λt
∣∣∣∞
100

= −e−∞λ + e−100λ

= e−100λ

For λ = 0.02, as is the case in this problem,

P [T > 100] = e−100×0.02 = e−2 = 0.1353

Continuous Cumulative Distribution The cumulative
distribution function (cdf) for a continuous random variable
is basically defined in the same way as it is for a discrete
distribution (Figure 1.14).

Definition The cumulative distribution function FX (x ) of
a continuous random variable X having probability density
function fX (x ) is defined by the area under the density
function to the left of x :

FX (x ) = P [X ≤ x ] =
∫ x

−∞
fX (t) dt (1.21)

As in the discrete case, the cdf is equivalent to the pdf
in that one can be obtained from the other. It is simply
another way of expressing the probabilities associated with
a random variable. Since the cdf is an integral of the pdf,
the pdf can be obtained from the cdf as a derivative:

fX (x ) = dFX (x )

dx
(1.22)
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Figure 1.14 Cumulative distribution function for the exponen-
tial distribution.
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Example 1.26 Note that we could also have used the
cumulative distribution in Example 1.25. The cumulative
distribution function of the exponential distribution is

FT (t) = P [T ≤ t] =
∫ t

0
λe−λt dt = 1 − e−λt

and thus

P [T > 100] = 1 − P [T ≤ 100] = 1 − FT (100)

= 1 − (1 − e−100λ) = e−100λ

1.6 MEASURES OF CENTRAL TENDENCY,
VARIABILITY, AND ASSOCIATION

A random variable is completely described, as well as
can be, if its probability distribution is specified. How-
ever, we will never know the precise distribution of any
natural phenomenon. Nature cares not at all about our
mathematical models and the “truth” is usually far more
complex than we are able to represent. So we very often
have to describe a random variable using less complete
but more easily estimated measures. The most important
of these measures are central tendency and variability.
Even if the complete probability distribution is known,
these quantities remain useful because they convey infor-
mation about the properties of the random variable that
are of first importance in practical applications. Also, the
parameters of the distribution are often derived as func-
tions of these quantities or they may be the parameters
themselves.

The most common measures of central tendency and
variability are the mean and the variance, respectively. In
engineering, the variability of a random quantity is often
expressed using the dimensionless coefficient of variation,
which is the ratio of the standard deviation over the mean.
Also, when one has two random variables X and Y , it is fre-
quently of interest to measure how strongly they are related
(or associated) to one another. A typical measure of the
strength of the relationship between two random variables
is their covariance. As we shall see, covariance depends on
the units of the random variables involved and their indi-
vidual variabilities, and so a more intuitive measure of the
strength of the relationship between two random variables
is the correlation coefficient, which is both dimensionless
and bounded. All of these characteristics will be covered in
this section.

1.6.1 Mean

The mean is the most important characteristic of a random
variable, in that it tells us about its central tendency. It is
defined mathematically as follows:

Definition Let X be a random variable with probability
density function f (x ). The mean, or expected value, of X ,
denoted µX , is defined by

µX =




E [X ] =
∑

x

xf (x )

if X is discrete (1.23a )

E [X ] =
∫ ∞

−∞
xf (x ) dx

if X is continuous (1.23b )

where the subscript on µ, when present, denotes what µ is
the mean of.

Example 1.27 Let X be a discrete random variable which
takes on the values listed in the table below with associated
probabilities:

x −2 −1 0 1 2

f (x ) 1
12

1
6 k 1

3
1
4

1. Find the constant k such that fX (x ) is a legitimate
probability mass function for the random variable X .

2. Find the mean (expected value) of X .

SOLUTION

1. We know that the sum of all possible probabilities
must be 1, so that k = 1 − ( 1

12 + 1
6 + 1

3 + 1
4 ) = 1

6 .

2. E [X ] = (−2)( 1
12 ) + (−1)( 1

6 ) + 0( 1
6 ) + 1( 1

3 )
+ 2( 1

4 ) = 1
2 .

Expectation The notation E [X ] refers to a mathemati-
cal operation called expectation. The expectation of any
random variable is a sum of all possible values of the ran-
dom variable weighted by the probability of each value
occurring. For example, if X is a random variable with
probability (mass or density) function fX (x ), then the ex-
pected value of the random variable g(X ), where g is any
function of X , is

µg(X ) =




E
[
g(X )

] =
∑

x

g(x )fX (x )

if X is discrete

E
[
g(X )

] =
∫ ∞

−∞
g(x )fX (x ) dx

if X is continuous

(1.24)

Example 1.28 A researcher is looking at fibers as a
means of reinforcing soil. The fibers being investigated are
nominally of radius 10 µm. However, they actually have
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random radius R with probability density function (in units
of micrometers)

fR(r) =
{

3
4

[
1 − (10 − r)2

]
if 9 ≤ r ≤ 11

0 otherwise

What is the expected area of a reinforcing fiber?

SOLUTION The area of a circle of radius R is πR2. Thus,

E
[
πR2] = πE

[
R2] = π

∫ 11

9
r2 3

4

[
1 − (10 − r)2] dr

= 3

4
π

∫ 11

9

[−99r2 + 20r3 − r4] dr

= 3

4
π

[
−33r3 + 5r4 − r5

5

]11

9

= 3

4
π

(
668

5

)
= 501

5
π

= 314.8 µm2

If we have a sample of observations x1, x2, . . . , xn of
some population X , then the population mean µX is es-
timated by the sample mean x̄ , defined as

x̄ = 1

n

n∑
i=1

xi (1.25)

Example 1.29 Suppose x = {x1, x2, . . . , xn} = {1, 3, 5,
7, 9}.

(a) What is x̄?
(b) What happens to x̄ if x = {1, 3, 5, 7, 79}?

SOLUTION In both cases, the sample size is n = 5.

(a) x̄ = 1
5 (1 + 3 + 5 + 7 + 9) = 5

(b) x̄ = 1
5 (1 + 3 + 5 + 7 + 79) = 19

Notice that the one (possible erroneous) observation of 79
makes a big difference to the sample mean. An alternative
measure of central tendency, which enthusiasts of robust
statistics vastly prefer, is the median, discussed next.

1.6.2 Median

The median is another measure of central tendency. We
shall denote the median as µ̃. It is the point which divides
the distribution into two equal halves. Most commonly, µ̃

is found by solving

FX (µ̃) = P
[
X ≤ µ̃

] = 0.5

for µ̃. For example, if fX (x ) = λe−λx , then FX (x ) = 1 −
e−λx , and we get

1 − e−λµ̃ = 0.5 =⇒ µ̃X = − ln(0.5)

λ
= 0.693

λ

While the mean is strongly affected by extremes in the
distribution, the median is largely unaffected.

In general, the mean and the median are not the same.
If the distribution is positively skewed (or skewed right,
which means a longer tail to the right than to the left), as
are most soil properties, then the mean will be to the right
of the median. Conversely, if the distribution is skewed
left, then the mean will be to the left of the median. If the
distribution is symmetric, then the mean and the median
will coincide.

If we have a sample of observations x1, x2, . . . , xn of
some population X , then the population median µ̃X is esti-
mated by the sample median x̃ . To define x̃ , we must first
order the observations from smallest to largest, x(1) ≤ x(2) ≤
· · · ≤ x(n). When we have done so, the sample median is
defined as

x̃ =
{

x(n+1)/2 if n is odd

1
2

(
x(n/2) + x(n+1)/2

)
if n is even

Example 1.30 Suppose x = {x1, x2, . . . , xn} = {1, 3, 5,
7, 9}.

(a) What is x̃?
(b) What happens to x̃ if x = {1, 3, 5, 7, 79}?

SOLUTION In both cases, the sample size is odd with
n = 5. The central value is that value having the same
number of smaller values as larger values. In this case,

(a) x̃ = x3 = 5
(b) x̃ = x3 = 5

so that the (possibly erroneous) extreme value does not have
any effect on this measure of the central tendency.

Example 1.31 Suppose that in 100 samples of a soil at
a particular site, 99 have cohesion values of 1 kPa and 1
has a cohesion value of 3901 kPa (presumably this single
sample was of a boulder or an error). What are the mean
and median cohesion values at the site?

SOLUTION The mean cohesion is

x̄ = 1
100 (1 + 1 + · · · + 1 + 3901) = 40 kPa

The median cohesion is

x̃ = 1 kPa



20 1 REVIEW OF PROBABILITY THEORY

Clearly, in this case, the median is a much better rep-
resentation of the site. To design using the mean would
almost certainly lead to failure.

1.6.3 Variance

The mean (expected value) or median of the random vari-
able X tells where the probability distribution is “centered.”
The next most important characteristic of a random vari-
able is whether the distribution is “wide,” “narrow,” or
somewhere in between. This distribution “variability” is
commonly measured by a quantity call the variance of X .

Definition Let X be a random variable with probability
(mass or density) function fX (x ) and mean µX . The variance
σ 2

X of X is defined by

σ 2
X = Var [X ] = E

[
(X − µX )2]

=




∑
x

(x − µX )2fX (x ) for discrete X

∫ ∞

−∞
(x − µX )2fX (x ) dx for continuous X

(1.26)

The variance of the random variable X is sometimes
more easily computed as

σ 2
X = E

[
X 2]− E2[X ] = E

[
X 2]− µ2

X (1.27)

The variance σ 2
X has units of X 2. The square root of the

variance, σX , is called the standard deviation of X , which
is illustrated in Figure 1.15. Since the standard deviation
has the same units as X , it is often preferable to report the
standard deviation as a measure of variability.
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Figure 1.15 Two distributions illustrating how the position and
shape change with changes in mean and variance.

Example 1.32 Recall Example 1.27. Find the variance
and standard deviation of X .

SOLUTION Var [X ] = E
[
X 2
]− E2[X ]

where

E
[
X 2] = (−2)2( 1

12 ) + (−1)2( 1
6 ) + 02( 1

6 )

+ 12( 1
3 ) + 22( 1

4 ) = 11
6

Thus, Var [X ] = E
[
X 2
]− E2[X ] = 11

6 − ( 1
2 )2 = 19

12 and

σX =
√

Var [X ] =
√

19
12 = 1.258

Even though the standard deviation has the same units
as the mean, it is often still not particularly informative.
For example, a standard deviation of 1.0 may indicate
significant variability when the mean is 1.0 but indicates
virtually deterministic behavior when the mean is one
million. For example, an error of 1 m on a 1-m survey
would be considered unacceptable, whereas an error of 1-
m on a 1000-km survey might be considered quite accurate.
A measure of variability which both is nondimensional and
delivers a relative sense of the magnitude of variability is
the coefficient of variation, defined as

v = σ

µ
(1.28)

Example 1.33 Recall Examples 1.27 and 1.29. What is
the coefficient of variation of X ?

SOLUTION

vX =
√

19/12

1/2
= 2.52

or about 250%, which is a highly variable process.

Note that the coefficient of variation becomes undefined
if the mean of X is zero. It is, however, quite popular as
a way of expressing variability in engineering, particularly
for material property and load variability, which generally
have nonzero means.

1.6.4 Covariance

Often one must consider more than one random variable
at a time. For example, the two components of a drained
soil’s shear strength, tan(φ′) and c′, will vary randomly
from location to location in a soil. These two quantities can
be modeled by two random variables, and since they may
influence one another (or they may be jointly influenced
by some other factor), they are characterized by a bivariate
distribution. See Figure 1.16.
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Figure 1.16 Example bivariate probability density function,
fX Y (x , y).

Properties of Bivariate Distribution

Discrete: fX Y (x , y) = P
[
X = x ∩ Y = y

]
0 ≤ fX Y (x , y) ≤ 1∑

all x

∑
all y

fX Y (x , y) = 1

Continuous: fX Y (x , y) dx dy = P [x < X ≤ x

+ dx ∩ y < Y ≤ y + dy
]

fX Y (x , y) ≥ 0 for all (x , y) ∈ �2

∫ ∞

−∞

∫ ∞

−∞
fX Y (x , y) dx dy = 1

P
[
x1 < X ≤ x2 ∩ y1 < Y ≤ y2

]

=
∫ y2

y1

∫ x2

x1

fX Y (x , y) dx dy

Definition Let X and Y be random variables with joint
probability distribution fX Y (x , y). The covariance between
X and Y is defined by

Cov [X , Y ] = E [(X − µX )(Y − µY )] (1.29a)

=
∑

x

∑
y

(x − µX )(y − µY )fX Y (x , y)

(discrete case)

=
∫ ∞

−∞

∫ ∞

−∞
(x − µX )(y − µY )fX Y (x , y) dx dy

(continuous case) (1.29b)

The covariance between two random variables X and Y ,
having means µX and µY , respectively, may also be com-
puted as

Cov [X , Y ] = E [XY ] − E [X ] E [Y ] = E [XY ] − µX µY

(1.30)

Example 1.34 In order to determine the frequency of
electrical signal transmission errors during a cone pen-
etration test, a special cone penetrometer is constructed
with redundant measuring and electrical systems. Using this
penetrometer, the number of errors detected in the trans-
mission of tip resistance during a typical cone penetration
test can be measured and will be called X and the num-
ber of errors detected in the transmission of side friction
will be called Y . Suppose that statistics are gathered us-
ing this penetrometer on a series of penetration tests and
the following joint discrete probability mass function is
estimated:

y (side)
fX Y (x , y) 0 1 2 3 4

0 0.24 0.13 0.04 0.03 0.01
x 1 0.16 0.10 0.05 0.04 0.01

(tip) 2 0.08 0.05 0.01 0.00 0.00
3 0.02 0.02 0.01 0.00 0.00

Assuming that these numbers are correct, compute

1. The expected number of errors in the transmission of
the tip resistance

2. The expected number of errors in the transmission of
the side friction

3. The variance of the number of errors in the transmis-
sion of the tip resistance

4. The variance of the number of errors in the transmis-
sion of the side friction

5. The covariance between the number of errors in
the transmission of the tip resistance and the side
friction

SOLUTION We expand the table by summing rows and
columns to obtain the “marginal distributions” (i.e., uncon-
ditional distributions), fX (x ) and fY (y), of X and Y :

y (side)
fX Y (x , y) 0 1 2 3 4 fX (x )

0 0.24 0.13 0.04 0.03 0.01 0.45
x 1 0.16 0.10 0.05 0.04 0.01 0.36

(tip) 2 0.08 0.05 0.01 0.00 0.00 0.14
3 0.02 0.02 0.01 0.00 0.00 0.05

fY (y) 0.50 0.30 0.11 0.07 0.02 1.00
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so that

1. E [X ] =
∑

x
xfX (x ) = 0(0.45) + 1(0.36)

+ 2(0.14) + 3(0.05) = 0.79

2. E [Y ] =
∑

y
yfY (y) = 0(0.50) + 1(0.30) + 2(0.11)

+ 3(0.07) + 4(0.02) = 0.81

3. E
[
X 2] =

∑
x

x 2fX (x ) = 02(0.45) + 12(0.36)

+ 22(0.14) + 32(0.05) = 1.37

σ 2
X = E

[
X 2]− E2[X ] = 1.37 − 0.792 = 0.75

4. E
[
Y 2] =

∑
y

y2 fY (y) = 02(0.50) + 12(0.30)

+ 22(0.11) + 32(0.07) + 42(0.02) = 1.69

σ 2
Y = E

[
Y 2]− E2[Y ] = 1.69 − 0.812 = 1.03

5. E [XY ] =
∑

x

∑
y

xyfX Y (x , y) = (0)(0)(0.24)

+ (0)(1)(0.13) + · · · + (3)(2)(0.01) = 0.62

Cov [X , Y ] = E [XY ] − E [X ] E [Y ]

= 0.62 − 0.79(0.81) = −0.02

Although the covariance between two random variables
does give information regarding the nature of the rela-
tionship, the magnitude of Cov [X , Y ] does not indicate
anything regarding the strength of the relationship. This

is because Cov [X , Y ] depends on the units and variabil-
ity of X and Y . A quantity which is both normalized and
nondimensional is the correlation coefficient, to be dis-
cussed next.

1.6.5 Correlation Coefficient

Definition Let X and Y be random variables with joint
probability distribution fX Y (x , y). The correlation coefficient
between X and Y is defined to be

ρX Y = Cov [X , Y ]

σX σY

(1.31)

Figure 1.17 illustrates the effect that the correlation
coefficient has on the shape of a bivariate probability
density function, in this case for X and Y jointly normal.
If ρX Y = 0, then the contours form ovals with axes aligned
with the cartesian axes (if the variances of X and Y are
equal, then the ovals are circles). When ρX Y > 0, the ovals
become stretched and the major axis has a positive slope.
What this means is that when Y is large X will also tend
to be large. For example, when ρX Y = 0.6, as shown on
the right plot of Figure 1.17, then when Y = 8, the most
likely value X will take is around 7, since this is the peak of
the distribution along the line Y = 8. Similarly, if ρX Y < 0,
then the ovals will be oriented so that the major axis has a
negative slope. In this case, large values of Y will tend to
give small values of X .
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Figure 1.17 Effect of correlation coefficient ρX Y on contours of a bivariate probability density
function fXY (x , y) having µX = µY = 5, σX = 1.5 and σY = 2.0.
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We can show that −1 ≤ ρX Y ≤ 1 as follows: Consider
two random variables X and Y having variances σ 2

X and
σ 2

Y , respectively, and correlation coefficient ρX Y . Then

Var

[
X

σX

+ Y

σY

]
= σ 2

X

σ 2
X

+ σ 2
Y

σ 2
Y

+ 2
Cov [X , Y ]

σX σY

= 2
[
1 + ρX Y ]

≥ 0

which implies that ρX Y ≥ −1. Similarly,

Var

[
X

σX

− Y

σY

]
= σ 2

X

σ 2
X

+ σ 2
Y

σ 2
Y

− 2
Cov [X , Y ]

σX σY

= 2
[
1 − ρX Y ]

≥ 0

which implies that ρX Y ≤ 1. Taken together, these imply
that −1 ≤ ρX Y ≤ 1.

The correlation coefficient is a direct measure of the
degree of linear dependence between X and Y . When
the two variables are perfectly linearly related, ρX Y will
be either +1 or −1 (+1 if Y increases with X and −1
if Y decreases when X increases). When |ρX Y | < 1, the
dependence between X and Y is not completely linear;
however, there could still be a strong nonlinear depen-
dence. If two random variables X and Y are indepen-
dent, then their correlation coefficient will be zero. If the
correlation coefficient between two random variables X
and Y is 0, it does not mean that they are independent,
only that they are uncorrelated. Independence is a much
stronger statement than is ρX Y = 0, since the latter only
implies linear independence. For example, Y = X 2 may
be linearly independent of X (this depends on the range
of X ), but clearly Y and X are completely (nonlinearly)
dependent.

Example 1.35 Recall Example 1.30.

1. Compute the correlation coefficient between the num-
ber of errors in the transmission of tip resistance and
the number of errors in the transmission of the side
friction.

2. Interpret the value you found in 1.

SOLUTION

1. ρXY = −0.02√
0.75

√
1.03

= −0.023

2. With ρXY as small as −0.023, there is essentially no
linear dependence between the error counts.

1.7 LINEAR COMBINATIONS OF RANDOM
VARIABLES

Consider the random variables X1, X2, . . . , Xn and the con-
stants a1, a2, . . . ., an . If

Y = a1X1 + a2X2 + · · · + anXn =
n∑

i=1

ai Xi (1.32)

then Y is also a random variable, being a linear combination
of the random variables X1, . . . , Xn . Linear combinations of
random variables are common in engineering applications;
any sum is a linear combination. For example, the weight
of a soil mass is the sum of the weights of its constitutive
particles. The bearing strength of a soil is due to the sum
of the shear strengths along the potential failure surface.
This section reviews the basic results associated with linear
combinations.

1.7.1 Mean of Linear Combinations

The mean, or expectation, of a linear combination can
be summarized by noting that the expectation of a sum
is the sum of the expectations. Also, since constants can
be brought out in front of an expectation, we have the
following rules:

1. If a and b are constants, then

E [aX ± b] = aE [X ] ± b (1.33)

2. If g and h are functions of the random variable X ,
then

E
[
g(X ) ± h(X )

] = E
[
g(X )

]± E [h(X )] (1.34)

3. Similarly, for any two random variables X and Y ,

E
[
g(X ) ± h(Y )

] = E
[
g(X )

]± E [h(Y )] (1.35)

Note that this means, for example, E [X ± Y ] =
E [X ] ± E [Y ].

4. If X and Y are two uncorrelated random variables,
then

E [XY ] = E [X ] E [Y ] (1.36)

by virtue of the fact that Cov [X , Y ] = E [XY ] −
E [X ] E [Y ] = 0 when X and Y are uncorrelated. (This
actually has nothing to do with linear combinations
but often occurs in problems involving linear combi-
nations.)

In general, if

Y =
n∑

i=1

ai Xi (1.37)
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as in Eq. 1.32, then

E [Y ] =
n∑

i=1

ai E [Xi ] (1.38)

1.7.2 Variance of Linear Combinations

The variance of a linear combination is complicated by
the fact that the Xi ’s in the combination may or may
not be correlated. If they are correlated, then the variance
calculation will involve the covariances between the Xi ’s.
In general, the following rules apply:

1. If a and b are constants, then

Var [aX + b] = Var [aX ] + Var [b]

= a2Var [X ] = a2σ 2
X (1.39)

that is, the variance of a constant is zero, and since
variance is defined in terms of squared deviations
from the mean, all quantities, including constants, are
squared. Variance has units of X 2 (which is why we
often prefer the standard deviation in practice).

2. If X and Y are random variables with joint probability
distribution fX Y (x , y) and a and b are constants, then

Var [aX + bY ] = a2σ 2
X + b2σ 2

Y + 2ab Cov [X , Y ]
(1.40)

Note that the sign on the last term depends on the
sign of a and b but that the variance terms are always
positive. Note also that, if X and Y are uncorrelated,
then Cov [X , Y ] = 0, so that, in this case, the above
simplifies to

Var [aX + bY ] = a2σ 2
X + b2σ 2

Y (1.41)

If we consider the more general case where (as in
Eq. 1.37)

Y =
n∑

i=1

ai Xi

then we have the following results:

3. If X1, X2, . . . , Xn are correlated, then

Var [Y ] =
n∑

i=1

n∑
j=1

ai aj Cov
[
Xi , Xj

]
(1.42)

where we note that Cov [Xi , Xi ] = Var [Xi ]. If n = 2,
the equation given in item 2 is obtained by replacing
X1 with X and X2 with Y .

4. If X1, X2, . . . , Xn are uncorrelated random variables,
then

Var [a1X1 + · · · + anXn ]

= a2
1σ 2

X 1
+ · · · + a2

nσ 2
X n

=
n∑

i=1

a2
i σ 2

Xi
(1.43)

which follows from item 3 by noting that, if Xi and Xj

are uncorrelated for all i �= j , then Cov
[
Xi , Xj

] = 0
and we are left only with the Cov [Xi , Xi ] = σ 2

X i
terms

above. This means that, if the X ’s are uncorrelated,
then the variance of a sum is the sum of the variances.
(However, remember that this rule only applies if the
X ’s are uncorrelated.)

Example 1.36 Let X and Y be independent random
variables with E [X ] = 2, E

[
X 2
] = 29, E [Y ] = 4, and

E
[
Y 2
] = 52. Consider the random variables W = X + Y

and Z = 2X . The random variables W and Z are clearly
dependent since they both involve X . What is their covari-
ance? What is their correlation coefficient?

SOLUTION Given E [X ] = 2, E
[
X 2
] = 29, E [Y ] = 4,

and E
[
Y 2
] = 52; X and Y independent; and W = X + Y

and Z = 2X .
Thus,

Var [X ] = E
[
X 2]− E2[X ] = 29 − 22 = 25

Var [Y ] = E
[
Y 2]− E2[Y ] = 52 − 42 = 36

E [W ] = E [X + Y ] = 2 + 4 = 6

Var [W ] = Var [X + Y ] = Var [X ] + Var [Y ]

= 25 + 36 = 61

(due to independence)

E [Z ] = E [2X ] = 2(2) = 4

Var [Z ] = Var [2X ] = 4Var [X ] = 4(25) = 100

Cov [W , Z ] = E [WZ ] − E [W ] E [Z ]

E [WZ ] = E [(X + Y )(2X )] = E
[
2X 2 + 2XY

]
= 2E

[
X 2]+ 2E [X ] E [Y ]

= 2(29) + 2(2)(4) = 74

Cov [W , Z ] = 74 − 6(4) = 50

ρWZ = 50√
61

√
100

= 5√
61

= 0.64

1.8 FUNCTIONS OF RANDOM VARIABLES

In general, deriving the distribution of a function of ran-
dom variables [i.e., the distribution of Y where Y =
g(X1, X2, . . .)] can be quite a complex problem and exact
solutions may be unknown or impractical to find.



FUNCTIONS OF RANDOM VARIABLES 25

In this section, we will cover only relatively simple cases
(although even these can be difficult) and also look at some
approximate approaches.

1.8.1 Functions of a Single Variable

Consider the function

Y = g(X ) (1.44)

and assume we know the distribution of X , that is, we
know fX (x ). When X takes on a specific value, that is, when
X = x , we can compute Y = y = g(x ). If we assume, for
now, that each value of x gives only one value of y and
that each value of y arises from only one value of x (i.e.,
that y = g(x ) is a one-to-one function), then we must have
the probability that Y = y is just equal to the probability
that X = x . That is, for discrete X ,

P
[
Y = y

] = P [X = x ] = P
[
X = g−1(y)

]
(1.45)

where g−1(y) is the inverse function, obtained by solving
y = g(x ) for x , i.e. x = g−1(y). Eq. 1.45 implies that

fY (y) = fX

(
g−1(y)

)
(1.46)

In terms of the discrete cumulative distribution function,

FY (y) = P
[
Y ≤ y

] = FX (g−1(y)) = P
[
X ≤ g−1(y)

]
=

∑
xi ≤g−1(y)

fX (xi ) (1.47)

In the continuous case, the distribution of Y is obtained in
a similar fashion. Considering Figure 1.18, the probability
that X lies in a neighborhood of x1 is the area A1. If
X lies in the shown neighborhood of x1, Y must lie
in a corresponding neighborhood of y1 and will do so
with equal probability A1. Since the two probabilities are
equal, this defines the height of the distribution of Y
in the neighborhood of y1. Considering the situation in
the neighborhood of x2, we see that the height of the
distribution of Y near y2 depends not only on A2, which
is the probability that X is in the neighborhood of x2, but
also on the slope of y = g(x ) at the point x2. As the slope
flattens, the height of f (y) increases; that is, f (y) increases
as the slope decreases.

We will develop the theory by first considering the
continuous analog of the discrete cumulative distribution
function developed above,

FY (y) =
∫ g−1(y)

−∞
fX (x ) dx

=
∫ y

−∞
fX (g−1(y))

[
d

dy
g−1(y)

]
dy (1.48)

A1

A2

x

x

yy

A1 A2

x1 x2

y2

y1

fY(y)
fX(x)

y = g(x)

Figure 1.18 Deriving the distribution of Y = g(X ) from the
distribution of X .

where we let x = g−1(y) to get the last result. To get the
probability density function of Y , we can differentiate,

fY (y) = d

dy
FY (y) = fX (g−1(y))

[
d

dy
g−1(y)

]
(1.49)

Note that the left-hand side here is found under the
assumption that y always increases with increasing x .
However, if y decreases with increasing x , then P

[
Y ≤ y

]
corresponds to P [X > x ], leading to (see Eq. 1.47),

FY (y) = 1 − FX (g−1(y))

fY (y) = fX (g−1(y))

[
− d

dy
g−1(y)

]

To handle both possibilities (and since probabilities are
always positive), we write

fY (y) = fX

(
g−1(y)

) ∣∣∣∣ d

dy
g−1(y)

∣∣∣∣ (1.50)

In terms of Figure 1.18 we can leave x = g−1(y) in the
relationship and write our result as

fY (y) = fX (x )

∣∣∣∣dx

dy

∣∣∣∣ (1.51)

which means that fY (y) increases as the inverse of the
slope, |dx/dy |, increases, which agrees with what is seen
in Figure 1.18.

Example 1.37 Suppose that X has the following contin-
uous distribution:

fX (x ) = 1

σ
√

2π
exp

{
−1

2

(
x − µ

σ

)2
}
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which is the normal distribution, which we will discuss
further in Section 1.10.4. If Z = (X − µ)/σ , then what is
fZ (z )? (Note, we use Z intentionally here, rather than Y ,
because as we shall see in Section 1.10.8, Z is the so-called
standard normal.)

SOLUTION In order to determine fZ (z ), we need to
know both fX (x ) and dx/dz . We know fX (x ) is the normal
distribution, as shown above. To compute dx/dz we need
an expression for x , which we can get by inverting the
given relationship for Z (note, for the computation of the
slope, we assume that both X and Z are known, and are
replaced by their lowercase equivalents):

x = g−1(z ) = µ + σ z

which gives us ∣∣∣∣dx

dz

∣∣∣∣ =
∣∣∣∣dg−1(z )

dz

∣∣∣∣ = σ

Putting these results together gives us

fZ (z ) = fX (x )

∣∣∣∣dx

dz

∣∣∣∣ = fX (µ + σ z ) σ

= 1√
2π

exp

{
−1

2
z 2
}

Notice that the parameters µ and σ have now disappeared
from the distribution of Z . As we shall see, Z is also
normally distributed with µZ = 0 and σZ = 1.

The question now arises as to what happens if the
function Y = g(X ) is not one to one. The answer is that
the probabilities of all the X = x values which lead to each
y are added into the probability that Y = y . That is, if
g(x1), g(x2), . . . all lead to the same value of y , then

fY (y) = fX (x1)

∣∣∣∣dx1

dy

∣∣∣∣+ fX (x2)

∣∣∣∣dx2

dy

∣∣∣∣+ · · ·
The number of terms on the right-hand-side generally
depends on y , so this computation over all y can be quite
difficult. For example, the function Y = a + bX + cX 2 +
dX 3 might have three values of x leading to the same value
of y over some ranges in y but only one value of x leading
to the same value of y on other ranges.

1.8.2 Functions of Two or More Random Variables

Here we consider functions of the form

Y1 = g1(X1, X2, . . .)

Y2 = g2(X1, X2, . . .) (1.52)

.

.

.

In the theory which follows, we require that the number
of equations above equals the number of random variables
X1, X2, . . . and that the equations be independent so that a
unique inverse can be obtained. The theory will then give
us the joint distribution of Y1, Y2, . . . in terms of the joint
distribution of X1, X2, . . .

More commonly, we only have a single function of the
form

Y1 = g1(X1, X2, . . . , Xn ) (1.53)

in which case an additional n − 1 independent equations,
corresponding to Y2, . . . , Yn , must be arbitrarily added to
the problem in order to use the theory to follow. Once
these equations have been added and the complete joint
distribution has been found, the n − 1 arbitrarily added Y ’s
can be integrated out to obtain the marginal distribution of
Y1. For example, if Y1 = X1/X2 and we want the pdf of Y1

given the joint pdf of (X1, X2), then we must

1. choose some function Y2 = g(X1, X2) which will al-
low us to find an inverse—for example, if we choose
Y2 = X2, then we get X1 = Y1Y2 and X2 = Y2 as our
inverse;

2. obtain the joint pdf of (Y1, Y2) in terms of the joint
pdf of (X1, X2); and

3. obtain the marginal pdf of Y1 by integrating fY 1Y 2 over
all possible values of Y2.

In detail, suppose we start with the two-dimensional set
of equations

Y1 = g1(X1, X2)
Y2 = g2(X1, X2)

}
⇐⇒

{
X1 = h1(Y1, Y2)
X2 = h2(Y1, Y2)

(1.54)
where the right-hand equations are obtained by inverting the
(given) left-hand equations. Recall that for one variable we
had fY (y) = fX (x ) |dx/dy |. The generalization to multiple
variables is

fY 1Y 2 (y1, y2) = fX 1X 2 (h1, h2) |J | (1.55)

where J is the Jacobian of the transformation,

J = det




∂h1

∂y1

∂h1

∂y2

∂h2

∂y1

∂h2

∂y2


 (1.56)

For more than two variables, the extension is

Y1 = g1(X1, X2, . . . , Xn )
Y2 = g2(X1, X2, . . . , Xn )

.

.

.

.

.

.
Yn = gn (X1, X2, . . . , Xn )



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⇐⇒




X1 = h1(Y1, Y2, . . . , Yn )
X2 = h2(Y1, Y2, . . . , Yn )

.

.

.
Xn = hn (Y1, Y2, . . . , Yn )

(1.57)

J = det




∂h1

∂y1

∂h1

∂y2
· · · ∂h1

∂yn

∂h2

∂y1

∂h2

∂y2
· · · ∂h2

∂yn

.

.

.

.

.

.

.
.

.

.

.

.

∂hn

∂y1

∂hn

∂y2
· · · ∂hn

∂yn




(1.58)

and

fY 1Y 2···Y n (y1, y2, . . . , yn )

=
{

fX 1X 2···X n (h1, h2, . . . , hn ) |J |
for (y1, y2, . . . , yn ) ∈ T

0 otherwise
(1.59)

where T is the region in Y space corresponding to possible
values of x, specifically

T = {g1, g2, . . . , gn : (x1, x2, . . . , xn ) ∈ S } (1.60)

and S is the region on which fX 1X 2···X n is nonzero.

Example 1.38 Assume X1 and X2 are jointly distributed
according to

fX 1X 2 (x1, x2) =
{

4x1x2 for 0 < x1 < 1 and 0 < x2 < 1
0 otherwise

and that the following relationships exist between Y and X:

Y1 = X1

X2
Y2 = X1X2

}
⇐⇒




X1 =
√

Y1Y2

X2 =
√

Y2

Y1

What is the joint pdf of (Y1, Y2)?

SOLUTION We first of all find the Jacobian,

∂x1

∂y1
= 1

2

√
y2

y1
,

∂x1

∂y2
= 1

2

√
y1

y2

∂x2

∂y1
= −1

2

√
y2

y3
1

,
∂x2

∂y2
= 1

2

√
1

y1y2

so that

J = det




1

2

√
y2

y1

1

2

√
y1

y2

−1

2

√
y2

y3
1

1

2

√
1

y1y2


 = 1

2y1

This gives us

fY 1Y 2 (y1, y2) = fX 1X 2

(√
y1y2,

√
y2

y1

)
|J |

= 4
√

y1y2

√
y2

y1

(
1

2|y1|
)

= 2y2

|y1| (1.61)

We must still determine the range of y1 and y2 over which
this joint distribution is valid. We know that 0 < x1 < 1 and
0 < x2 < 1, so it must also be true that 0 <

√
y1y2 < 1 and

0 <
√

y2/y1 < 1. Now, if x1 lies between 0 and 1, then x 2
1

must also lie between 0 and 1, so we can eliminate the
square root signs and write our constraints on y1 and y2 as

0 < y1y2 < 1 and 0 <
y2

y1
< 1

If we consider the lines generated by replacing the inequal-
ities above with equalities, we get the following bounding
relationships:

y1y2 = 0, y1y2 = 1
y2

y1
= 0,

y2

y1
= 1

If we plot these bounding relationships, the shape of the
region, T , where fY 1Y 2 is defined by Eq. 1.61, becomes
apparent. This is illustrated in Figure 1.19.

We see from Figure 1.19 that the range, T , is defined by

0 < y2 < 1 and y2 < y1 <
1

y2

Our joint distribution can now be completely specified as

fY 1Y 2 (y1, y2) =



2y2

y1
for 0 < y2 < 1 and y2 < y1 <

1

y2

0 otherwise
where we dropped the absolute value because y1 is strictly
positive.

Example 1.39 Consider the relationship

X = A cos �

where A and � are random variables with pdf fA�(a , φ).
Assume that A and � are independent, that A follows
a Rayleigh distribution with parameter s2, and that �

is uniformly distributed between 0 and 2π . What is the
distribution of X ?

SOLUTION First we must define a second function, Y ,
to give us a unique inverse relationship. Let us somewhat
arbitrarily take

Y = A sin �
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0 1
x1

0
1

x 2

S

0 1 2 3 4
y1

0
1

2
3

4

y 2

T

y1y2 = 1y1y2 = 0

y2/y1 = 1

y2/y1 = 0

Figure 1.19 The ranges of (x1, x2) and (y1, y2) over which fX1X 2 and fY 1Y 2 are defined.

Note that there is no particular requirement for the choice
of the second function so long as it leads to an inverse.
This choice leads to the inverse relationships

X = A cos �

Y = A sin �

}

⇐⇒



A = √
X 2 + Y 2

� = tan−1

(
Y

X

)
± 2kπ , k = 0, 1, . . .

where we have assumed that tan−1(Y /X ) gives a unique
value between 0 and 2π—for this, we must make use of
the signs of Y and X in the determination of the angle.
Notice that � is not single valued for each X and Y .

In determining the Jacobian, we will revert to lower-
case letters to emphasize that the Jacobian is deterministic
(despite the fact that J itself is uppercase),

∂a

∂x
= x√

x 2 + y2
,

∂a

∂y
= y√

x 2 + y2

∂φ

∂x
= − y

x 2 + y2
,

∂φ

∂y
= x

x 2 + y2

so that

J = det




∂a

∂x

∂a

∂y
∂φ

∂x

∂φ

∂y


 = 1√

x 2 + y2

Since A and � are independent, their joint distribution is
just the product of their individual (marginal) distributions,
namely fA�(a , φ) = fA(a)f�(φ). The joint distribution of X
and Y is thus

fX Y (x , y) =
fA

(√
x 2 + y2

)∑∞
k=−∞ f�

(
tan−1(y/x ) + 2kπ

)
√

x 2 + y2

(1.62)

where the sum arises because � takes on an infinite number
of possible values for each x and y—we must include the
probability of each in the joint probability of X and Y .

The Rayleigh distribution, which is discussed further in
Section 1.10.5, has probability density function

fA(a) = a

s2
exp

{
− a2

2s2

}
, a ≥ 0

while the uniform distribution is

f�(φ) = 1

2π
, 0 < φ ≤ 2π

Since � has zero probability of being outside the interval
(0, 2π ] and exactly one value of [tan−1(y/x ) + 2kπ ] will
lie inside that interval, then only one term in the infinite
sum is nonzero and the sum simplifies to

∞∑
k=−∞

f�
(

tan−1
(y

x

)
+ 2kπ

)
= 1

2π

In this case, Eq. 1.62 becomes

fX Y (x , y) =
√

x 2 + y2/s2 exp
{−(x 2 + y2)/2s2

}
2π
√

x 2 + y2

= 1

2πs2
exp

{
−x 2 + y2

2s2

}
(1.63)

To find the marginal distribution of X (which was the
original aim), we must integrate over all possible values of
Y using the total probability theorem:

fX (x ) =
∫ ∞

−∞

1

2πs2
exp

{
−x 2 + y2

2s2

}
dy

= e−x2/(2s2)

2πs2

∫ ∞

−∞
e−y2/(2s2) dy

= 1√
2π s

e−x2/(2s2) (1.64)
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To get the final result, we needed to use the fact that∫ ∞

−∞
e−y2/(2s2) dy = s

√
2π

We note that Eq. 1.64 is just the normal distribution with
mean zero and variance s2. In addition, we see that Eq. 1.63
is separable and can be written as fX Y (x , y) = fX (x ) · fY (y),
so that X and Y must be independent. A similar computa-
tion as was carried out above will show that fY (y) is also a
lognormal distribution with mean zero and variance s2.

In summary, we see that if A is Rayleigh distributed with
parameter s2 and � is uniformly distributed between 0 and
2π , then

X = A cos �, Y = A sin �

will be a pair of identically normally distributed indepen-
dent random variables, each with mean zero and variance
s2. As we shall see in Chapter 6, the above results suggest
a very good approach to simulating normally distributed
random variables.

1.8.2.1 Linear Transformations Say we have the simul-
taneous system of equations

Y1 = a11X1 + a12X2 + · · · + a1nXn

Y2 = a21X1 + a22X2 + · · · + a2nXn

.

.

.

Yn = an1X1 + an2X2 + · · · + annXn

which we can write using matrix notation as

Y = AX (1.65)

If this relationship holds, then X = A−1Y for nonsingular A
(implies a one-to-one transformation). The joint distribution
of Y is thus

fY (y) = fX (A−1y) |J | (1.66)

where
J = det

[
A−1] = 1

det [A]
(1.67)

Example 1.40 Say that Y1 = X1 + X2 and that the joint
pdf of X is

fX 1X 2 (x1, x2) =
{

e−(x1+x2) for x1, x2 ≥ 0

0 otherwise
What is the distribution of Y1?

SOLUTION Choose Y2 = X2 as our second equation.
Then

Y1 = X1 + X2

Y2 = X2

}
⇐⇒

{
X1 = Y1 − Y2

X2 = Y2

or {
X1

X2

}
=
[

1 −1

0 1

]{
Y1

Y2

}

where we see from this that

A−1 =
[

1 −1

0 1

]

so that J = det A−1 = 1. This gives us

fY 1Y 2 (y1, y2) = fX 1X 2 (y1 − y2, y2)(1)

= e−(y1−y2)−y2 , y1 − y2 ≥ 0 and y2 ≥ 0

= e−y1 , y1 ≥ 0 and 0 ≤ y2 ≤ y1

To find the distribution of Y2, we must integrate over all
possible values of Y1 using the total probability theorem,

fY 1 (y1) =
∫ ∞

−∞
fY 1Y 2 (y1, y2) dy2 =

∫ y1

0
e−y1 dy2

= y1e−y1 , y1 ≥ 0

In general, if Y = X1 + X2 and X1 is independent of X2

[so that their joint distribution can be written as the product
fX 1X 2 (x1, x2) = fX 1 (x1)fX 2 (x2)], then the distribution of Y can
be written as the convolution

fY (y) =
∫ ∞

−∞
fX 1 (y − x ) fX 2 (x ) dx

=
∫ ∞

−∞
fX 1 (x ) fX 2 (y − x ) dx (1.68)

1.8.3 Moments of Functions

In many cases the full distribution of a function of random
variables is difficult to obtain. So we would like to be
able to get at least the mean and variance (often the
central limit theorem, discussed later, can be relied upon
to suggest that the final distribution is either normal or
lognormal). Obtaining just the mean and variance, at least
approximately, is typically much easier than obtaining the
complete distribution. In the following we will consider
a function of the form Y = g(X1, X2, . . . , Xn ) whose nth
moment is defined by

E
[
Y n] =

∫ ∞

−∞

∫ ∞

−∞
· · ·
∫ ∞

−∞
gn (x1, x2, . . . , xn)

× fx(x1, x2, . . . , xn ) dx1 dx2 · · · dxn (1.69)

where X is the vector of X ′s ; X = {X1, X2, . . . , Xn}.
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1.8.3.1 Arbitrary Function of One Variable If g is an
arbitrary function of one variable, Y = g(X ), then

E
[
Y n] =

∫ ∞

−∞
gn (x ) fX (x ) dx (1.70)

Various levels of approximations exist for this moment.
Consider a Taylor’s series expansion of g(X ) about µX ,

Y = g(X ) = g(µX ) + (X − µX )
dg

dx

∣∣∣∣
µX

+ 1

2
(X − µX )2 d 2g

dx 2

∣∣∣∣
µX

+ · · · (1.71)

A first-order approximation to the moments uses just the
first two terms of the Taylor’s series expansion:

E [Y ] � E

[
g(µX ) + (X − µX )

dg

dx

∣∣∣∣
µX

]

= g(µX ) (1.72a)

Var [Y ] � Var

[
g(µX ) + (X − µX )

dg

dx

∣∣∣∣
µX

]

= Var [X ]

(
dg

dx

∣∣∣∣
µX

)2

(1.72b)

This approximation is often referred to as the first-order
second-moment (FOSM) method. Although it is generally
only accurate for small variability and small nonlinearity,
it is a widely used approximation because of its simplicity
(see the next section).

The second-order approximation uses the first three
terms of the Taylor’s series expansion and so is potentially
more accurate:

E [Y ] � g(µX ) + 1

2
Var [X ]

(
d 2g

dx 2

∣∣∣∣
µX

)
(1.73a)

Var [Y ] � Var [X ]

(
dg

dx

∣∣∣∣
µX

)2

−
(

1

2
Var [X ]

d 2g

dx 2

∣∣∣∣
µX

)2

+ E
[
(X − µX )3]

(
dg

dx

d 2g

dx 2

∣∣∣∣
µX

)

+ 1

4
E
[
(X − µX )4]

(
d 2g

dx 2

∣∣∣∣
µX

)2

(1.73b)

Notice that the second-order approximation to the variance
of Y involves knowledge of the third and fourth moments
of X , which are generally difficult to estimate. Often, in
practice, the second-order estimate of the mean is used
along with the first-order estimate of the variance, since

these both require no more than second-moment estimates
of X .

1.8.3.2 Arbitrary Function of Several Variables If Y
is an arbitrary function of several variables, Y = g(X1, X2,
. . . , Xn ), then the corresponding Taylor’s series expan-
sion is

Y = g(µX 1 , µX2 , . . . , µXn ) +
n∑

i=1

(Xi − µX i )
∂g

∂xi

∣∣∣∣
µ

+ 1

2

n∑
i=1

n∑
j=1

(Xi − µX i )(Xj − µX j )
∂2g

∂xi ∂xj

∣∣∣∣
µ

+ · · ·

(1.74)

where µ is the vector of means, µ = {µX 1 , µX2 , . . . , µXn }.
First-order approximations to the mean and variance of Y
are then

E [Y ] � g(µ) (1.75a)

Var [Y ] �
n∑

i=1

n∑
j=1

Cov
[
Xi , Xj

] [ ∂g

∂xi
· ∂g

∂xj

∣∣∣∣
µ

]
(1.75b)

Second-order approximations are

E [Y ] � g(µ) + 1

2

n∑
i=1

n∑
j=1

Cov
[
Xi , Xj

] ( ∂2g

∂xi ∂xj

∣∣∣∣
µ

)

(1.76a)

Var [Y ] = (involves quadruple sums and

fourth-order moments) (1.76b)

Example 1.41 The average degree of consolidation, C ,
under combined vertical and radial drainage is given by the
relationship (e.g., Craig, 2001)

C = R + V − RV (1.77)

where R is the average degree of consolidation due to
horizontal (radial) drainage only and V is the average de-
gree of consolidation due to vertical drainage only. From
observations of a particular experiment which was re-
peated many times, suppose that we have determined the
following:

µR = E [R] = 0.3, σ 2
R = Var [R] = 0.01

µV = E [V ] = 0.5, σ 2
V = Var [V ] = 0.04

Cov [R, V ] = 0.015, (ρRV = 0.75)
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Estimate the mean µC and variance σ 2
C of the average

degree of consolidation.

SOLUTION First, we will expand Eq. 1.77 in a Taylor’s
series about µ = (µR , µV ) as follows

C = (µR + µV − µRµV )

+ (R − µR)
∂C

∂R
|µ + 1

2
(R − µR)2 ∂2C

∂R2
|µ

+ (V − µV )
∂C

∂V
|µ + 1

2
(V − µV )2 ∂2C

∂V 2
|µ

+ (R − µR)(V − µV )
∂2C

∂R∂V
|µ + · · ·

Truncating the approximation at second-order terms and
taking the expectation result in a second-order approxima-
tion to the mean:

µC � (µR + µV − µRµV )

+ E [R − µR]
∂C

∂R
|µ + 1

2
E
[
(R − µR)2] ∂2C

∂R2
|µ

+ E [V − µV ]
∂C

∂V
|µ + 1

2
E
[
(V − µV )2] ∂2C

∂V 2
|µ

+ E [(R − µR)(V − µV )]
∂2C

∂R∂ V
|µ

= (µR + µV − µRµV )

+ 1

2
σ 2

R

∂2C

∂R2
|µ

+ 1

2
σ 2

V

∂2C

∂V 2
|µ

+ Cov [R, V ]
∂2C

∂R∂ V
|µ

The partial derivatives are

∂2C

∂R2
= 0,

∂2C

∂V 2
= 0,

∂2C

∂R∂ V
= −1

so that

µC = (µR + µV − µRµV ) − Cov [R, V ]

= 0.3 + 0.5 − (0.3)(0.5) − 0.015 = 0.635

Note that since derivatives higher than second order dis-
appear, this result is exact and could have been obtained
directly:

E [C ] = E [R + V − RV ] = µR + µV − E [RV ]

= µR + µV −
(

Cov [R, V ] + µRµV

)

= 0.3 + 0.5 − (0.015 + 0.3 × 0.5)

= 0.635

Can we also get an exact result for σ 2
C ? If so, we would

need to find

E
[
C 2] = E

[
(R + V − RV )2]

= E
[
R2 + V 2 + 2RV − 2R2V − 2RV 2 + R2V 2]

which involves third and fourth moments, which we do not
know. We must therefore approximate σ 2

C . The first-order
approximation involves just second-moment information,
which we were given, and appears as follows:

σ 2
C � Cov [R, R]

(
∂C

∂R

)2

|µ

+ 2 Cov [R, V ]

(
∂C

∂R

)(
∂C

∂V

)
|µ

+ Cov [V , V ]

(
∂C

∂V

)2

|µ
where

∂C

∂R
= 1 − V |µ = 1 − µV = 1 − 0.5 = 0.5

∂C

∂V
= 1 − R|µ = 1 − µR = 1 − 0.3 = 0.7

Recalling that Cov [R, R] = σ 2
R and Cov [V , V ] = σ 2

V ,
we get

σ 2
C � (0.01)(0.5)2 + 2(0.015)(0.5)(0.7)

+ (0.04)(0.7)2 = 0.0326

and σC = 0.18.

1.8.4 First-Order Second-Moment Method

The FOSM method is a relatively simple method of in-
cluding the effects of variability of input variables on a
resulting dependent variable. It is basically a formalized
methodology based on a first-order Taylor series expan-
sion, as discussed in the previous section. Since it is a
commonly used method, it is worth describing it explicitly
in this section.

The FOSM method uses a Taylor series expansion of
the function to be evaluated. This expansion is truncated
after the linear term (hence “first order”). The modified
expansion is then used, along with the first two moments
of the random variable(s), to determine the values of the
first two moments of the dependent variable (hence “second
moment”).

Due to truncation of the Taylor series after first-order
terms, the accuracy of the method deteriorates if second
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and higher derivatives of the function are significant. Fur-
thermore, the method takes no account of the form of the
probability density function describing the random vari-
ables, using only their mean and standard deviation. The
skewness (third moment) and higher moments are ignored.

Another limitation of the traditional FOSM method is
that explicit account of spatial correlation of the random
variable is not typically done. For example, the soil prop-
erties at two geotechnical sites could have identical mean
and standard deviations; however, at one site the properties
could vary rapidly from point to point (“low” spatial cor-
relation length) and at another they could vary gradually
(“high spatial correlation length”).

Consider a function f (X , Y ) of two random variables X
and Y . The Taylor series expansion of the function about
the mean values (µX , µY ), truncated after first-order terms
from Eq. 1.74, gives

f (X , Y ) ≈ f (µX , µY ) + (X − µX )
∂f

∂x
+ (Y − µY )

∂f

∂y
(1.78)

where derivatives are evaluated at (µX , µY ).
To a first order of accuracy, the expected value of the

function is given by

E
[
f (X , Y )

] ≈ f (E [X ] , E [Y ]) (1.79)

and the variance by

Var
[
f (X , Y )

] ≈ Var

[
(X − µX )

∂f

∂x
+ (Y − µY )

∂f

∂y

]

(1.80)
Hence,

Var
[
f (X , Y )

] ≈
(

∂f

∂x

)2

Var [X ] +
(

∂f

∂y

)2

Var [Y ]

+ 2
∂f

∂x

∂f

∂y
Cov [X , Y ] (1.81)

If X and Y are uncorrelated,

Var
[
f (X , Y )

] ≈
(

∂f

∂x

)2

Var [X ] +
(

∂f

∂y

)2

Var [Y ]

(1.82)
In general, for a function of n uncorrelated random

variables, the FOSM method tells us that

Var
[
f (X1, X2, . . . , Xn )

] ≈
n∑

i=1

(
∂f

∂xi

)2

Var [Xi ] (1.83)

where the first derivatives are evaluated at the mean values
(µX1

,µX2
, . . . , µXn ).

1.9 COMMON DISCRETE PROBABILITY
DISTRIBUTIONS

Many engineered systems have the same statistical be-
havior: We generally only need a handful of probability
distributions to characterize most naturally occurring phe-
nomena. In this section, the most common discrete distri-
bution will be reviewed (the next section looks at the most
comment continuous distributions). These are the Bernoulli
family of distributions, since they all derive from the first:

1. Bernoulli
2. Binomial
3. Geometric
4. Negative binomial
5. Poisson
6. Exponential
7. Gamma

The Poisson, exponential, and gamma are the continuous-
time analogs of the binomial, geometric, and negative bi-
nomial, respectively, arising when each instant in time is
viewed as an independent Bernoulli trial. In this section
we consider the discrete members of the Bernoulli fam-
ily, which are the first five members listed above, looking
briefly at the main characteristics of each of these distri-
butions and describing how they are most commonly used
in practice. Included with the statistical properties of each
distribution is the maximum-likelihood estimate (MLE) of
their parameters. We do not formally cover the maximum-
likelihood method until Section 5.2.1.2, but we present
these results along with their distributions to keep every-
thing together.

For a more complete description of these distributions,
the interested reader should consult an introductory text-
book on probability and statistics, such as Law and Kelton
(1991) or Devore (2003).

1.9.1 Bernoulli Trials

All of the discrete distributions considered in this section
(and the first two in the next section) are derived from the
idea of Bernoulli trials. A Bernoulli trial is an experiment
which has only two possible outcomes, success or failure
(or [1, 0], or [true, false], or [< 5, ≥ 5], etc). If a sequence
of Bernoulli trials are mutually independent with constant
(stationary) probability p of success, then the sequence is
called a Bernoulli process. There are many examples of
Bernoulli processes: One might model the failures of earth
dams using a Bernoulli process. The success or failure of
each of a sequence of bids made by a company might be a
Bernoulli process. The failure of piles to support the load
applied on them might be a Bernoulli process if it can



COMMON DISCRETE PROBABILITY DISTRIBUTIONS 33

be assumed that the piles fail (or survive) independently
and with constant probability. However, if the failure of
one pile is dependent on the failure of adjacent piles, as
might be the case if the soil structures are similar and
load transfer takes place, the Bernoulli model may not be
appropriate and a more complex, “dependent,” model may
be required, for example, random field modeling of the soil
and finite-element analysis of the structural response within
a Monte Carlo simulation. Evidently, when we depart from
satisfying the assumptions underlying the simple models,
such as those required for the Bernoulli model, the required
models rapidly become very much more complicated. In
some cases, applying the simple model to the more complex
problem will yield a ballpark estimate, or at least a bound
on the probability, and so it may be appropriate to proceed
with a Bernoulli model taking care to treat the results as
approximate. The degree of approximation depends very
much on the degree of dependence between “trials” and
the “stationarity” of the probability of “success,” p.

If we let

Xj =
{

1 if the j th trial results in a success
0 if the j th trial results in a failure

(1.84)

then the Bernoulli distribution, or probability mass function,
is given by

P
[
Xj = 1

] = p (1.85)

P
[
Xj = 0

] = 1 − p = q

for all j = 1, 2, . . . . Note that we commonly denote 1 − p
as q for simplicity.

For a single Bernoulli trial the following results hold:

E
[
Xj
] =

1∑
i=0

i · P
[
Xj = i

]

= 0(1 − p) + 1(p) = p (1.86a)

E
[
X 2

j

]
=

1∑
i=0

i 2 · P
[
Xj = i

] = 02(1 − p) + 12(p) = p

Var
[
Xj
] = E

[
X 2

j

]
− E2[Xj

] = p − p2 = pq (1.86b)

For a sequence of trials, the assumption of independence
between the trials means that

P [X1 = x1 ∩ X2 = x2 ∩ · · · ∩ Xn = xn ]

= P [X1 = x1] P [X2 = x2] · · · P [Xn = xn ] (1.87)

The MLE of p is just the average of the set of observa-
tions, x1, x2, . . . , xn , of X ,

p̂ = 1

n

n∑
i=1

xi (1.88)

Notice that we use a hat to indicate that this is just an
estimate of the true parameter p. Since the next set of
observations will likely give a different value for p̂, we
see that p̂ is actually a random variable itself, rather than
the true population parameter, which is nonrandom. The
mean and variance of the sequence of p̂ can be found by
considering the random P̂ ,

P̂ = 1

n

n∑
i=1

Xi (1.89)

obtained prior to observing the results of our Bernoulli
trials. We get

E
[
P̂
] = E

[
1

n

n∑
i=1

Xi

]

= 1

n

n∑
i=1

E [Xi ] = 1

n
(np)

= p (1.90)

which means that the estimator given by Eq. 1.88 is
unbiased (that is, the estimator is “aimed” at its desired
target on average).

The estimator variance is

Var
[
P̂
] = Var

[
1

n

n∑
i=1

Xi

]

= 1

n2

n∑
i=1

Var [Xi ] = 1

n2
(npq)

= pq

n
(1.91)

where we made use of the fact that the variance of a sum
is the sum of the variances if the random variables are
uncorrelated. We are assuming that, since this is a Bernoulli
process, not only are the random variables uncorrelated,
but also they are completely independent (the probability
of one occurring is not affected by the probability of other
occurrences).

Note that the estimator variance depends on the true
value of p on the right-hand-side of Eq. 1.91. Since we
are estimating p, we obviously do not know the true value.
The solution is to use our estimate of p to estimate its
variance, so that

σ 2
P̂

� p̂q̂

n
(1.92)

Once we have determined the estimator variance, we can
compute its standard error, which is commonly taken to
be equal to the standard deviation and which gives an
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indication of how accurate our estimate is,

σP̂ �
√

p̂q̂

n
(1.93)

For example, if p̂ = 0.01, then we would prefer σP̂ to be
quite a bit smaller than 0.01 and we can adjust the number
of observations n to achieve this goal.

In Part 2 of this book, we will be estimating the probabil-
ity of failure, pf , of various classic geotechnical problems
using a technique called Monte Carlo simulation. The stan-
dard error given by Eq. 1.93 will allow us to estimate the
accuracy of our failure probability estimates, assuming that
each “simulation” results in an independent failure/success
trial.

Applications The classic Bernoulli trial is the toss of a
coin, but many other experiments can lead to Bernoulli
trials under the above conditions. Consider the following
examples:

1. Soil anchors at a particular site have a 1% probability
of pulling out. When an anchor is examined, it is
classified as a success if it has not pulled out or a
failure if it has. This is a Bernoulli trial with p = 0.99
if the anchors fail independently and if the probability
of success remains constant from trial to trial.

2. Suppose that each sample of soil at a site has a
10% chance of containing significant amounts of
chromium. A sample is analyzed and classified as a
success if it does not contain significant amounts of
chromium and a failure if it does. This is a Bernoulli
trial with p = 0.90 if the samples are independent and
if the probability of success remains constant from
trial to trial.

3. A highway through a certain mountain range passes
below a series of steep rock slopes. It is estimated that
each rock slope has a 2% probability of failure (re-
sulting in some amount of rock blocking the highway)
over the next 10 years. If we define each rock slope
as a trial which is a success if it does not fail in the
next 10 years, then this can be modeled as a Bernoulli
trial with p = 0.98 (assuming rock slopes fail inde-
pendently, which might not be a good assumption if
they generally fail due to, e.g., earthquakes).

1.9.2 Binomial Distribution

Let Nn be the number of successes in n Bernoulli trials,
each with probability of success p. Then Nn follows a
binomial distribution where

P [Nn = k ] =
(

n

k

)
pk qn−k , k = 0, 1, 2, . . . , n (1.94)

The quantity pk qn−k is the probability of obtaining k
successes and n − k failures in n trials and

(n
k

)
is the

number of possible ways of arranging the k successes over
the n trials.

For example, consider eight trials which can be repre-
sented as a series of eight dashes:

One possible realization of three successes in eight trials
might be

F S F F S S F F

where successes are shown as S and failures as F. Another
possible realization might be

S F F S F F F S

and so on. Clearly these involve three successes, which have
probability p3, and five failures, which have probability q5.
Combining these two probabilities with the fact that three
successes in eight trials can be arranged in

(8
3

)
different

ways leads to

P [N8 = 3] =
(

8

3

)
p3q8−3

which generalizes to the binomial distribution for n trials
and k successes given above. See Figure 1.20.

Properties In the following proofs, we make use of the
binomial theorem, which states that

(α + β)n =
n∑

i=0

(
n

i

)
αi βn−i =

n∑
i=0

n!

i !(n − i )!
αi βn−i

(1.95)

0 1 2 3 4 5 6 7 8 9 10

k

0
0.

1
0.

2
0.

3

P[
N

10
 =

 k
]

Figure 1.20 Binomial distribution for n = 10 and p = 0.4.
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The expected number of successes in n trials can be
found directly from the definition of the discrete-case ex-
pectation,

E [Nn ] =
n∑

i=0

i

(
n

i

)
pi qn−i

=
n∑

i=0

i

(
n!

i !(n − i )!

)
pi qn−i

= np
n∑

i=1

(n − 1)!

(i − 1)!(n − i )!
pi−1qn−i

= np
(n−1)∑
i=0

(n − 1)!

i !((n − 1) − i )!
pi q (n−1)−i

= np(p + q)n−1

= np (1.96)

since p + q = 1.
Alternatively, we could write

E [Nn ] = E [X1 + X2 + · · · + Xn ]

= E [X1] + E [X2] + · · · + E [Xn ]

= np

where Xi is a Bernoulli random variable having expecta-
tion p.

To find the variance of Nn , we first need to find

E
[
N 2

n

] =
n∑

i=0

i 2
(

n

i

)
pi qn−i =

n∑
i=1

i 2
(

n!

i !(n − i )!

)
pi qn−i

= np
n∑

i=1

i

(
(n − 1)!

(i − 1)!(n − i )!

)
pi−1qn−i

= np
n−1∑
i=0

(i + 1)

(
(n − 1)!

i !(n − 1 − i )!

)
pi qn−1−i

= np

{
n−1∑
i=0

i

(
(n − 1)!

i !(n − 1 − i )!

)
pi qn−1−i

+
n−1∑
i=0

(
(n − 1)!

i !(n − 1 − i )!

)
pi qn−1−i

}

= np {(n − 1)p + 1}
= npq + n2p2

where for the first sum we made use of the result given by
Eq. 1.96. The variance is thus

Var [Nn ] = E
[
N 2

n

]− E2[Nn ] = npq + n2p2 − n2p2 = npq
(1.97)

The same result could have been obtained much more
easily by considering the variance of a sum of independent
random variables, since in this case the variance of a sum
is the sum of the variances:

Var [Nn ] = Var

[
n∑

i=1

Xi

]
=

n∑
i=1

Var Xi = npq

The MLE of p is

p̂ = N̄n

n
(1.98)

if n is known, where N̄n is the average of the observed
values of Nn . If both n and p are unknown, see Law and
Kelton (2000) for the MLE. This estimator is precisely
the same as that given by Eq. 1.89 since Nn =∑n

i=1 Xi ,
and so its mean and standard error are discussed in the
previous section (with n replaced by the total number of
trials making up N̄n ).

Example 1.42 A manufacturer of geotextile sheets wishes
to control the quality of its product by rejecting any lot in
which the proportion of textile sheets having unacceptably
low tensile strength appears to be too high. To this end,
out of each large lot (1000 sheets), 25 will be selected and
tested. If 5 or more of these sheets have an unacceptably
low tensile strength, the entire lot will be rejected. What is
the probability that a lot will be rejected if

1. 5% of the sheets in the lot have unacceptably low
tensile strength?

2. 10% of the sheets in the lot have unacceptably low
tensile strength?

SOLUTION

1. Let N25 be the number of sheets that have unaccept-
ably low tensile strengths out of the 25 sampled.
If the sheets fail the tension test independently with
constant probability of failure, then N25 follows a bi-
nomial distribution with p = 0.05. We note that since
the number of low-strength sheets in a lot is fixed,
the probability of failure will change as sheets are
tested. For example, if 50 out of 1000 sheets are low
strength, then the probability of failure of the first
sheet tested is 0.05. The probability of failure of the
second sheet tested is either 49/999 or 50/999, de-
pending on whether the first sheet tested was low
strength or not. However, if the lot size (1000 in this
case) is large relative to the number selected for test-
ing (25 in this case), then the approximation that p
is constant is reasonable and will lead to fairly accu-
rate results. We will make this assumption here, so
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that

P [N25 ≥ 5] = 1 − P [N25 ≤ 4]

= 1 − P [N25 = 0] − P [N25 = 1]

− P [N25 = 2] − P [N25 = 3]

− P [N25 = 4]

= 1 −
(

25

0

)
(0.05)0(0.95)25

−
(

25

1

)
(0.05)1(0.95)24

−
(

25

2

)
(0.05)2(0.95)23

−
(

25

3

)
(0.05)3(0.95)22

−
(

25

4

)
(0.05)4(0.95)21

= 0.00716

Thus, there is a very small probability of rejecting a
lot where 5% of the sheets have an unacceptably low
tensile strength.

2. Let N25 be the number of sheets that have unaccept-
ably low tensile strengths out of the 25 sampled.
Then N25 follows a binomial distribution with p =
0.10 (we will again assume sheets fail the test inde-
pendently and that the probability of this happening
remains constant from sheet to sheet):

P [N25 ≥ 5] = 1 − P [N25 ≤ 4]

= 1 − P [N25 = 0] − P [N25 = 1]

− P [N25 = 2] − P [N25 = 3]

− P [N25 = 4]

= 1 −
(

25

0

)
(0.10)0(0.90)25

−
(

25

1

)
(0.10)1(0.90)24

−
(

25

2

)
(0.10)2(0.90)23

−
(

25

3

)
(0.10)3(0.90)22

−
(

25

4

)
(0.10)4(0.90)21

= 0.098

There is now a reasonably high probability (about
10%) that a lot will be rejected if 10% of the sheets
have an unacceptably low tensile strength.

1.9.3 Geometric Distribution

Consider a Bernoulli process in which T1 is the number of
trials required to achieve the first success. Thus, if T1 = 3,
then we must have had two failures followed by a success
(the value of T1 fully prescribes the sequence of trials). This
has probability

P [T1 = 3] = P [{failure, failure, success}] = q2p

In general

P [T1 = k ] = qk−1p, k = 1, 2, . . . (1.99)

Note that this is a valid probability mass function since
∞∑

k=1

qk−1p = p
∞∑

k=0

qk = p

1 − q
= 1

where we used the fact that for any α < 1 (see, e.g.,
Gradshteyn and Ryzhik, 1980)

∞∑
k=0

αk = 1

1 − α
(1.100)

As an example, in terms of the actual sequence of trials,
the event that the first success occurs on the eighth trial
appears as

F F F F F F F S

That is, the single success always occurs on the last
trial. If T1 = 8, then we have had seven failures, having
probability q7, and one success, having probability p. Thus

P [T1 = 8] = q7p

Generalizing this for T1 = k leads to the geometric distri-
bution shown in Figure 1.21.

Because trials are assumed independent, the geometric
distribution also models the number of trials between suc-
cesses in a Bernoulli process. That is, suppose we observe
the result of the Bernoulli process at trial number 1032.
We will observe either a success or failure, but whichever
is observed, it is now known. We can then ask a question
such as: What is the probability that the next success occurs
on trial 1040? To determine this, we start with trial 1032.
Because we have observed that there is no uncertainty asso-
ciated with trial 1032, it does not enter into the probability
problem. However, trials 1033, 1034, . . . , 1040 are un-
known. We are asking for the probability that trial 1040 is
the first success after 1032. In order for this event to occur,
trials 1033–1039 must be failures. Thus, the eight trials,
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Figure 1.21 Geometric distribution for p = 0.4.

1033–1040, must involve seven failures (q7) followed by
one success (p). The required probability is just the product

P [T1 = 8] = q7p

What this means is that the geometric distribution, by
virtue of the independence between trials, is memoryless.
It does not matter when you start looking at a Bernoulli
process, the number of trials to the next success is given
by the geometric distribution (and is independent of the trial
number).

Properties The mean of T1, which is also sometimes
referred to as the return period or the mean recurrence time,
is determined as

E [T1] =
∞∑

k=1

kpqk−1 = p
∞∑

k=1

kqk−1

= p
d

dq

∞∑
k=1

qk = p
d

dq

(
q

1 − q

)

= p

(
1

(1 − q)2

)
= 1

p
(1.101)

where we used Eq. 1.100 to evaluate the final sum above.
We will use the second to last sum in the following
proof.

The variance of T1 is obtained from Var [T1] = E
[
T 2

1

]−
E2[T1] as

E
[
T 2

1

] =
∞∑

k=1

k 2pqk−1 = p
∞∑

k=1

k 2qk−1 = p
d

dq

∞∑
k=1

kqk

= p
d

dq

(
q

(1 − q)2

)

= 1

p
+ 2q

p2

Thus
Var [T1] = E

[
T 2

1

]− E2[T1]

= 1

p
+ 2q

p2
− 1

p2

= q

p2
(1.102)

As an aside, in engineering problems, we often reverse
the meaning of success and failure and use the geometric
distribution to model time to failure, where time is mea-
sured in discrete steps (trials).

The MLE of p is

p̂ = n∑n
i=1 ti

= 1

t̄
(1.103)

where t1, t2, . . . , tn are n independent observations of T1.

Example 1.43 Recall the previous example where a man-
ufacturer of geotextile sheets wishes to control the quality
of its product by rejecting any lot in which the proportion
of textile sheets having unacceptably low tensile strength
appears to be too high. Suppose now that the sampling
scheme is changed and the manufacturer decides to only
sample geotextile sheets until one is encountered having an
unacceptably low tensile strength. If this occurs on or be-
fore the eighth sheet tested, the entire lot will be rejected.
What is the probability that a lot will be rejected if

1. 5% of the sheets in the lot have unacceptably low
tensile strengths?

2. 10% of the sheets in the lot have unacceptably low
tensile strengths?

If having 5% of the sheets in a lot with unacceptably
low tensile strength is detrimental to the manufacturer’s
image and such a lot should not be sent to market, it
appears that this control approach would work better than
that of Example 1.39. However, if the manufacturer is more
concerned with profit, this control approach is definitely
not to their advantage. What might be the disadvantage of
this approach from the point of view of the manufacturer?
Explain with the help of a numerical example.

SOLUTION

1. Let T1 be the trial number of the first sheet to have
an unacceptably low tensile strength. Then, assuming
independence between sheets and constant probability
of success, T1 follows a geometric distribution with
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p = 0.05 and

P [T1 ≤ 8] = P [T1 = 1] + P [T1 = 2]

+ · · · + P [T1 = 7] + P [T1 = 8]

= 0.05 + 0.95(0.05)

+ · · · + 0.956(0.05) + 0.957(0.05)

= 0.337

2. Let T1 be the trial number of the first sheet to have
an unacceptably low tensile strength. Then, under the
same assumptions as in item 1, T1 follows a geometric
distribution with p = 0.10 and

P [T1 ≤ 8] = P [T1 = 1] + P [T1 = 2]

+ · · · + P [T1 = 7] + P [T1 = 8]

= 0.10 + 0.90(0.10)

+ · · · + 0.906(0.10) + 0.907(0.10)

= 0.570

3. The problem with this approach, from the point of
view of the manufacturer, is that a significant pro-
portion of lots with less than 5% unacceptably low-
strength sheets would be rejected (e.g., about a third).
In addition, consider what happens under this quality
control approach when only 2% of the sheets in the
lot have unacceptably low tensile strength. (We will
assume here that this is actually fairly good quality
control, although, in practice, the acceptable risks can
certainly vary.)
Let T1 be the trial number of the first sheet to have an
unacceptably low tensile strength. Then T1 follows a
geometric distribution, under the above assumptions,
with p = 0.02 and

P [T1 ≤ 8] = P [T1 = 1] + P [T1 = 2]

+ · · · + P [T1 = 7] + P [T1 = 8]

= 0.02 + 0.98(0.02) + · · · + 0.986(0.02)

+ 0.987(0.02)

= 0.149

so that there is still approximately a 15% chance
that such a “good” lot would be rejected. This test
does not sufficiently “resolve” the critical fraction of
defectives.

1.9.4 Negative Binomial Distribution

Suppose we wish to know the number of trials (time) in a
Bernoulli process until the mth success. Letting Tm be the

number of trials until the mth success,

P [Tm = k ] =
(

k − 1

m − 1

)
pm qk−m for k = m , m + 1, . . .

(1.104)
which is the negative binomial distribution. Whereas a bino-
mial distributed random variable is the number of successes
in a fixed number of trials, a negative binomial distributed
random variable is the number of trials for a fixed number
of successes. We note that the negative binomial is also
often used to model the number of failures before the mth
success, which results in a somewhat different distribution.
We prefer the interpretation that the negative binomial dis-
tribution governs the number of trials until the mth success
because it is a natural generalization of the geometric dis-
tribution and because it is then a discrete analog of the
gamma distribution considered in Section 1.10.2.

The name of the negative binomial distribution arises
from the negative binomial series

(1 − q)−m =
∞∑

k=m

(
k − 1

m − 1

)
qk−m (1.105)

which converges for |q | < 1. This series can be used to
show that the negative binomial distribution is a valid
distribution, since

∞∑
k=m

P [Tm = k ] =
∞∑

k=m

(
k − 1

m − 1

)
pm qk−m

= pm
∞∑

k=m

(
k − 1

m − 1

)
qk−m

= pm (1 − q)−m

= 1 (1.106)

as expected.
We see that the geometric distribution is a special case of

the negative binomial distribution with m = 1. The negative
binomial distribution is often used to model ‘time to the
mth failure, where time is measured in discrete steps, or
trials. Consider one possible realization which has the third
success on the eighth trial:

F S S F F F F S

Another possible realization might be

F F F S F S F S

In both cases, the number of successes is 3, having
probability p3, and the number of failures is 5, having
probability q5. In terms of ordering, if T3 = 8, then the third
success must occur on the eighth trial (as shown above).
Thus, the only other uncertainty is the ordering of the other
two successes. This can occur in

(7
2

)
ways. The probability
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that the third success occurs on the eighth trial is therefore
given by

P [T3 = 8] =
(

7

2

)
p3q5

Generalizing this for m successes and k trials leads to the
negative binomial distribution shown in Eq. 1.104.

Properties The mean is determined as

E [Tm ] =
∞∑

j=m

j P
[
Tm = j

] =
∞∑

j=m

j

(
j − 1

m − 1

)
pm qj−m

=
∞∑

j=m

j

(
(j − 1)!

(m − 1)!(j − m)!

)
pm qj−m

= mpm
∞∑

j=m

(
j !

m!(j − m)!

)
qj−m

= mpm
[

1 + (m + 1)q + (m + 2)(m + 1)

2!
q2

+ (m + 3)(m + 2)(m + 1)

3!
q3 + · · ·

]

= mpm

(1 − q)m+1

= m

p
(1.107)

which is just m times the mean of a single geometrically
distributed random variable T1, as expected, since the
number of trials between successes follows a geometric
distribution. In fact, this observation leads to the following
alternative representation of Tm ,

Tm = T1,1 + T1,2 + · · · + T1,m (1.108)

where T1,1 is the number of trials until the first success, T1,2

is the number of trials after the first success until the sec-
ond success, and so on. That is, the T1,i terms are just the
times between successes. Since all trials are independent,
each of the T1,i terms will be independent geometrically
distributed random variables, all having common probabil-
ity of success, p. This leads to the following much simpler
computation:

E [Tm ] = E
[
T1,1
]+ E

[
T1,2
]+ · · · + E

[
T1,m

] = m

p
(1.109)

since E
[
T1,i
] = 1/p for all i = 1, 2, . . . , m . The mean in

Figure 1.22 is 3/0.4 = 7.5.
To get the variance, Var [Tm ], we again use Eq. 1.108.

Due to independence of the T1,i terms, the variance of the
sum is the sum of the variances,

Var [Tm ] = Var
[
T1,1
]+ Var

[
T1,2
]+ · · · + Var

[
T1,m

]
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Figure 1.22 Negative binomial distribution for T3 (i.e., m = 3)
and p = 0.4.

= m Var [T1]

= mq

p2
(1.110)

which is just m times the variance of a single geometrically
distributed random variable T1, as expected.

If m is known, then the MLE of p is

p̂ = mn∑n
i=1 xi

= m

x̄
(1.111)

where x1, x2, . . . , xn are n independent observations of Tm .
If m is unknown, see Law and Kelton (2000), although
beware of the fact that Law and Kelton define their negative
binomial as governing the number of failures prior to the
mth success, not as the number of trials until the mth
success, as is done here.

Example 1.44 Consider again the problem of the ten-
sile strength of geotextile sheets of the previous two
examples. If 10% of the sheets have unacceptably low ten-
sile strengths, what is the probability that on the next series
of tests the third sheet to fail the tensile test is the eighth
sheet tested?

SOLUTION Let T3 be the number of sheets tested when
the third sheet to fail the tensile test is encountered
(note, this includes the sheet being tested). Then we are
looking for

P [T3 = 8] =
(

7

2

)
(0.10)3(0.9)8−3 = 0.0124
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1.9.5 Poisson Distribution

If we now allow every instant in time (or space) to be
a Bernoulli trial, we get a family of three distributions:
the Poisson distribution, the exponential distribution, and
the gamma distribution. The latter two are continuous
distributions governing the time between trial successes and
are discussed in the next section. The Poisson distribution
is analogous to the binomial distribution: It is derived from
the binomial distribution by letting the number of trials
go to infinity (one trial for each instant) and governs the
number of successes in some time interval t . To see how
the Poisson distribution is derived, consider the following
example.

Example 1.45 Derivation from Binomial Distribution
Suppose that it is known that along a certain long highway
stretch an average of 1 slope subsidence occurs per year.
What is the probability that exactly 10 slope subsidences
will occur in the next 10-year interval?

SOLUTION If we attempt to model this using the bino-
mial distribution, we must first divide time up into a series
of intervals within each of which a slope can either subside
(success) or not (failure). As a starting point, let us assume
that at most one slope can subside in any half-year interval.
We make this assumption because a Bernoulli trial can only
have two outcomes, and if we wish to be able to count the
number of subsidences, we must make these two possible
outcomes either 1 (a single slope subsides) or 0 (no slopes
subside). If our trials are a half-year in duration, then we
have 20 trials in 10 years and the probability of a success (a
slope subsides) in each trial is the rate per year divided by
the number of trials per year: p = 1

2 . In our 10-year interval
the probability we are looking for is

P
[
10 subsidences in 10 years

]

�
(

20

10

)
(0.5)10(0.5)20−10 = 0.176

Of course, we know that two or more slope subsidences
could easily occur within any half-year interval. An im-
proved solution is obtained by using a shorter trial interval.
If 2-month intervals were to be used then we now have six
trials per year and the probability of a slope subsidence in
any interval becomes p = 1

6 . The number of trials in 10
years (120 months) becomes n = 120

2 = 60

P
[
10 subsidences in 10 years

]

�
(

60

10

)(
1

6

)10 (5

6

)50

= 0.137

which is quite a bit more accurate.

In general, if time interval t is divided into n intervals
and the mean arrival rate is λ, then

p = λt

n
(1.112)

and if Nt is the number of subsidences in t years,

P [Nt = k ] =
(

n

k

)(
λt

n

)k (
1 − λt

n

)n−k

where λt is the mean number of subsidences (“arrivals”)
occurring in time interval t . If arrivals are instantaneous
(so that no more than one can occur in any instant with
probability 1) and can occur at any instant in time, so that
each instant in time becomes a Bernoulli trial, then

P [Nt = k ] = lim
n→∞

(
n

k

)(
λt

n

)k (
1 − λt

n

)n−k

= lim
n→∞

[{
n

n
· n − 1

n
· · · n − k + 1

n

}

× (λt)k

k !

(
1 − λt

n

)n (
1 − λt

n

)−k
]

but since

lim
n→∞

{
n

n
· n − 1

n
· · · n − k + 1

n

}
= 1

lim
n→∞

(
1 − λt

n

)−k

= 1

lim
n→∞

(
1 − λt

n

)n

= e−λt

then our distribution simplifies to

P [Nt = k ] = (λt)k

k !
e−λt

which is the Poisson distribution. In other words, the
Poisson distribution is a limiting case of the binomial
distribution, obtained when the number of trials goes to
infinity, one for each instant in time, and p is replaced by
the mean rate λ.

For our problem λ = 1 subsidence per year and t = 10
years. The probability of exactly 10 subsidences in 10 years
using the Poisson distribution is

P [N10 = 10] = (10)10

10!
e−10 = 0.125

and we see that the binomial model using 2-month trial
intervals gives a reasonably close result (with a relative
error of less than 10%).

We note that the Poisson model assumes independence
between arrivals. In the subsidence problem mentioned
above, there may be significant dependence between oc-
currences, if, for example, they are initiated by spatially
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extended rainfall or freeze/thaw action. When dependence
exists between trials and some common outside influence
(e.g., weather), the model is complicated by the fact that
the rate of occurrence becomes dependent on time. One
possible solution is to apply different Poisson models for
different time periods (e.g., wet season vs. dry season) or
to investigate nonstationary Poisson models.

The Poisson distribution is often used to model arrival
processes. We shall see in Chapter 4 that it is also useful
to model “excursion” processes, for example, the num-
ber of weak pockets in a soil mass. For simplicity, we
will talk about Poisson processes in time, but recognize
that they can be equivalently applied over space simply
by replacing t with a distance (or area, volume, etc.)
measure.

For any nonzero time interval we have an infinite number
of Bernoulli trials, since any time interval is made up of an
infinite number of instants. Thus, the probability of success,
p, in any one instant must go to zero (see Eq. 1.112);
otherwise we would have an infinite number of successes in
each time interval (np → ∞ as n → ∞). This means that
we must abandon the probability of success, p, in favor of a
mean rate of success, λ, which quantifies the mean number
of successes per unit time.

The basic assumption on which the Poisson distribution
rests is that each instant in time is a Bernoulli trial. Since
Bernoulli trials are independent and have constant probabil-
ity of success and only two possible outcomes, the Poisson
process enjoys the following properties:

1. Successes (arrivals) are independently and can occur
at any instant in time.

2. The mean arrival rate is constant.
3. Waiting times between arrivals are independent and

exponentially distributed.
4. The time to the k th arrival is gamma distributed.

In fact, if the first two or either of the last two properties
are known to hold for a sequence of arrivals, then the arrival
process belongs to the Poisson family.

As in the previous example, we will define Nt to be the
number of successes (arrivals or “occurrences”) occurring
in time t . If the above assumptions hold, then Nt is governed
by the following distribution:

P [Nt = k ] = (λt)k

k !
e−λt , k = 0, 1, 2, . . . (1.113)

where λ is the mean rate of occurrence (λ has units of re-
ciprocal time). This distribution is illustrated in Figure 1.23
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Figure 1.23 Poisson distribution for t = 4.5 and λ = 0.9.

Properties The mean is determined as

E [Nt ] =
∞∑

j=0

j
(λt)j

j !
e−λt = λte−λt

∞∑
j=1

(λt)j−1

(j − 1)!

= λte−λt
∞∑

j=0

(λt)j

j !

= λt (1.114)

The mean of the distribution shown in Figure 1.23 is
E [N4.5] = 0.9(4.5) = 4.05. To determine the variance, we
first need to find

E
[
N 2

t

] =
∞∑

j=0

j 2 (λt) j

j !
e−λt = λte−λt

∞∑
j=0

(j + 1)
(λt) j

j !

= λte−λt


 ∞∑

j=0

j
(λt)j

j !
+

∞∑
j=0

(λt)j

j !




= (λt)2 + (λt)

Thus

Var [Nt ] = E
[
N 2

t

]− E2[Nt ] = λt (1.115)

That is, the mean and variance of a Poisson process are the
same.

The Poisson distribution is also often written in terms of
the single parameter ν = λt ,

P [Nt = k ] = νk

k !
e−ν , k = 0, 1, 2, . . . (1.116)
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If x1, x2, . . . , xn are n independent observations of Nt , then
the MLE of ν is

ν̂ = 1

n

n∑
i=1

xi = x̄ (1.117)

If t is known, then λ̂ = ν̂/t .

Example 1.46 Many research papers suggest that the
arrivals of earthquakes follow a Poisson process over time.
Suppose that the mean time between earthquakes is 50 years
at a particular location.

1. How many earthquakes can be expected to occur
during a 100-year period?

2. What is the probability that more than three earth-
quakes occur in a 100-year period?

3. How long must the time period be so that the proba-
bility that no earthquakes occur during that period is
at most 0.1?

4. Suppose that 50 years pass without any earthquakes
occurring. What is the probability that another 50
years will pass without any earthquakes occurring?

SOLUTION

1. Let Nt be the number of earthquakes occurring over
t years. Then

P [Nt = k ] = (λt)k

k !
e−λt

where λ = 1
50 = 0.02 per year is the mean rate of oc-

currence of earthquakes and t = 100 years. Using this,
we have E [N100] = 100λ = 100(0.02) = 2. Thus, we
can expect two earthquakes to occur during a 100-
year period, which makes sense since the mean time
between earthquakes is 50 years.

2. Since λt = 0.02 × 100 = 2, we have

P [N100 > 3] = 1 − P [N100 ≤ 3]

= 1 −
(

P [N100 = 0] + P [N100 = 1]

+ P [N100 = 2] + P [N100 = 3]
)

= 1 − e−2
[

1 + 2 + 22

2
+ 23

3!

]

= 0.143

3. Let Nt be the number of occurrences over the time
interval t . We want to find t such that P [Nt = 0] =
e−λt ≤ 0.1. This gives us t ≥ − ln(0.1)/λ = − ln(0.1)/
0.02 = 115 years.

4. Let N50 be the number of occurrences over the first
50 years and N100 be the number of occurrences over
the first 100 years. Then, we have

P [N100 = 0 | N50 = 0] = P [N100 = 0 ∩ N50 = 0]

P [N50 = 0]

= P [N100 = 0]

P [N50 = 0]
= e−100λ

e−50λ

= e−50λ = e−1

= 0.368

We note that due to the memorylessness of the Poisson
process (which is in turn due to the independence
between trials) this result is identical to the probability
of having no earthquakes in any 50-year period,

P [N50 = 0] = e−50λ = e−1 = 0.368

Now consider a Poisson process with arrival rate λ.
If arrivals are retained randomly from this process with
probability p and rejected with probability q = 1 − p, then
the resulting process of retained arrivals is also Poisson
with arrival rate pλ [see Cinlar (1975) for a proof]. This is
illustrated by the following example.

Example 1.47 Earthquakes in a particular region occur
as a Poisson process with mean rate λ = 3 per year. In
addition, it has been observed that every third earthquake,
on average, has magnitude exceeding 5.

(a) What is the probability of having two or more earth-
quakes of magnitude in excess of 5 in the next one
year?

(b) What is the probability that the next earthquake of
magnitude in excess of 5 will occur within the next
2 months?

SOLUTION We are told that earthquakes occur as a
Poisson process with λ = 3 per year. This means that an
earthquake can occur at any instant in time but that on
average there are three “successes” each year. We are also
told that on average one in three of these earthquakes has
a higher magnitude (i.e., exceeding 5). The “on average”
part of this statement implies that each earthquake that does
occur has a 1

3 chance of having a higher magnitude. The
mean rate of occurrence of higher magnitude earthquakes
is thus λ′ = 1 per year.

(a) Let Nt be the number of higher magnitude earthquakes
which occur in t years. Under the above conditions,
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Nt follows a Poisson distribution and the desired prob-
ability is

P [N1 ≥ 2] = 1 − P [N1 = 0] − P [N1 = 1]

= 1 − e−λ′t [1 + λ′t]

= 1 − e−1(1)[1 + 1(1)]

= 0.2643

(b) The number of higher magnitude earthquakes which
might occur in the next two months is N1/6. The
question is “What is the probability that one or more
higher magnitude earthquakes will occur in the next
two months?” which can be solved as follows:

P
[
N1/6 ≥ 1

] = 1 − P
[
N1/6 = 0

] = 1 − e−λ′t

= 1 − e−1/6 = 0.1535

As mentioned above, and as we will see more of shortly,
the time to the next occurrence of a Poisson process
is exponentially distributed (compare the above re-
sult to the exponential distribution presented in Section
1.10.1).

The previous example seems to suggest that the distribu-
tion of every third occurrence is also Poisson, which is not
correct. This raises a rather subtle issue, but the distinction
lies between whether we are selecting every third occur-
rence or whether we are selecting occurrences randomly
with probability 1

3 of success. Here are the rules and the
reasoning for a process in which we are selecting every k th
occurrence on average or deterministically:

1. If we are selecting every k th occurrence on average,
and so randomly (i.e., the probability of selecting an
occurrence is 1/k ), then the time until the next selec-
tion follows an exponential distribution (see Section
1.10.1) with mean rate λ′ = λ/k , where λ is the mean
occurrence rate of the original process. In this case,
the likelihood of having success in the next instant is
1/k , and the likelihood decreases exponentially there-
after. The resulting process is a Poisson process.

2. If we are selecting every k th occurrence nonrandomly
(e.g., every k th customer arriving at a website is asked
to fill out a survey), then the time between selections
follows a gamma distribution (see Section 1.10.2).
The main implication of having to have exactly k − 1
occurrences of the original process before a selection
is that the likelihood of a selection in the next k − 1
instants is zero. In other words, we expect the gamma
distribution to start at zero when t = 0. The resulting
process is not Poisson.

In the above the word “likelihood” is used loosely to denote
the relative probability of an occurrence in a vanishingly
small time interval (i.e., an instant), dp/dt .

1.10 COMMON CONTINUOUS PROBABILITY
DISTRIBUTIONS

Many naturally occurring and continuous random phenom-
ena can be well modeled by a relatively small number of
distributions. The following six continuous distributions are
particularly common in engineering applications:

1. Exponential
2. Gamma
3. Uniform
4. Weibull
5. Rayleigh
6. Normal
7. Lognormal

As mentioned in the previous section, the exponential
and gamma distributions are members of the Bernoulli
family, deriving from the idea that each instant in time
constitutes an independent Bernoulli trial. These are the
continuous-time analogs of the geometric and negative
binomial distributions.

Aside from the above, there are certainly other contin-
uous distributions which may be considered. Distributions
which involve more than two parameters are generally dif-
ficult to justify because we rarely have enough data to
estimate even two parameters with much accuracy. From
a practical point of view what this means is that even if
a geotechnical researcher has large volumes of data at a
particular site and can accurately estimate, for example, a
modified six-parameter beta distribution, it is unlikely that
anyone else will be able to do so at other sites. Thus, com-
plex distributions, such as a six-parameter beta distribution,
are of questionable value at any site other than the site at
which it was estimated (see Chapter 4 for further discussion
of this issue).

As with the common discrete distributions, this section
looks briefly at the main characteristics of each of these
continuous distributions and describes how they are most
commonly used in practice. For a more complete descrip-
tion of these distributions, the interested reader should con-
sult an introductory textbook on probability and statistics,
such as Law and Kelton (1991) or Devore (2003).

1.10.1 Exponential Distribution

The exponential distribution is yet another distribution de-
rived from the Bernoulli family: It is the continuous analog
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of the geometric distribution. Recall that the geometric dis-
tribution governs the number of trials until the first success
(or to the next success). If we imagine that each instant in
time is now an independent trial, then the time until the
first (or next) success is given by the exponential distribu-
tion (the mathematics associated with this transition from
the geometric distribution involving “discrete” trials to a
“continuous” sequence of trials is similar to that shown pre-
viously for the transition from the binomial to the Poisson
distribution and will not be repeated here).

As with the geometric distribution, the exponential distri-
bution is often used to describe “time-to-failure” problems.
It also governs the time between arrivals of a Poisson pro-
cess. If T1 is the time to the occurrence (or failure) in
question and T1 is exponentially distributed, then its prob-
ability density function is (see Figure 1.24)

fT 1 (t) = λe−λt , t ≥ 0 (1.118)

where λ is the mean rate of occurrence (or failure). Its
cumulative distribution function is

FT 1 (t) = P [T1 ≤ t] = 1 − e−λt , t ≥ 0 (1.119)

Properties

E [T1] = 1

λ
(1.120a)

Var [T1] = 1

λ2
(1.120b)

That is, the mean and standard deviation of an exponentially
distributed random variable are equal.
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Figure 1.24 Exponential distribution for λ = 1.

Memoryless Property We will illustrate this property
with an example: Let T1 denote the time between oc-
currences of earthquakes in a particular region. Assume
that T1 has an exponential distribution with a mean of 4
months (i.e., on average, earthquakes in this region occur
once every 4 months). Thus, T1 has mean arrival rate of
λ = 1

4 = 0.25 earthquakes per month. The probability that
an earthquake occurs within the next 2 weeks (half-month)
is thus

P [T1 < 2 weeks] = P [T1 < 0.5 months]

= 1 − e−0.5×0.25 = 0.1175

Now, suppose that we set up a ground motion accelerometer
in this region and 8 months pass without an earthquake
occurring. What is the probability that an earthquake will
occur in the next half-month (i.e., between 8 and 8.5 months
from our setup time)? Because 8 months have gone by
without an earthquake occurring, you might feel that an
occurrence is overdue and therefore more likely. That is,
that the probability of an occurrence in the next half-month
should be greater than 0.1175. However, for the exponential
distribution, this is not the case, which is one of the features
of the exponential distribution—the past is ignored. Each
instant in time constitutes a trial which is independent of
all other trials. In fact,

P [T1 < 8.5 | T1 > 8] = P [8 < T1 < 8.5]

P [T1 > 8]

= (1 − e−8.5×0.25) − (1 − e−8×0.25)

e−8×0.25

= 0.1175

Thus, after 8 months without an occurrence, the probability
of an occurrence in the next half-month is the same as
the probability of an occurrence in any half-month interval.
We found this same property existed in the Poisson process;
indeed, the times between arrivals in the Poisson process
are exponentially distributed.

More generally, if T1 is exponentially distributed with
mean rate λ, then the memoryless property means that the
probability that T1 is greater than t + s , given that T1 > t ,
is the same as the probability that T1 is greater than s with
no past history knowledge. In other words,

P [T1 > t + s | T1 > t] = P [T1 > t + s ∩ T1 > t]

P [T1 > t]

= P [T1 > t + s]

P [T1 > t]
= e−λ(t+s)

e−λt

= e−λs

= P [T1 > s] (1.121)



COMMON CONTINUOUS PROBABILITY DISTRIBUTIONS 45

Link to Poisson It was mentioned above that the ex-
ponential distribution governs the time between the oc-
currences of a Poisson process. This can be clearly seen
through the following argument: Let Nt be a Poisson dis-
tributed random variable with mean arrival rate λ. We wish
to know the distribution of the time until the first arrival.
Let T1 be the time to the first arrival. Then,

P [T1 > t] = P [Nt = 0] = (λt)0

0!
eλt = e−λt

and so
P [T1 ≤ t] = FT 1 (t) = 1 − e−λt

But 1 − e−λt is the cumulative distribution for the expo-
nential probability density function λe−λt . Consequently,
T1 must follow an exponential distribution with mean rate
λ; that is, the time to the first occurrence in a Poisson pro-
cess follows an exponential distribution with parameter λ

which is equal to the Poisson rate λ. The same holds for
the time between any occurrences of a Poisson process.

In many cases, the assumption of “independence” be-
tween trials at every instant in time makes sense (e.g.,
arrivals of customers at a bank, cars traveling along a
highway). However, earthquakes tend to occur only once
sufficient strain levels have developed between adjacent tec-
tonic plates, and that generally takes some time. Thus, the
times between measurable earthquake occurrences depend
on tectonic movement rates and interplate friction, which
will not generally lead to a constant probability of occur-
rence at each instant in time. The Poisson model is usually
more reasonable for moderate to high earthquake magni-
tudes (in Chapter 4 we discuss the fact that higher level
excursions tend to a Poisson process).

If x1, x2, . . . xn are n independent observations of T1, then
the MLE of λ is

λ̂ = 1

n

n∑
i=1

xi = x̄ (1.122)

Example 1.48 Suppose the lifetime of a particular type of
nuclear density meter has an exponential distribution with
a mean of 28,700 h. Compute the probability of a density
meter of this type failing during its 8000-h warranty?

SOLUTION Let T1 be the lifetime of this type of den-
sity meter. Then T1 is exponentially distributed with λ =
1/28,700 per hour, and

P [T1 < 8000] = FT 1 (8000)

= 1 − exp

{
− 8000

28,700

}
= 0.243

Example 1.49 Let us assume that earthquakes in a certain
region occur on average once every 50 years and that

the number of earthquakes in any time interval follows a
Poisson distribution. Under these conditions, what is the
probability that less than 30 years will pass before the next
earthquake occurs?

SOLUTION Let T1 be the time to the next earthquake.
Then, since the number of earthquakes follow a Poisson
distribution, the time between earthquakes follows an ex-
ponential distribution. Thus, T1 follows an exponential dis-
tribution with λ = 1/50 = 0.02 earthquakes per year (on
average), and

P
[
T1 < 30 years

] = 1 − e−0.02×30 = 0.549

We could also solve this using the Poisson distribution. Let
N30 be the number of earthquakes to occur in the next 30
years. Then the event that less than 30 years will pass before
the next earthquake is equivalent to the event that one or
more earthquakes will occur in the next 30 years. That is,

P
[
T1 < 30 years

] = P [N30 ≥ 1] = 1 − P [N30 < 1]

= 1 − P [N30 = 0] = 1 − e−0.02×30

= 0.549

1.10.2 Gamma Distribution

We consider here a particular form of the gamma distri-
bution which is a member of the Bernoulli family and is
the continuous-time analog of the negative binomial dis-
tribution. It derives from an infinite sequence of Bernoulli
trials, one at each instant in time, with mean rate of success
λ, and governs the time between every k th occurrence of
successes in a Poisson process. Specifically, if Tk is de-
fined as the time to the k th success in a Poisson process,
then Tk is the sum of k independent exponentially dis-
tributed random variables Ei each with parameter λ. That is,
Tk = E1 + E2 + · · · + Ek and Tk has the probability density
function

fT k (t) = λ (λt)k−1

(k − 1)!
e−λt , t ≥ 0 (1.123)

which is called the gamma distribution (Figure 1.25). This
form of the gamma distribution (having integer k ) is also
referred to as the k-Erlang distribution. Note that k = 1
gives the exponential distribution, as expected. The above
distribution can be generalized to noninteger k if (k − 1)!
is replaced by �(k ), which is the gamma function; see Law
and Kelton (2000) for more information on the general
gamma distribution. We also give a brief discussion of
noninteger k at the end of this section.

To derive the cumulative distribution function, we inte-
grate the above probability density function (by parts) to



46 1 REVIEW OF PROBABILITY THEORY

0 2 4 6 8
t

0
0.

1
0.

2
0.

3

f(
t)

Figure 1.25 Gamma probability density function for λ = 1 and
k = 3.

obtain, for integer k,

FT k (t) = P [Tk ≤ t] = 1 − e−λt
k−1∑
j=0

(λt) j

j !
(1.124)

The cumulative distribution function can also be found by
recognizing that the event that the k th arrival occurs within
time t (i.e., Tk < t) is equivalent to the event that there
are k or more arrivals within time t (i.e., Nt ≥ k ). In other
words,

FT k (t) = P [Tk ≤ t] = P [Nt ≥ k ] = 1 − P [Nt < k ]

= 1 − e−λt
k−1∑
j=0

(λt) j

j !

Properties

E [Tk ] = k

λ

(
= k E [Ei ]

)
(1.125a)

Var [Y ] = k

λ2

(
= k Var [Ei ]

)
(1.125b)

If k is known and x1, x2, . . . , xn are n independent obser-
vations of Tk , then the MLE of λ is

λ̂ = nk∑n
i=1 xi

= k

x̄
(1.126)

Example 1.50 As in the previous example, let us assume
that earthquakes in a certain region occur on average once
every 50 years and that the number of earthquakes in any
time interval follows a Poisson distribution. Under these

conditions, what is the probability that less than 150 years
will pass before two or more earthquakes occur?

SOLUTION Let T2 be the time to the occurrence of the
second earthquake. Then, since earthquakes occur accord-
ing to a Poisson process, T2 must follow a gamma distri-
bution with k = 2 and λ = 1

50 and

P [T2 < 150] = FT 2 (150)

= 1 − e−150/50
(

1 + 150/50

1!

)
= 0.801

Note that the same result is obtained by computing

P [N150 ≥ 2] = 1 − P [N150 < 2]

= 1 − P [N150 = 0] − P [N150 = 1]

= 1 − e−150/50 − 150/50

1!
e−150/50

= 0.801

The gamma distribution presented above is specialized
to the sum of k independent and identically exponentially
distributed random variables. It can be extended to other
types of problems, so long as k is (at least approximately)
a positive integer.

Example 1.51 Suppose that for clay type A the length
of time in years until achieving 80% of consolidation
settlement follows a gamma distribution with a mean of
4 and a variance of 8. Suppose also that for clay type B the
time required to achieve the same fraction of consolidation
settlement also follows a gamma distribution but with mean
4 and variance 16. Which clay type has a higher probability
of reaching 80% consolidation in less than one year?

SOLUTION Let X be the time required to achieve 80%
consolidation settlement for clay type A. Then X follows a
gamma distribution with µ = k/λ = 4 and σ 2 = k/λ2 = 8.
Solving these two equations for k and λ gives us k = 2 and
λ = 1

2 .
Now let Y be the time required to achieve 80% consolida-
tion settlement for clay type B . Then Y follows a gamma
distribution with µ = k/λ = 4 and σ 2 = k/λ2 = 16. Solv-
ing these two equations for k and λ gives us k = 1 and
λ = 1

4 . For clay type A we then have

P [X < 1] = FT 2 (1)

= 1 − e−λ(1 + λ)

= 1 − e−1/2(1 + 1
2 )

= 0.0902
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while for clay type B we have

P [Y < 1] = FT 1 (1)

= 1 − e−λ

= 1 − e−1/4

= 0.2212

Thus, we are more likely to achieve 80% consolidation in
under one year with clay type B.

Although the gamma distribution is not limited to integer
values of k , the interpretation of the gamma PDF as
the distribution of a sum of independent and identically
exponentially distributed random variables is lost if k is
not an integer. The more general gamma distribution has
the form

fX (x ) = λ (λx )k−1

�(k )
e−λx , x ≥ 0 (1.127)

which is valid for any k > 0 and λ > 0. The gamma
function �(k ) for k > 0 is defined by the integral

�(k ) =
∫ ∞

0
x k−1e−x dx (1.128)

Tabulations of the gamma function can be found in Abra-
mowitz and Stegun (1970), for example. When k is an
integer, �(k ) = (k − 1)!.

1.10.3 Uniform Distribution

The continuous uniform distribution is the simplest of all
continuous distributions since its density function is con-
stant (over a range) (Figure 1.26). Its general definition is

f (x ) = 1

β − α
, α ≤ x ≤ β

and its cumulative distribution is

F (x ) = P [X ≤ x ] = x − α

β − α
, α ≤ x ≤ β (1.129)

The uniform distribution is useful in representing random
variables which have known upper and lower bounds and
which have equal likelihood of occurring anywhere between
these bounds. Another way of looking at the uniform distri-
bution is that it is noninformative or nonpresumptive. That
is, if you know nothing else about the relative likelihood of
a random variable, aside from its upper and lower bounds,
then the uniform distribution is appropriate—it makes no
assumptions regarding preferential likelihood of the random
variable since all possible values are equally likely.
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Figure 1.26 Uniform distribution for α = 3 and β = 7.

Properties

E [X ] =
∫ β

α

x dx

β − α
= α + β

2

(this is the midpoint) (1.130a)

Var [X ] =
∫ β

α

x 2

β − α
dx − E2[X ] = (β − α)2

12
(1.130b)

If x1, x2, . . . , xn are n independent observations of uni-
formly distributed X with minimum value xmin and maxi-
mum value xmax, then the MLEs of α and β are

α̂ = xmin, β̂ = xmax

That is, the MLEs of the lower and upper bounds of the
uniform distribution are just equal to the observed minimum
and maximum values.

Example 1.52 The C function rand() returns numbers
uniformly distributed on the interval [0,RAND MAX), which
includes zero but excludes RAND MAX. If Xi is assigned
subsequent values returned by rand()/RAND MAX, then
each Xi is uniformly distributed on the interval [0, 1). If we
further define

Y = α

[
12∑

i=1

Xi − 6

]

then what is the mean and variance of Y ?

SOLUTION

E [Y ] = α

[
12∑

i=1

E [Xi ] − 6

]
= α [12 E [Xi ] − 6]

= α
[
12( 1

2 ) − 6
]

= 0
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Var [Y ] = Var

[
α

(
12∑

i=1

Xi − 6

)]
= Var

[
α

12∑
i=1

Xi

]

= α2 Var

[
12∑

i=1

Xi

]

= α2
12∑

i=1

Var [Xi ] = α2(12)( 1
12 )

= α2

1.10.4 Weibull Distribution

Often, engineers are concerned with the strength properties
of materials and the lifetimes of manufactured devices. The
Weibull distribution has become very popular in describing
these types of problems (Figure 1.27). One of the attractive
features of the Weibull distribution is that its cumulative
distribution function is quite simple.

If a continuous random variable X has a Weibull distri-
bution, then it has probability density function

f (x ) = β

x
(λx )βe−(λx )β for x > 0 (1.131)

having parameters λ > 0 and β > 0. The Weibull has a
particularly simple cumulative distribution function

F (x ) = 1 − e−(λx )β if x ≥ 0 (1.132)

Note that the exponential distribution is a special case
of the Weibull distribution (simply set β = 1). While the
exponential distribution has constant, memoryless failure
rate, the Weibull allows for a failure rate that decreases
with time (β < 1) or a failure rate that increases with
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Figure 1.27 Weibull distribution.

time (β > 1). This gives increased flexibility for modeling
lifetimes of systems that improve with time (e.g., a good
red wine might have β < 1) or degrade with time (e.g.,
reinforced concrete bridge decks subjected to salt might
have β > 1).

The mean and variance of a Weibull distributed random
variable are

µ = 1

λβ
�

(
1

β

)
(1.133a)

σ 2 = 1

λ2β

{
2�

(
2

β

)
− 1

β

[
�

(
1

β

)]2
}

(1.133b)

where � is the gamma function, which is commonly tabu-
lated in math tables.

To find MLEs of λ and β, we must solve the following
two equations for the estimators λ̂ and β̂ (Law and Kelton,
2000):

∑n
i=1 x β̂

i ln xi∑n
i=1 x β̂

i

− 1

β̂
= 1

n

n∑
i=1

ln xi λ̂ =
(

1

n

n∑
i=1

x β̂

i

)−1/β̂

(1.134)
The first equation involves only β̂, which can be solved for
numerically. Once β̂ has been obtained, the second equation
can be solved directly for λ̂. Thomas et al. (1969) provide
an efficient general recursive formula using Newton’s root-
finding method,

β̂k+1 = β̂k + A + (1/β̂k ) − Ck /Bk

(1/β̂2
k ) + (Bk Hk − C 2

k )/B2
k

(1.135)

where

A = 1

n

n∑
i=1

ln xi

Bk =
n∑

i=1

x β̂k
i

Ck =
n∑

i=1

x β̂k
i ln xi

Hk =
n∑

i=1

x β̂k
i (ln xi )

2

An appropriate initial starting point is given by Menon
(1963) and Thoman et al. (1969) to be

β̂0 =



6

(n − 1)π2


 n∑

i=1

(ln xi )
2 − 1

n

(
n∑

i=1

ln xi

)2





−1/2

(1.136)
See also Thoman et al. (1969) for confidence intervals on
the true λ and β.
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Example 1.53 The time to 90% consolidation of a sample
of a certain clay has a Weibull distribution with β = 1

2 . A
significant number of tests have shown that 81% of clay
samples reach 90% consolidation in under 5516 h. What is
the median time to attain 90% consolidation?

SOLUTION Let X be the time until a clay sample reaches
90% consolidation. Then we are told that X follows a
Weibull distribution with β = 0.5. We first need to compute
the other Weibull parameter, λ. To do this we make use
of the fact that we know P [X < 5516] = 0.81, and since
P [X < 5516] = F (5516), we have

F (5516) = 1 − exp
{− (5516λ)0.5} = 0.81

exp
{− (5516λ)0.5} = 0.19

λ = 1
2000

We are now looking for the median, x̃ , which is the point
which divides the distribution into half. That is, we want
to find x̃ such that F (x̃ ) = 0.5,

1 − exp

{
−
(

x̃

2000

)0.5
}

= 0.5

exp

{
−
(

x̃

2000

)0.5
}

= 0.5

x̃ = 960.9 h

1.10.5 Rayleigh Distribution

The Rayleigh distribution (Figure 1.28) is a nonnegative
distribution which finds application in the simulation of
normally distributed random processes (see Section 3.3 and
Chapter 6). In particular, consider the two orthogonal com-
ponents τ1 and τ2 of the vector τ in two-dimensional space.
If the two components are independent and identically
normally distributed random variables with zero means
and common variance s2, then the vector length |τ | =√

τ 2
1 + τ 2

2 will be Rayleigh distributed with probability
density function

f (x ) = x

s2
exp

{
− x 2

2s2

}
, x ≥ 0 (1.137)

and cumulative distribution function

F (x ) = 1 − e− 1
2 (x/s)2

if x ≥ 0 (1.138)

which is actually a special case of the Weibull distribution
(β = 2 and λ = 1/(s

√
2)).

The mean and variance of a Rayleigh distributed random
variable are

µ = s
√

1
2π σ 2 = (2 − 1

2π )s2
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Figure 1.28 Rayleigh distribution.

1.10.6 Student t-Distribution

If Z is a standard normal random variable, V is a chi-
square random variable with ν degrees of freedom, and
Z and V are independent, then the random variable T
defined by

T = Z√
V /ν

(1.139)

follows the Student t-distribution with probability function

f (t) = �[(ν + 1)/2]√
πν �(ν/2)

(
1 + t2

ν

)−(ν+1)/2

, −∞ < t < ∞
(1.140)

This distribution was discovered in 1908 by William Gos-
sett, who was working for the Guinness Brewing Com-
pany in Dublin, Ireland. The company considered the dis-
covery to be proprietary information and told Gossett he
could not publish it. Gossett published it anyway under the
pseudonym “Student.”

Table A.2 shows values of tα,ν such that P
[
T > tα,ν

] = α

for commonly used values of α. We shall see more of
this distribution in Chapters 2 and 3. Figure 1.29 shows
some of the family of t-distributions. Notice that the t-
distribution becomes wider in the tails as the number of
degrees of freedom ν decreases. Conversely, as ν increases,
the distribution narrows, becoming the standard normal
distribution as ν → ∞. Thus, the last line of Table A.2
corresponds to the standard normal distribution, which
is useful when finding z for given cumulative probabil-
ity. (Note that Table A.2 is in terms of areas to the
right.)

The mean and variance of a Student t-distributed random
variable are

µ = 0, σ 2 = ν

ν − 2
for ν > 2
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Figure 1.29 Student t -distribution.

1.10.7 Chi-Square Distribution

If Z1, Z2, . . . , Zν are independent standard normal random
variables [i.e., each N (0, 1)], then the sum

χ2
k = Z 2

1 + Z 2
2 + · · · + Z 2

ν (1.141)

has the probability density function

f (x ) = 1

2ν/2�( ν
2 )

x ν/2−1 e−x/2 for x > 0 (1.142)

which is called a chi-square distribution with ν degrees of
freedom (Figure 1.30). This is actually a special case of
the gamma distribution with k = ν/2 and λ = 1

2 . To get
probabilities, we write

P
[
χ2

k ≥ χ2
α,k

] = α =
∫ ∞

χ2
α,k

f (u) du (1.143)

and use standard chi-square tables. See Table A.3. For
example, P

[
χ2

10 ≥ 15.99
] = 0.10, which is found by en-

tering the table with ν = 10 degrees of freedom, looking
across for 15.99, and then reading up at the top of the table
for the associated probability. Note that both Tables A.2
and A.3 are in terms of area to the right and are used with
inverse problems where we want values on the horizontal
axis having area to the right specified by a given α.
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Figure 1.30 Chi-square distribution.

The mean and variance of a chi-square distributed ran-
dom variable are

µ = ν, σ 2 = 2ν

1.10.8 Normal Distribution

The normal distribution is probably the single most impor-
tant distribution in use today (Figure 1.31). This is largely
because sums of random variables tend to a normal dis-
tribution, as was proven by the central limit theorem—a
theorem to be discussed shortly. Many natural “additive”
type phenomena, or phenomena involving many accumu-
lating factors, therefore tend to have a normal distribution.
For example, the cohesive strength of a soil is due to the
sum of a very large number of electrochemical interactions
taking place at the molecular level; thus, the normal distri-
bution has been widely used to represent the distribution of
cohesion (its main competitor as a representative distribu-
tion is the lognormal distribution, discussed next).

A random variable X follows a normal (or Gaussian)
distribution if its probability density function has the form

f (x ) = 1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

for −∞ < x < ∞
(1.144)

The notation X ∼ N (µ, σ 2) will be used to mean that X
follows a normal distribution with mean µ and variance σ 2.

Properties

1. The distribution is symmetric about the mean µ

(which means that µ is also equal to the median).
2. The maximum point, or mode, of the distribution

occurs at µ.
3. The inflection points of f (x ) occur at x = µ ± σ .
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Figure 1.31 Normal distribution with µ = 5 and σ = 2.
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The mean and variance are given as

E [X ] = µ, Var [X ] = σ 2

If x1, x2, . . . , xn are n independent observations of nor-
mally distributed X , then the MLEs of µ and σ 2 are

µ̂ = 1

n

n∑
i=1

xi = x̄ (1.145a)

σ̂ 2 = 1

n

n∑
i=1

(xi − µ̂)2 (1.145b)

The more common estimator for σ 2 is slightly different,
having the form

s2 = 1

n − 1

n∑
i=1

(xi − µ̂)2 (1.146)

The latter is an unbiased estimator (see Section 5.2.1),
which is generally more popular, especially for smaller n .

Standard Normal Unfortunately, no closed-form solu-
tion exists for the integral of the normal probability density
function. Probabilities associated with the normal distribu-
tion must be obtained by numerical integration. Tradition-
ally, this has meant that normal probabilities have had to
be obtained by consulting tables presented in manuals and
textbooks. Of course, no book is big enough to contain the
complete set of tables necessary for all possible values of µ

and σ , so some way of encapsulating the tables is necessary.
As it turns out, if the random variable X is transformed by
subtracting its mean and dividing by its standard deviation,

Z = X − µ

σ
(1.147)

then the resulting random variable Z has mean zero and
unit variance (Figure 1.32). If a probability table is devel-
oped for Z , which is called the standard normal variate,
then probabilities for all other normally distributed random
variables can be obtained by performing the above normal-
izing transformation. That is, probabilities for any normally
distributed random variable can be obtained by perform-
ing the above transformation and then consulting the single
standard normal probability table.

The distribution of the standard normal Z is given the
special symbol φ(z ), rather than f (z ), because of its impor-
tance in probability modeling and is defined by

φ(z ) = 1√
2π

e− 1
2 z 2

for −∞ < z < ∞ (1.148)

The cumulative distribution function of the standard nor-
mal also has a special symbol, �(z ), rather than F (z ),
again because of its importance. Tables of �(z ) are com-
monly included in textbooks, and one appears in Appendix
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Figure 1.32 Standard normal distribution.

A. Computing probabilities for any normally distributed
random variables proceeds by standardization, that is, by
subtracting the mean and dividing by the standard deviation
on both sides of the inequality in the following:

P [X < x ] = P

[
X − µ

σ
<

x − µ

σ

]

= P

[
Z <

x − µ

σ

]

= �

(
x − µ

σ

)

= �(z ) (1.149)

at which point, Table A.1 can be consulted, with z =
(x − µ)/σ , to obtain the desired probability.

Example 1.54 Suppose X is normally distributed with
mean 5 and standard deviation 2. Then, what is P [X < 2.0]?

SOLUTION In order to use Table A.1, we standardize on
both sides of the inequality by subtracting the mean and
dividing by the standard deviation:

P [X < 2.0] = P

[
X − µ

σ
<

2 − µ

σ

]

= P

[
Z <

2 − 5

2

]
= P [Z < −1.5]

= �(−1.5)

Table A.1 does not include negative values, so we make
use of the symmetry of the standard normal. That is, the
area under the distribution to the left of z = −1.5 (see the
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figures below) is equal to the area under the distribution to
the right of z = 1.5. The table only gives areas to the left;
it is a cumulative distribution. This means that the area to
the right of a point must be obtained by subtracting the area
to the left from 1.0. This leaves us with

P [X < 2.0] = 1 − �(1.5) = 1 − 0.93319 = 0.06681

Note, for increased precision, interpolation can be used
between table values, for example, if you are trying to
determine �( 2

3 ). However, given the typical uncertainty in
the estimates of the mean and standard deviation, there is
probably little point in trying to obtain the final probability
too precisely.

The probability areas involved in this question are shown
below. The plot on the left illustrates the original P [X < 2]
while the plot on the right illustrates the transformed
standardized problem, P [Z < −1.5]. The shaded areas are
of equal size.

Example 1.55 The reliability of soil anchor cables against
tensile failure is to be assessed. Suppose that a particular
brand of cable has normally distributed tensile strength with
mean 35 kN and a standard deviation of 2 kN.

1. What is the probability that the tensile strength of a
randomly selected cable is less than 40 kN?

2. Approximately 10% of all sampled cables will have
a tensile strength stronger than which value?

3. Can you see any problems with modeling tensile
strength using a normal distribution?

SOLUTION Let X be the tensile strength of the cable.
Then X is normally distributed with mean µ = 35 kN and
standard deviation σ = 2 kN.

1. P [X < 40] = P

[
X − µ

σ
<

40 − 35

2

]
= P [Z < 2.5]

= 0.9938.

2. P [X > x ] = 0.10 → P

[
X − µ

σ
>

x − 35

2

]

= 0.10.
Since P [Z > 1.28] = 0.10, we have

1
2 (x − 35) = 1.28 =⇒ x = 37.56

so that 10% of all samples are stronger than 37.56 kN.
Note that in this solution we had to search through
Table A.1 for the probability as close as possible
to 1 − 0.10 = 0.9 and then read “outwards” to see
what value of z it corresponded to. A much simpler
solution is to look at the last line of Table A.2 under
the heading α = 0.10. As we saw previously, Table
A.2 is the inverse t-distribution, and the t-distribution
collapsed to the standard normal when ν → ∞.

3. The normal distribution allows negative tensile
strengths, which are not physically meaningful. This
is a strong motivation for the lognormal distribution
covered in Section 1.10.9.

1.10.8.1 Central Limit Theorem If X1, X2, . . . , Xn are
independent random variables having arbitrary distribu-
tions, then the random variable

Y = X1 + X2 + · · · + Xn (1.150)
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has a normal distribution as n → ∞ if all the X ’s have
about the same mean and variance (i.e., none is dominant).
See Papoulis (1991) for a proof of this theorem. In addition,
if the X ’s are all normally distributed then Y is normally
distributed for any n .

Specifically we will find the following result useful. If

X n = 1

n

n∑
i=1

Xi

where X1, X2, . . . , Xn are independent samples taken from
population X having mean µ and variance σ 2 (any distri-
bution), then

lim
n→∞ P

[
(X n − µ)

σ/
√

n
≤ x

]
= �(x ) (1.151)

Implications
1. The sum of normal variates is normal (for any n) as

mentioned above.
2. If the distributions of the X ’s are well behaved (almost

normal), Then n ≥ 4 gives a good approximation to
the normal distribution.

3. If the distributions of the X ’s are uniform (or almost
so), then n ≥ 6 yields a reasonably good approxima-
tion to the normal distribution (out to at least about
three standard deviations from the mean).

4. For poorly behaved distributions, you may need n >

100 before the distribution begins to look reasonably
normal. This happens, for example, with distributions
whose tails fall off very slowly.

Thus for n sufficiently large and X1, X2, . . . , Xn independent
and identically distributed (iid)

Y = X1 + X2 + · · · + Xn

is approximately normally distributed with

µY = E [Y ] = n E [Xi ] (1.152a)

σ 2
Y = Var [Y ] = n Var [Xi ] (1.152b)

If the X ’s are not identically distributed but are still inde-
pendent, then

µY =
n∑

i=1

E [Xi ] (1.153a)

σ 2
Y =

n∑
i=1

Var [Xi ] (1.153b)

1.10.8.2 Normal Approximation to Binomial By virtue
of the central limit theorem, the binomial distribution,
which as you will recall arises from the sum of a sequence
of Bernoulli random variables, can be approximated by the
normal distribution (Figure 1.33). Specifically, if Nn is the
number of successes in n trials, then

Nn =
n∑

i=1

Xi (1.154)

where Xi is the outcome of a Bernoulli trial (Xi = 1 with
probability p, Xi = 0 with probability q = 1 − p). Since
Nn is the sum of identically distributed random variables,
which are assumed independent, if n is large enough, the
central limit theorem says that Nn can be approximated by
a normal distribution. We generally consider this approx-
imation to be reasonably accurate when both np ≥ 5 and
nq ≥ 5. In this case, the normal distribution approximation
has mean and standard deviation

µ = np (1.155a)

σ = √
npq (1.155b)
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Figure 1.33 Normal approximation to binomial distribution.
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Of course, we know that Nn is discrete while the normal
distribution governs a continuous random variable. When
we want to find the approximate probability that Nn is
greater than or equal to, say, k , using the normal distri-
bution, we should include all of the binomial mass at k .
This means that we should look at the normal probability
that (Nn > k − 1

2 ). For example, in Figure 1.33, the proba-
bility that Nn ≥ 20 is better captured by the area under the
normal distribution above 19.5.

In general, the following corrections apply. Similar cor-
rections apply for two-sided probability calculations.

P [Nn ≥ k ] � 1 − �

(
k − 0.5 − µ

σ

)
(1.156a)

P [Nn > k ] � 1 − �

(
k + 0.5 − µ

σ

)
(1.156b)

P [Nn ≤ k ] � �

(
k + 0.5 − µ

σ

)
(1.156c)

P [Nn < k ] � �

(
k − 0.5 − µ

σ

)
(1.156d)

Example 1.56 Suppose that in a certain region it is
equally likely for a soil sample to pass a particular soil
test as it is to fail it. If this is true, what is the probability
that more than 495 samples pass the test over the next 900
tests?

SOLUTION If we assume that soil tests pass or fail
independently with constant probability of passing the test,
then the number of tests passing, out of n tests, is Nn , which
follows a binomial distribution. The exact probability is
then given by

P [N900 > 495] = P [N900 = 496] + P [N900 = 497]

+ · · · + P [N900 = 900]

=
(

900

496

)
p496q404 +

(
900

497

)
p497q403

+ · · · +
(

900

900

)
p900q0

It is not practical to compute this with a simple hand
calculator, and even with a computer the calculations are
prone to numerical roundoff and overflow errors. The
normal approximation will give a very accurate result with
a fraction of the effort. We start by computing the mean
and variance of N900:

E [N900] = µ = np = (900)(0.5) = 450

Var [N900] = σ 2 = npq = (900)(0.5)(0.5) = 225

so that σ = √
225 = 15. We now make the following ap-

proximation:

P [N900 > 495] = P

[
N900 − µ

σ
>

495 − µ

σ

]

� P

[
Z >

495 + 0.5 − 450

15

]

= 1 − �(3.03)

= 0.00122

where, in the second line of the equation, we say that
(N900 − µ)/σ is approximately a standard normal, and,
at the same time, apply the half-interval correction for
increased accuracy. (Note that without the half-interval
correction we would get P [N900 > 495] � 0.00135, a small
absolute difference but a 10% relative difference.)

1.10.8.3 Multivariate Normal Distribution The normal
distribution is also popular as a distribution governing
multiple random variables because it is simply defined
knowing only the mean and variance of each random
variable and the covariances acting between them. Consider
two random variables, X and Y ; these follow a bivariate
normal distribution if their joint distribution has the form

fX Y (x , y) = 1

2πσX σY

√
1 − ρ2

exp

{
−1

2(1 − ρ2)

[(
x − µX

σX

)2

−2ρ

(
x − µX

σX

)(
y − µY

σY

)
+
(

y − µY

σY

)2
]}

(1.157)

for −∞ < x , y < ∞, where ρ is the correlation coefficient
between X and Y and µX , µY and σX , σY are the means and
standard deviations of X and Y , respectively. Figures 1.16
and 1.17 illustrate the bivariate normal distribution.

If X and Y follow a bivariate normal distribution, then
their marginal probability density functions, defined as

fX (x ) =
∫ ∞

−∞
fX Y (x , y) dy (1.158a)

fY (y) =
∫ ∞

−∞
fX Y (x , y) dx (1.158b)

are also normal distributions. For example, the marginal
distribution of X is a normal distribution with mean µX

and standard deviation σX , and similarly for the marginal
distribution of Y . That is,

fX (x ) = 1

σX

√
2π

exp

{
−1

2

(
x − µX

σX

)2
}

(1.159a)
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fY (y) = 1

σY

√
2π

exp

{
−1

2

(
y − µY

σY

)2
}

(1.159b)

Recall that the conditional probability of A given B is

P [A | B] = P [A ∩ B]

P [B]

From this, we get the following result for conditional
distributions:

fX | Y (x | y) = fX Y (x , y)

fY (y)
(1.160)

In particular, if X and Y follow a bivariate normal distri-
bution, then it can be shown that

fX | Y (x | y) = 1

σX

√
1 − ρ2

√
2π

× exp


−1

2

[
x − µX − ρ(y − µY )σX /σY

σX

√
1 − ρ2

]2

 (1.161)

It can be seen from this that the conditional distribution
of X for a given Y = y also follows a normal distribution
with mean and standard deviation

µX | Y = µX + ρ(y − µY )σX

σY

(1.162a)

σX | Y = σX

√
(1 − ρ2) (1.162b)

Example 1.57 Suppose that the load capacities of two
neighboring piles, X and Y , are jointly normally distributed
with correlation coefficient ρ = 0.7. Based on similar pile
capacities in the area, the following statistics have been
determined:

µX = µY = 2000, σX = σY = 500

What is the probability that the load capacity of pile X is
less than 1700 if nothing is known about the load capacity
of pile Y ? Alternatively, if the load capacity of pile Y has
been measured to be 1800, what is the probability that X
is less than 1700 in light of this information?

SOLUTION If nothing is known about the load capacity
of Y , then the probability that X is less than 1700 depends
only on the marginal distribution of X . That is,

P [X < 1700] = P

[
Z <

1700 − µX

σX

]

= P

[
Z <

1700 − 2000

500

]

= �(−0.6)

= 0.274

If, however, we know that Y = 1800, then we are look-
ing for the probability that pile X < 1700 conditioned on
the fact that pile Y = 1800. The conditional mean of X
given Y = 1800 is

µX | Y = µX + ρ(y − µY )σX

σY

= 2000 + 0.7(1800 − 2000)(500)

500
= 1860

This is saying, as expected, that the conditional mean of
pile X is substantially reduced as a result of the fact that
the neighboring pile had a relatively low load capacity. The
conditional standard deviation of X given Y = 1800 is

σX | Y = σX

√
1 − ρ2

= 500
√

1 − 0.72

= 357.07

This is reduced from the unconditional standard deviation
of 500 because the relatively high correlation with the
neighboring pile constrains the possible values of pile X .
For example, if the correlation between pile capacities were
1.0, then we would know that X = Y . In this case, once we
know Y , we would know X with certainty. That is, when
ρ = 1, the variance of X | Y falls to zero. When ρ = 0, X
and Y will be uncorrelated, and thus independent, since they
are normally distributed, and the observation of Y will then
make no difference to the variability (and distribution) of X .

For our question, the desired conditional probability is
now

P [X < 1700 | Y = 1800] = �

(
1700 − µX | Y

σX | Y

)

= �

(
1700 − 1860

357.07

)

= �(−0.45)

= 0.326

As expected, the observation of a low load capacity at a
neighboring pile has increased the probability of a low load
capacity at the pile of interest.

To extend the multivariate normal distribution to more
than two random variables, it is useful to use vector–matrix
notation. Define

µ =




µ1

µ2

.

.

.

µn




(1.163)
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to be the vector of means of the sequence of n random
variables X = {X1, X2, . . . , Xn} and

C =




C11 C12 · · · C1n

C21 C22 · · · C2n

.

.

.

.

.

.

.
.

.

.

.

.

Cn1 Cn2 · · · Cnn




(1.164)

to be the matrix of covariances between Xi and Xj , i =
1, 2, . . . , n and j = 1, 2, . . . , n . Each element of the covari-
ance matrix is defined as

Cij = Cov
[
Xi , Xj

] = ρij σi σj if i �= j

= Var [Xi ] = σ 2
i if i = j

Note that if the Xi ’s are uncorrelated, then the covariance
matrix is diagonal:

C =




σ 2
1 0 · · · 0

0 σ 2
2 · · · 0

.

.

.

.

.

.

.
.

.

.

.

.

0 0 · · · σ 2
n




Using these definitions, the joint normal distribution of
X = {X1, X2, . . . , Xn} is

fX(x) = 1

(2π )n/2
√|C |

× exp
{− 1

2 (x − µ)TC −1(x − µ)
}

(1.165)

where |C | is the determinant of C and superscript T means
the transpose.

As in the bivariate case, all marginal distributions are
also normally distributed:

fX i (xi ) = 1

σi
√

2π
exp

{
−1

2

(
xi − µi

σi

)2
}

(1.166)

The conditional distributions may be obtained by partition-
ing the vector X into two parts (Vanmarcke, 1984): Xa and

Xb of size na and nb , where na + nb = n , that is,

X =




X1

.

.

.

Xna

Xna+1
.
.
.

Xn




=
{

Xa

Xb

}
(1.167)

having mean vectors

µa =




µ1
.
.
.

µna




, µb =




µna+1
.
.
.

µn




(1.168)

Using this partition, the covariance matrix can be split into
four submatrices:

C =
(

C aa C ab

C ba C bb

)
(1.169)

where C ba = C T
ab . Using these partitions, the conditional

mean of the vector Xa given the vector Xb can be obtained
from

µa | b = µa + C abC −1
bb (Xb − µb) (1.170)

Similarly, the conditional covariance matrix is

C a | b = C aa − C abC −1
bb C T

ab (1.171)

With these results, the conditional distribution of Xa given
Xb is

fXa | Xb (xa | xb) = 1

(2π )na/2
√|C a | b |

× exp
{
− 1

2 (xa − µa | b)T C −1
a | b (xa − µa | b )

}
(1.172)

1.10.9 Lognormal Distribution

From the point of view of modeling material properties
and loads in engineering, which are generally nonnegative,
the normal distribution suffers from the disadvantage of
allowing negative values. For example, if a soil’s elastic
modulus were to be modeled using a normal distribution,
then there would be a nonzero probability of obtaining a
negative elastic modulus. Since a negative elastic modulus
does not occur in practice, the normal cannot be its true
distribution.
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As an approximation, the normal is nevertheless often
used to represent material properties. The error incurred
may be slight when the coefficient of variation v is small.
For example, if v ≤ 0.3, then P [X < 0] ≤ 0.0004, which
may be fine unless it is at these extremes that failure is ini-
tiated. A simple way to avoid such problems is to fit a non-
negative distribution to the population in question, and one
such candidate is the lognormal distribution (Figure 1.34).
The lognormal distribution arises from the normal distri-
bution through a simple, albeit nonlinear, transformation.
In particular, if G is a normally distributed random vari-
able, having range −∞ < g < +∞, then X = exp{G} will
have range 0 ≤ x < ∞. We say that the resulting random
variable X is lognormally distributed—note that its natural
logarithm is normally distributed.

The random variable X is lognormally distributed if
ln (X ) is normally distributed. If this is true, then X has
probability density function

f (x ) = 1

xσln X

√
2π

exp

{
−1

2

(
ln x − µln X

σln X

)2
}

,

0 ≤ x < ∞ (1.173)

Note that this distribution is strictly nonnegative and so
is popular as a distribution of nonnegative engineering
properties, such as cohesion, elastic modulus, the tangent
of the friction angle, and so on. The two parameters of the
distribution,

µln X = E [ln X ] , σ 2
ln X = Var [ln X ]

are the mean and variance of the underlying normally
distributed random variable, ln X .
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Figure 1.34 Two lognormal distributions illustrating effect of
changing variance.

Computing Probabilities In order to compute probabili-
ties from the lognormal distribution, we must make use of
the fact that ln(X ) is normally distributed so that we can
use the standard normal table. That is, in a probability ex-
pression, we take logarithms on both sides of the inequality,
then standardize by subtracting the mean and dividing by
the standard deviation of ln X ,

P [X ≤ a] = P [ln(X ) < ln(a)]

= P

[
ln(X ) − µln X

σln X

<
ln(a) − µln X

σln X

]

= P

[
Z <

ln(a) − µln X

σln X

]

= �

(
ln(a) − µln X

σln X

)
(1.174)

where, as before, Z is the standard normal random variate.

Mean and Variance The mean and variance of X are ob-
tained by transforming the two parameters of the lognormal
distribution,

µX = E [X ] = eµln X + 1
2 σ 2

ln X (1.175a)

σ 2
X = Var [X ] = µ2

X

(
eσ 2

ln X − 1
)

(1.175b)

Alternatively, if you are given µX and σ 2
X , you can obtain

the parameters µln X and σ 2
ln X as follows:

σ 2
ln X = ln

(
1 + σ 2

X

µ2
X

)
(1.176a)

µln X = ln(µX ) − 1
2σ 2

ln X (1.176b)

Characteristics and Moments

Mode = eµln X −σ 2
ln X (1.177a)

Median = eµln X (1.177b)

Mean = eµln X + 1
2 σ 2

ln X (1.177c)

E
[
X k
]

= ekµln X + 1
2 k2σ 2

ln X (1.177d)

Note that the mode < median < mean, and thus the
lognormal distribution has positive skew. A distribution is
skewed if one of its tails is longer than the other, and, by
tradition, the sign of the skew indicates the direction of the
longer tail.

Figure 1.35 illustrates the relative locations of the mode,
median, and mean for the nonsymmetric lognormal distri-
bution. Because of the positive-skewed, or “skewed-right,”
shape of the distribution, with the long distribution tail to
the right, realizations from the lognormal distribution will
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Figure 1.35 Location of mode, median, and mean in lognormal
distribution for µX = 10 and σX = 5.

have very large values every now and then. This results in
the mean being drawn to the right (e.g., the arithmetic aver-
age is affected by very large values in the sum). Often, for
the lognormal distribution, the median is actually viewed as
the primary characteristic of the distribution, since it divides
the distribution into equal halves.

It is worth digressing slightly at this point and consider
the median of a lognormal distribution in a bit more de-
tail, especially with respect to its estimation. Suppose that
we have taken several observations x1, x2, . . . , xn of a log-
normally distributed random variable X . An estimate of the
mean of ln(X ) is just the average of ln(x1), ln(x2), . . . , ln(xn ),

µ̂ln X = 1

n

n∑
i=1

ln(xi ) (1.178)

where the hat denotes that this is an estimate of µln X . From
this, an estimate of the median, x̃ , is

x̃ = exp{µ̂ln X } = exp

{
1

n

n∑
i=1

ln(xi )

}
(1.179)

Alternatively, the geometric average xg of a sequence
of nonnegative numbers is defined as the nth root of the
product of the n observations,

xg = (x1x2 · · · xn)1/n

= exp
{
ln
(
(x1x2 · · · xn )1/n)}

= exp

{
1

n

n∑
i=1

ln(xi )

}
(1.180)

which is identical to the equation for x̃ , so we see that
the geometric average is an estimate of the median of a

lognormally distributed random variable. As we shall see in
Section 4.4, this also means that the median of a lognormal
distribution is preserved under geometric averaging.

Multiplicative Property If X = Y1Y2 · · · Yn and each Yi

are (positive) independent random variables of any distri-
bution having about the same “weight,” then

ln X = ln Y1 + ln Y2 + · · · + ln Yn (1.181)

and by the central limit theorem ln X tends to a normal
distribution with

µln X = µln Y 1 + µln Y 2 + · · · + µln Y n (1.182a)

σ 2
ln X = σ 2

ln Y 1
+ σ 2

ln Y 2
+ · · · + σ 2

ln Y n
(1.182b)

Thus X tends to a lognormal distribution with parameters
µln X and σ 2

ln X . This is a useful property since it can be
used to approximate the distribution of many multiplicative
functions.

In particular, if X is any multiplicative function, say

X = AB

C
=⇒ ln X = ln A + ln B − ln C

(1.183)
and A, B , and C are independent and lognormally dis-
tributed, then X is also lognormally distributed with

µln X = µln A + µln B − µln C

σ 2
ln X = σ 2

ln A + σ 2
ln B + σ 2

ln C

Recall that for variances the coefficient of −1 appearing
before the last term in Eq. 1.183 is squared, so that, in the
case of independence, the variance of a sum is literally the
sum of the variances. (If A, B , and C were correlated, then
the covariance terms which would have to be added in to
find σ 2

ln X would have sign dependent on the signs appearing
in the original sum.)

Consider again the geometric average, this time for
random observations (i.e., before we have observed them),

Xg = (X1X2 · · · Xn)1/n = X 1/n
1 × X 1/n

2 × · · · × X 1/n
n

which is a product of n random variables. By the central
limit theorem, Xg will tend to a lognormal distribution so
that

ln(Xg ) = ln
(
(X1X2 · · · Xn )1/n) = 1

n

n∑
i=1

ln(Xi )

is normally distributed. As mentioned above, Xg is an
estimate of the median of X if X is lognormally distributed.
However, even if X is not lognormally distributed, Xg will
tend to have a lognormal distribution, by the central limit
theorem, if the Xi ’s are nonnegative. We shall see more of
this in Chapter 4 where we suggest that in a variety of cases
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the lognormal distribution is a natural distribution for soil
properties according to the central limit theorem.

The MLEs for µln X and σ 2
ln X are the same as for the

normal distribution except that ln(X ) is used in the esti-
mate. If x1, x2, . . . , xn are n independent observations of a
lognormally distributed random variable, then the MLEs are

µ̂ln X = 1

n

n∑
i=1

ln xi (1.184a)

σ̂ 2
ln X = 1

n

n∑
i=1

(ln xi − µ̂ln X )2 (1.184b)

The more common estimator for σ 2
ln X is slightly different,

having the form

σ̂ 2
ln X = 1

n − 1

n∑
i=1

(ln xi − µ̂ln X )2 (1.185)

which is an unbiased estimator (see Section 5.2.1).

Example 1.58 The settlement δ of a shallow foundation,
in meters, can be computed as

δ = c
L

E
where L is the footing load, E is the soil’s effective elastic
modulus, and c is a constant which accounts for geometry
(footing area and aspect ratio, depth to bedrock, etc.) and
Poisson’s ratio. Assume that c is nonrandom and equal to
0.15 m−1 and that the load and elastic modulus are both
lognormally distributed with

µE = 20, 000.0 kN/m2, σE = 4000.0 kN/m2

µL = 1200.0 kN, σL = 300.0 kN

What is the probability that the footing settlement exceeds
0.025 m?

SOLUTION First write ln(δ) = ln(c) + ln(L) − ln(E ), so
that

µln δ = ln(c) + µln L − µln E , σ 2
ln δ = σ 2

ln L + σ 2
ln E

where we assumed independence between ln(L) and ln(E )
when computing the variance of ln(δ) (so that the covari-
ance terms can be dropped). To compute the above, we
must first find the means and variances of ln(L) and ln(E ):

σ 2
ln L = ln

(
1 + σ 2

L

µ2
L

)
= ln

(
1 + 3002

12002

)

= 0.060625

µln L = ln(µL) − 1
2σ 2

ln L = ln(1200) − 1
2 (0.060625)

= 7.059765

σ 2
ln E = ln

(
1 + σ 2

E

µ2
E

)
= ln

(
1 + 40002

20,0002

)
= 0.039221

µln E = ln(µE ) − 1
2σ 2

ln E = ln(20,000) − 1
2 (0.039221)

= 9.883877

Thus,

µln δ = ln(0.15) + 7.059765 − 9.883877 = −4.721232

σ 2
ln δ = 0.060625 + 0.039221 = 0.099846

σln δ =
√

0.099846 = 0.315984

and

P [δ > 0.025] = 1 − P [δ ≤ 0.025]

= 1 − P

[
Z ≤ ln(0.025) − µln δ

σln δ

]

= 1 − P [Z ≤ 3.27]

= 1 − �(3.27) = 1 − 0.9994622

= 0.00054

Most foundations are designed to have probability of failure
ranging from 0.001 to 0.0001 against ultimate limit states
(e.g., bearing capacity failure). This foundation would be
considered very safe with respect to settlement failure, es-
pecially since excessive settlement is generally considered
to be only a serviceability limit state issue.

1.10.9.1 Bivariate Lognormal Distribution Generally,
the multivariate lognormal distribution is handled by di-
rectly considering the underlying multivariate normal distri-
bution. That is, rather than considering the joint distribution
between the lognormally distributed variates X1, X2, . . . , we
consider the joint distribution between ln X1, ln X2, . . . since
these are all normally distributed and the results presented
in the previous section can be used. However, we some-
times need to consider the lognormally distributed variates
directly. Here we will present some results for two lognor-
mally distributed random variables X1 and X2.

If X1 and X2 are jointly lognormally distributed, then
their bivariate distribution is

fX 1X 2 (x , y) = 1

2πσln X1σln X2rxy

× exp

{
− 1

2r2

[
�2

1 − 2ρln 12�1�2 + �2
2

]}
,

x ≥ 0, y ≥ 0 (1.186)

where �1 = (ln x − µln X 1 )/σln X 1 , �2 = (ln y − µln X 2 )/
σln X 2 , r2 = 1 − ρ2

ln 12, and ρln 12 is the correlation coefficient
between ln X1 and ln X2.
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In general, the parameters µln X 1 , σln X 1 can be obtained
using the transformation equations given in the previous
section from the parameters µX 1 , σX 1 , and so on. If we
happen to have an estimate for the correlation coefficient
ρ12 acting between X1 and X2, we can get ρln 12 from

ρln 12 = ln(1 + ρ12vX 1vX 2 )√
ln(1 + v2

X 1
) ln(1 + v2

X 2
)

(1.187)

where vX i = σXi /µX i is the coefficient of variation of Xi .
We can also invert this relationship to obtain an expression
for ρ12,

ρ12 = exp{ρln 12σln X 1σln X 2} − 1√(
exp{σ 2

ln X 1
} − 1

)(
exp{σ 2

ln X 2
} − 1

) (1.188)

1.10.10 Bounded tanh Distribution

The second half of this book is devoted to a variety of
traditional geotechnical problems which are approached
in a nontraditional way. In particular, the soil or rock is
treated as a spatially variable random field. We shall see in
Chapter 3 that a random field with a multivariate normal
distribution has the advantage of being fully specified by
only its mean and covariance structure. In addition, the
simulation of random fields is relatively straightforward
when the random field is normally distributed and more
complicated when it is not.

Unfortunately, the normal distribution is not appropriate
for many soil and rock properties. In particular, most ma-
terial properties are strictly nonnegative (e.g., elastic mod-
ulus). Since the normal distribution has range (−∞, +∞),
it will always admit some possibility of negative values.
When one is simulating possibly millions of realizations of
a soil or rock property using the normal distribution, some
realizations will inevitably involve negative soil/rock prop-
erties, unless the coefficient of variation is quite small and
chance is on your side. The occurrence of negative proper-
ties often leads to fundamental modeling difficulties (e.g.,
what happens when Poisson’s ratio or the elastic modulus
becomes negative?).

In cases where the normal distribution is not appropriate,
there are usually two options: (1) choose a distribution
on the interval (0, +∞) (e.g., the lognormal distribution)
or (2) choose a distribution which is bounded both above
and below on some interval (a , b). The latter would be
appropriate for properties such as friction angle, Poisson’s
ratio, and void ratio.

As we saw above, the lognormal transformation X = eG ,
where G is normally distributed, leads to a random variable
X which takes values on the interval (0, +∞). Thus, the
lognormal distribution derives from a simple transformation
of a normally distributed random variable or field. In the

case of a bounded distribution, using the transformation

X = a + 1
2 (b − a)

[
1 + tanh

(
m + sG

2π

)]
(1.189)

leads to the random variable X being bounded on the in-
terval (a , b) if G is a standard normally distributed random
variable (or at least bounded distribution—we shall as-
sume that G is a standard normal here). The parameter
m is a location parameter. If m = 0, then the distribu-
tion of X is symmetric about the midpoint of the interval,
1
2 (a + b). The parameter s is a scale parameter—the larger
s is, the more variable X is. The function tanh is de-
fined as

tanh(z ) = ez − e−z

ez + e−z
(1.190)

In essence, Eq. 1.189 can be used to produce a random
variable with a distribution bounded on the interval (a , b),
which is a simple transformation of a normally distributed
random variable. Thus, a bounded property is easily sim-
ulated by first simulating the normally distributed random
variable G and then applying Eq. 1.189. Such a simula-
tion would require that the mean and covariance struc-
ture of the simulated normally distributed random pro-
cess be known. To this end, Eq. 1.189 can be inverted to
yield

m + sG = π ln

(
X − a

b − X

)
(1.191)

Since G is a standard normal (having mean zero and
unit variance), the parameters m and s are now seen
as the mean and standard deviation of the normally dis-
tributed random process (m + sG). These two parameters
can be estimated by observing a sequence of realizations
of X , that is, x1, x2, . . . , xn , transforming each accord-
ing to

yi = π ln

(
xi − a

b − xi

)
(1.192)

and then estimating the mean m and standard deviation s
using the traditional estimators,

m = 1

n

∑
yi (1.193a)

s =
√√√√ 1

n − 1

n∑
i=1

(yi − m)2 (1.193b)

In order to estimate the correlation structure, the spatial
location, x, of each observation must also be known, so
that our observations become x (xi ), i = 1, 2, . . . , n , and yi

also becomes a function of xi . The methods of estimating
the correlation function discussed in Sections 5.3.6 and
5.4.1.1 can then be applied to the transformed observations,
y(xi ).
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The probability density function of X is

fX (x ) =
√

π(b − a)√
2s(x − a)(b − x )

× exp

{
− 1

2s2

[
π ln

(
x − a

b − x

)
− m

]2
}

(1.194)

If m = 0, then the mean of X is at the midpoint, µX =
1
2 (a + b). Since most bounded distributions are symmetric
about their midpoints, the remainder of this discussion will
be for m = 0.

Figure 1.36 illustrates how the distribution of X changes
as s changes for m = 0, a = 0, and b = 1. The distribution
shapes are identical for different choices in a and b, the
only change being that the horizontal axis scales with b − a
and the vertical axis scales with 1/(b − a). For example, if
a = 10 and b = 30, the s = 2 curve looks identical to that
shown in Figure 1.36 except that the horizontal axis runs
from 10 to 30 while the vertical axis runs from 0 to 0.3.
When s > 5, the distribution becomes U shaped, which is
not a realistic material property shape. Practically speaking,
values ranging from s = 0, which is nonrandom and equal
to the mean, to s = 5, which is almost uniformly distributed
between a and b, are reasonable.

The relationship between the parameter s and the stan-
dard deviation σX of X is also of interest. In the limit as
s → ∞, the transformation given by Eq. 1.189 becomes a
Bernoulli distribution with p = 0.5 and X taking possible
values a or b. The standard deviation of X for s → ∞ must
therefore be 0.5(b − a). At the other extreme, as s → 0,
we end up with X = 1

2 (a + b), which is nonrandom. Thus,
when s → 0 the standard deviation of X is zero and when
s → ∞ the standard deviation of X is 0.5(b − a). We sug-
gest, therefore, that σX increases from zero when s = 0 to
0.5(b − a) when s → ∞.

0 0.2 0.4 0.6 0.8 1
x

0
2

4
6

f X
(x

)

s = 1.0
s = 2.0
s = 5.0

Figure 1.36 Probability density function of X determined as
bounded transformation (Eq. 1.189) of normally distributed ran-
dom variable (m + sG) for m = 0 and various values of s .

The following relationship between s and the variance of
X derives from a third-order Taylor series approximation to
tanh and a first-order approximation to the expectation:

σ 2
X = (0.5)2(b − a)2 E

[
tanh2

(
sG

2π

)]

� (0.5)2(b − a)2 E

[ [
sG/(2π )

]2
1 + [sG/(2π )

]2
]

� (0.5)2(b − a)2 s2

4π2 + s2
(1.195)

where E
[
G2
] = 1 since G is a standard normal random

variable. Equation 1.195 slightly overestimates the true
standard deviation of X by 0% when s = 0 to 11% when
s = 5. A much closer approximation over the entire range
0 ≤ s ≤ 5 is obtained by slightly decreasing the 0.5 factor
to 0.46 (this is an empirical adjustment),

σX � 0.46(b − a)s√
4π2 + s2

(1.196)

The close agreement between Eq. 1.196 and a simulation-
based estimate is illustrated in Figure 1.37.

Equation 1.195 can be generalized to yield an approxi-
mation to the covariance between two random variables Xi

and Xj , each derived as tanh transformations of two stan-
dard normal variables Gi and Gj according to Eq. 1.189.
If Gi and Gj are correlated, with correlation coefficient ρij ,
then

Cov
[
Xi , Xj

] = (0.5)2(b − a)2

× E

[
tanh

(
sGi

2π

)
tanh

(
sGj

2π

)]
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Figure 1.37 Relationship between σX and s derived from simu-
lation (100,000 realizations for each s) and Taylor’s series derived
approximation given by Eq. 1.196. The vertical scale corresponds
to b − a = 20◦.
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� (0.5)2(b − a)2

× E




[
sGi /(2π )

] [
sGj /(2π )

]
1 + (1/2)

{[
sGi /(2π )

]2 + [sGj /(2π )
]2}



� (0.46)2(b − a)2 s2ρij

4π2 + s2

where the empirical correction given in Eq. 1.196 was
introduced in the last step.

1.11 EXTREME-VALUE DISTRIBUTIONS

Most engineering systems fail only when extreme loads oc-
cur and failure tends to initiate at the weakest point. Thus, it
is of considerable interest to investigate the distribution of
extreme values. Consider a sequence of n random variables
X1, X2, . . . , Xn . This could, for example, be the sequence of
tensile strengths of individual links in a chain, or the se-
quence of daily average soil moisture levels, or earthquake
intensities, and so on. Now define the extremes of this set
of random variables as

Yn = max(X1, X2, . . . , Xn ) (1.197a)

Y1 = min(X1, X2, . . . , Xn ) (1.197b)

so that if Xi is the daily average soil moisture level, then
Yn is the maximum daily average soil moisture level over
n days. Similarly, if Xi is the tensile strength of the i th
link in a chain, then Y1 is the tensile strength of a chain
composed of n links.

1.11.1 Exact Extreme-Value Distributions

Let us first examine the behavior of the maximum, Yn . We
know that if the maximum is less than some number y ,
then each Xi must also be less than y . That is, the event
(Yn ≤ y) must be equivalent to the event (X1 ≤ y ∩ X2 ≤
y ∩ · · · ∩ Xn ≤ y). In other words the exact distribution
of Yn is

P
[
Yn ≤ y

] = P
[
X1 ≤ y ∩ X2 ≤ y ∩ · · · ∩ Xn ≤ y

]
(1.198)

If it can be further assumed that the X ’s are independent
and identically distributed (iid) (if this is not the case, the
problem becomes very complex and usually only solved via
simulation), then

FY n (y) = P
[
Yn ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
Xn ≤ y

]
= [FX (y)

]n
(1.199)

where FX is the cumulative distribution function of X . Tak-
ing the derivative gives us the probability density function

fY n (y) = dFY n (y)

dy
= n

[
FX (y)

]n−1 dFX (y)

dy

= n
[
FX (y)

]n−1
fX (y) (1.200)

Example 1.59 Suppose that fissure lengths X in a rock
mass have an exponential distribution with fX (x ) = e−x .
What, then, does the distribution of the maximum fissure
length Yn look like for n = 1, 5, 50 fissures?

SOLUTION If n = 1, then Yn is the maximum of one
observed fissure, which of course is just the distribution of
the single fissure length. Thus, when n = 1, the distribution
of Yn is just the exponential distribution

fY 1 (y) = fX (y) = e−y

When n = 5, we have

FY 5 (y) = P
[
Y5 ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
X5 ≤ y

]
= [FX (y)

]5
= [1 − e−y]5

where we used the fact that FX (x ) = 1 − e−x . To find
the probability density function (which is usually more
informative graphically), we must differentiate:

fY 5 (y) = dFY 5 (y)

dy
= 5e−y [1 − e−y]4

Similarly, when n = 50, we have

FY 50 (y) = P
[
Y50 ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
X50 ≤ y

]
= [FX (y)

]50

= [1 − e−y]50

and

fY 50 (y) = dFY 50 (y)

dy
= 50e−y [1 − e−y]49

Plots of these three distributions appear as in Figure 1.38.

Example 1.60 Suppose that X follows an exponential
distribution with

fX (x ) = λe−λx , x ≥ 0

Then what is the probability that the largest from a sample
of five observations of X will exceed 3 times the mean?
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Figure 1.38 Distributions of maximum value of n observations
of exponentially distributed random variable.

SOLUTION For n = 5, we have

FY 5 (y) = P
[
Y5 ≤ y

]
= P

[
X1 ≤ y

]
P
[
X2 ≤ y

] · · · P
[
X5 ≤ y

]
= [FX (y)

]5
= [1 − e−λy]5

so that
P
[
Y5 > y

] = 1 − [1 − e−λy]5
The mean of X is 1/λ (see Eq. 1.120), so the probability

that Y5 exceeds 3 times the mean is

P

[
Y5 >

3

λ

]
= 1 − [1 − e−λ(3/λ)]5

= 1 − [1 − e−3]5
= 0.14205

Now consider the distribution of the minimum out of n
samples, Y1. If we proceed as we did for Yn , then we would
look at the event Y1 ≤ y . This event just means that X1 ≤ y
or X2 ≤ y or . . . , that is,

P
[
Y1 ≤ y

] = P
[
X1 ≤ y ∪ X2 ≤ y ∪ · · · ∪ Xn ≤ y

]
(1.201)

The union on the right expands into
(n

1

)+ (n2)+ (n3)+ · · · +(n
n

)
terms—in other words potentially a lot of terms. A

better way to work out this distribution is to look at the
complement:

P
[
Y1 > y

] = P
[
X1 > y ∩ X2 > y ∩ · · · ∩ Xn > y

]

= P
[
X1 > y

]
P
[
X2 > y

] · · · P
[
Xn > y

]
= [1 − FX (y)

]n
(1.202)

and since P
[
Y1 > y

] = 1 − FY 1 (y) we get

FY 1 (y) = 1 − [1 − FX (y)
]n

(1.203)

and, taking the derivative,

fY 1 (y) = n
[
1 − FX (y)

]n−1
fX (y) (1.204)

Example 1.61 A series of five soil samples are taken at
a site and their shear strengths determined. Suppose that a
subsequent design is going to be based on the minimum
shear strength observed out of the five samples. If the
shear strengths of the individual samples are exponentially
distributed with parameter λ = 0.025 m2/kN, then what is
the distribution of the design shear strength?

SOLUTION If we let Y1 be the design shear strength,
where Y1 is the minimum shear strength observed from the
n = 5 samples, then

FY 1 (y) = 1 − [1 − FX (y)
]5

where, for the exponential distribution, FX (x ) = 1 − e−λx .
Thus,

FY 1 (y) = 1 − [1 − (1 − e−λy)]5
= 1 − e−5λy

From this we see that the extreme-value distribution of
the minimum of samples from an exponential distribu-
tion is also exponentially distributed with new parameter
λ′ = nλ = 5(0.025) = 0.125. Notice that while the indi-
vidual samples have mean shear strength equal to 1/λ =
1/0.025 = 40 kN/m2, the mean design shear strength is
one-fifth this value, 1/λ′ = 1/0.125 = 8 kN/m2.

1.11.2 Asymptotic Extreme-Value Distributions

In cases where the cumulative distribution function FX (x )
is not known explicitly (e.g., the normal or lognormal), the
exact distributions given above are of questionable value.
It turns out that if n is large enough and the sample is
random (i.e., composed of independent observations), then
the distribution of an extreme value tends toward one of
three “asymptotic” forms, which are explained as follows.
Thus, even if you do not know the precise form of the
distribution of X , the distribution of the extreme value
of X1, X2, . . . , Xn can often be deduced, since there are
only three possibilities. The results presented below were
developed by Gumbel (1958).
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1.11.2.1 Type I Asymptotic Form If X has a distribu-
tion with an unlimited exponentially decaying tail in the
direction of the extreme under consideration, then the distri-
bution of the extreme will tend to the type I asymptotic form.
Examples of such distributions are the normal (in either
direction) and the exponential (in the positive direction).

In the case of the maximum, the type I extreme-value
distribution has the form

FY n (y) = exp
{−e−αn (y−un )} (1.205a)

fY n (y) = αn e−αn (y−un ) exp
{−e−αn (y−un )} (1.205b)

where

un = characteristic largest value of X

= F−1
X

(
1 − 1

n

)

= mode of Yn (1.206a)

αn = inverse measure of variance of Yn

= nfX (un ) (1.206b)

In particular, un is defined as the value that X exceeds
with probability 1/n . It is found by solving P [X > un ] =
1/n for un , giving the result shown above. If F−1

X (p) is
not readily available, you will either have to consult the
literature or determine this extreme-value distribution via
simulation.

The mean and variance of the type I maximum asymp-
totic distribution are as follows:

E [Yn ] = un + γ

αn
(1.207a)

Var [Yn ] = π2

6α2
n

(1.207b)

where γ = 0.577216 . . . is Euler’s number.

Example 1.62 Suppose that a structure is supported by
n = 20 piles and that long-term pile settlements are dis-
tributed according to fX (x ) = λe−λx for x ≥ 0 being the
settlement, where λ = 0.2 mm−1. If we make the assump-
tion that the piles settle independently (probably a ques-
tionable assumption, so that the following results should
only be considered approximate), then find the asymptotic
parameters of the largest pile settlement, Yn , out of the n
piles, assuming that n is large enough that the asymptotic
extreme-value distribution holds.

SOLUTION To find un , we solve P [X > un ] = 1/n for
un . For the exponential distribution,

P [X > un ] = e−λun = 1

n

−λun = − ln(n)

un = ln(n)

λ
= ln(20)

0.2
= 14.98 mm

and
αn = nfX (un ) = nλe−λ ln(n)/λ = λ

The parameter un = 14.98 is the most probable largest
settlement out of the 20 piles (e.g., the mode of the
distribution).

The asymptotic extreme-value distribution is then

FY n (y) = exp
{−e−λy−ln(n)} = exp

{−e−λy

n

}

The distribution of the minimum value, where the distri-
bution of X is exponentially decaying and unlimited in the
direction of the minimum, has the form

FY 1 (y) = 1 − exp
{−e−α1(y−u1)} (1.208a)

fY 1 (y) = α1 e−α1(y−u1) exp
{−e−α1(y−u1)} (1.208b)

where

u1 = characteristic smallest value of X

= F−1
X

(
1

n

)

= mode of Y1 (1.209a)

α1 = inverse measure of variance of Y1

= nfX (u1) (1.209b)

In particular, u1 is defined as the value that X has probabil-
ity 1/n of being below. It is found by solving P [X ≤ u1] =
1/n for u1. The mean and variance of Y1 are as follows:

E [Y1] = u1 − γ

α1
(1.210a)

Var [Y1] = π2

6α2
1

(1.210b)

Because of the mirror symmetry of the minimum and
maximum type I extreme-value distributions, the skewness
coefficient of Yn is 1.1414 whereas the skewness coefficient
of Y1 is −1.1414. That is, the two distributions are mirror
images of one another.

1.11.2.2 Type II Asymptotic Form If X has a distribu-
tion with an unlimited polynomial tail, in the direction of
the extreme, then its extreme value will have a type II dis-
tribution. Examples of distributions with polynomial tails
are the lognormal (in the positive direction) and the Pareto
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(in the positive direction) distributions, the latter of which
has the form

FX (x ) = 1 −
(

b

x

)α

for x ≥ b

If the coefficient b is replaced by un/n1/α , then we get

FX (x ) = 1 − 1

n

(un

x

)α

for x ≥ un/n1/α

The corresponding extreme-value distribution for the max-
imum, in the limit as n → ∞, is

FY n (y) = exp

{
−
(

un

y

)α}
for y ≥ 0 (1.211a)

fY n (y) =
(

α

un

)(
un

y

)α+1

exp

{
−
(

un

y

)α}
(1.211b)

un = characteristic largest value of X

= F−1
X

(
1 − 1

n

)

= mode of Yn (1.212a)

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.212b)

Note that although the lognormal distribution seems to
have an exponentially decaying tail in the direction of the
maximum, the distribution is actually a function of the form
a exp{−b(ln x )2}, which has a polynomial decay. Thus,
the extreme-value distribution of n lognormally distributed
random variables follows a type II distribution with

α =
√

2 ln n

σln X

un = exp{u ′
n}

u ′
n = σln X

√
2 ln n −

σln X

[
ln(ln n) + ln(4π )

]

2
√

2 ln n
+ µln X

The mean and variance of the type II maximum asymp-
totic distribution are as follows:

E [Yn ] = un�

(
1 − 1

α

)
if α > 1 (1.213a)

Var [Yn ] = u2
n�

(
1 − 2

α

)
− E2[Yn ] if α > 2 (1.213b)

where � is the gamma function (see Eq. 1.128).

The distribution of the minimum for an unbounded poly-
nomial decaying tail can be found as the negative “reflec-
tion” of the maximum, namely as

FY 1 (y) = 1 − exp

{
−
(

u1

y

)α}
, y ≤ 0, u1 < 0 (1.214a)

fY 1 (y) = −
(

α

u1

)(
u1

y

)α+1

exp

{
−
(

u1

y

)α}
(1.214b)

where

u1 = characteristic smallest value of X

= F−1
X

(
1

n

)

= mode of Y1 (1.215a)

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.215b)

The mean and variance of the type II minimum asymptotic
distribution are as follows:

E [Y1] = u1�

(
1 − 1

α

)
if α > 1 (1.216a)

Var [Y1] = u2
1�

(
1 − 2

α

)
− E2[Y1] if α > 2 (1.216b)

Example 1.63 Suppose that the pile settlements, X , dis-
cussed in the last example actually have the distribution

fX (x ) = 1

x 2
for x ≥ 1 mm

Determine the exact distribution of the maximum of a
random sample of size n and the asymptotic distribution
of the maximum.

SOLUTION We first need to find the cumulative distri-
bution function of X ,

FX (x ) =
∫ x

1

1

t2
dt = 1 − 1

x
, x ≥ 1

The exact cumulative distribution function of the maximum
pile settlement, Yn , is thus

FY n (y) = [FX (y)
]n =

[
1 − 1

y

]n

for y ≥ 1

and the exact probability density function of Yn is the
derivative of FY n (y),

fY n (y) = n

y2

[
1 − 1

y

]n−1

for y ≥ 1
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For the asymptotic distribution, we need to find un such
that FX (un ) = 1 − 1/n ,

FX (un ) = 1 − 1

un
= 1 − 1

n

so that un = n . The order of polynomial decay of FX (x ) in
the direction of the extreme (positive direction) is α = 1,
so that the asymptotic extreme-value distribution of the
maximum, Yn , is

FY n (y) = exp

{
−n

y

}
for y ≥ 0

fY n (y) = n

y2
exp

{
−n

y

}
for y ≥ 0

We see immediately that one result of the approximation is
that the lower bound of the asymptotic approximations is
y ≥ 0, rather than y ≥ 1 found in the exact distributions.
However, for n = 10, Figure 1.39 compares the exact and
asymptotic distributions, and they are seen to be very
similar.

1.11.2.3 Type III Asymptotic Form If the distribution of
X is bounded by a value, u , in the direction of the extreme,
then the asymptotic extreme-value distribution (as n → ∞)
is the type III form. Examples are the lognormal and
exponential distributions toward the left and the beta and
uniform distributions in either direction. For the maximum,
the type III asymptotic form is

FY n (y) = exp

{
−
(

u − y

u − un

)α}
for y ≤ u (1.217a)
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Figure 1.39 Comparison of exact and asymptotic (type II)
extreme-value distributions for n = 10.

fY n (y) = α(u − y)α−1

(u − un )α
exp

{
−
(

u − y

u − un

)α}
for y ≤ u

(1.217b)

where

un = characteristic largest value of X

= F−1
X

(
1 − 1

n

)
(1.218a)

= mode of Yn

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.218b)

The mean and variance of the type III maximum asymptotic
distribution are as follows:

E [Yn ] = u − (u − un )�

(
1 + 1

α

)
(1.219a)

Var [Yn ] = (u − un )2

×
[
�

(
1 + 2

α

)
− �2

(
1 + 1

α

)]
(1.219b)

In the case of the minimum, the asymptotic extreme-
value distribution is

FY 1 (y) = 1 − exp

{
−
(

y − u

u1 − u

)α}
for y ≥ u (1.220a)

fY 1 (y) = α(y − u)α−1

(u1 − u)α
exp

{
−
(

y − u

u1 − u

)α}
(1.220b)

where

u1 = characteristic smallest value of X

= F−1
X

(
1

n

)

= mode of Y1 (1.221a)

α = shape parameter

= order of polynomial decay of FX (x )

in direction of extreme (1.221b)

and u is the minimum bound on X . This distribution is also
a form of the Weibull distribution. The shape parameter α

is, as mentioned, the order of the polynomial FX (x ) in the
direction of the extreme. For example, if X is exponentially
distributed and we are looking at the distribution of the
minimum, then FX (x ) has Taylor’s series expansion for
small x of

FX (x ) = 1 − e−λx � 1 − (1 − λx ) = λx (1.222)
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which has order 1 as x → 0. Thus, for the minimum of an
exponential distribution, α = 1.

The mean and variance of the type III maximum asymp-
totic distribution are as follows:

E [Yn ] = u + (u1 − u)�

(
1 + 1

α

)
(1.223a)

Var [Yn ] = (u1 − u)2

×
[
�

(
1 + 2

α

)
− �2

(
1 + 1

α

)]
(1.223b)

Example 1.64 A series of 50 soil samples are taken at
a site and their shear strengths determined. Suppose that a
subsequent design is going to be based on the minimum
shear strength observed out of the 50 samples. If the
shear strengths of the individual samples are exponentially
distributed with parameter λ = 0.025 m2/kN, then what is
the asymptotic distribution of the design shear strength (i.e.,
their minimum)? Assume that n is large enough that the
asymptotic extreme-value distributions hold.

SOLUTION If we let Y1 be the design shear strength,
then Y1 is the minimum shear strength observed among the
n = 50 samples. Since the shear strengths are exponentially
distributed, they are bounded by u = 0 in the direction of
the minimum (to the left). This means that the asymptotic
extreme-value distribution of Y1 is type III. For this distri-
bution, we first need to find u1 such that FX (u1) = 1/n ,

FX (u1) = 1 − e−λu1 = 1/n

=⇒ u1 = −(1/λ) ln(1 − 1/n)

so that u1 = − ln(0.98)/0.025 = 0.8081.

The order of polynomial decay of FX (x ) in the direction
of the extreme (toward X = 0) is α = 1, as determined by

Eq. 1.222, so that the asymptotic extreme-value distribution
of the minimum, Y1, is

FY 1 (y) = 1 − exp
{
−
( y

0.8081

)}
, for y ≥ 0

fY 1 (y) = 1

0.8081
exp

{
−
( y

0.8081

)}
for y ≥ 0

which is just an exponential distribution with parameter
λ′ = 1/0.8081 = 1.237. Note that the exact distribution
of the minimum is exponential with parameter λ′ = nλ =
50(0.025) = 1.25, so the asymptotic approximation is rea-
sonably close to the exact. Figure 1.40 illustrates the close
agreement between the two distributions.
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Figure 1.40 Comparison of exact and asymptotic (type III)
extreme-value distributions for n = 50.

1.12 SUMMARY

De Morgan (A ∪ B )c = Ac ∩ Bc , (A ∩ B )c = Ac ∪ Bc

Probability P [A ∪ B ] = P [A] + P [B ] − P [A ∩ B ]

P [A ∩ B ] = P [A|B ] · P [B ] = P [B |A] · P [A]

Bayes’ theorem P
[
Aj | E

] = P
[
E |Aj

] · P
[
Aj
]

P [E ]
= P

[
E |Aj

] · P
[
Aj
]

∑n
i=1 P [E |Ai ] · P [Ai ]

PDFs and CDFs F (x ) =
∫ x

−∞
f (ξ ) dξ ⇐⇒ f (x ) = d

dx
F (x )
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Expectations E [X ] =
∫ ∞

−∞
xfX dx , E

[
X 2
] =

∫ ∞

−∞
x2fX dx

E
[
g(X )

] =
∫ ∞

−∞
g(x ) fX dx , E [a + bX ] = a + bE [X ]

E [XY ] =
∫ ∞

−∞

∫ ∞

−∞
xy fXY (x , y) dx dy

Variance Var [X ] = E
[
(X − µ)2

] = E
[
X 2
]− E2[X ] = σ 2

Var [a + bX ] = b2 Var [X ]

Covariance Cov [X , Y ] = E [(X − µX )(Y − µY )] = E [XY ] − E [X ] E [Y ] , ρX Y = Cov [X , Y ]

σX σY

Taylor’s series Y = g(X ) = g(µX ) + (X − µX )
dg

dx

∣∣∣∣
µX

+ 1

2!
(X − µX )2 d2g

dx2

∣∣∣∣
µX

+ · · ·

Linear functions If Y =
n∑

i=1

ai Xi and Z =
n∑

i=1

bi Xi , then E [Y ] =
n∑

i=1

ai E [Xi ]

Var [Y ] =
n∑

i=1

n∑
j=1

ai aj Cov
[
Xi , Xj

]
, Cov [Y , Z ] =

n∑
i=1

n∑
j=1

ai bj Cov
[
Xi , Xj

]

Functions If Y = g(X ) is one to one, then fY (y) = fX (x )

∣∣∣∣dx

dy

∣∣∣∣

Miscellaneous X̄ = 1

n

n∑
i=1

Xi , S 2 = 1

n − 1

n∑
i=1

(Xi − X̄ )2 = 1

n − 1

{
n∑

i=1

X 2
i − nX̄ 2

}

(
n

k

)
= n!

k !(n − k )!
, �(r ) = (r − 1)! (r integer)

Binomial P [Nn = k ] =
(

n

k

)
pk qn−k for 0 ≤ k ≤ n

E [Nn ] = np Var [Nn ] = npq

Geometric P [T1 = k ] = pqk−1 for k ≥ 1

E [T1] = 1

p
Var [T1] = q

p2

Negative
binomial

P [Tk = m] =
(

m − 1

k − 1

)
pk qm−k for m ≥ k

E [Tk ] = k

p
Var [Tk ] = kq

p2

Poisson P [Nt = k ] = (λt)k

k !
e−λt for k ≥ 0

E [Nt ] = λt Var [Nt ] = λt

Uniform f (x ) = 1

β − α
F (x ) = x − α

β − α
for α ≤ x ≤ β

E [X ] = 1
2 (α + β) Var [X ] = 1

12 (β − α)2

Exponential f (t) = λe−λt F (t) = 1 − e−λt for t ≥ 0

E [T ] = 1

λ
Var [T ] = 1

λ2
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Gamma f (x ) = λ

(k − 1)!
(λx )k−1e−λx F (x ) = 1 − e−λx

k−1∑
j=0

(λx )j

j !
k integer

E [X ] = k

λ
Var [X ] = k

λ2

Normal f (x ) = 1

σ
√

2π
exp

{
− 1

2

(
x − µ

σ

)2
}

F (x ) = �

(
x − µ

σ

)
for −∞ < x < ∞

E [X ] = µ Var [X ] = σ 2

P [X ≤ x ] = P

[
Z ≤ x − µ

σ

]
= �

(
x − µ

σ

)

Lognormal f (x ) = 1

xσln X
√

2π
exp

[
− 1

2

(
ln x − µln X

σln X

)2
]

F (x ) = �

(
ln x − µln X

σln X

)
for 0 ≤ x < ∞

E [X ] = µX = eµln X + 1
2 σ2

ln X Var [X ] = σ 2
X = µ2

X

(
eσ2

ln X − 1

)

σ 2
ln X = ln

(
1 + σ 2

X

µ2
X

)
µln X = ln(µX ) − 1

2 σ 2
ln X

Weibull f (x ) = β

x
(λx )βe−(λx )β F (x ) = 1 − e−(λx )β for x ≥ 0

E [X ] = 1

λβ
�

(
1

β

)
Var [X ] = 1

λ2β

{
2�

(
2

β

)
− 1

β

[
�

(
1

β

)]2
}

Extreme Value Distributions:

Type I FY n (y) = exp{−e−αn (y−un )} un = F−1
X

(
1 − 1

n

)
αn = nfX (un )

FY 1 (y) = 1 − exp{−e−α1(y−u1)} u1 = F−1
X

(
1

n

)
α1 = nfX (u1)

Type II FY n (y) = exp

{
−
(

un

y

)α}
un = F−1

X

(
1 − 1

n

)
α = polynomial order

FY 1 (y) = 1 − exp

{
−
(

u1

y

)α}
u1 = F−1

X

(
1

n

)

Type III FY n (y) = exp

{
−
(

u − y

u − un

)α}
un = F−1

X

(
1 − 1

n

)
α = polynomial order

FY 1 (y) = 1 − exp

{
−
(

y − u

u1 − u

)α}
u1 = F−1

X

(
1

n

)
u = bound value




