
Part I: Introduction
to Refactoring

In this introductory part, you are going to see what refactoring is in general terms, why
it is important, what benefits refactoring brings to the development process, and how it
can be even more relevant to Visual Basic programmers than to programmers in some
other languages. You are also going to see a small demonstration of the refactoring
process at work, explore the tools relevant to refactoring, and, finally, take a look at
a sample application I will use throughout this book to illustrate refactorings and the
refactoring process as it is applied.

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 1

CO
PYRIG

HTED
 M

ATERIA
L

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 2

Refactoring: What’s
All the Fuss About?

Take a look at any major integrated development environment (IDE) today and you are bound to
discover “refactoring” options somewhere at the tip of your fingers. And if you are following
developments in the programming community, you have surely come across a number of articles
and books on the subject. For some, it is the most important development in the way they code
since the inception of design patterns.

Unlike some other trends, refactoring is being embraced and spread eagerly by programmers and
coders themselves because it helps them do their work better and be more productive. Without a
doubt, applying refactoring has become an important part of programmers’ day-to-day labor no
matter the tools, programming language, or type of program being developed. Visual Basic is a
part of this: at this moment, the same wave of interest for refactoring in the programming commu-
nity in general is happening inside the Visual Basic community.

In this introduction,

❑ I start out by taking a look at what refactoring is and why it is important and then discuss
a few of the benefits that refactoring delivers.

❑ I also address some of the most common misconceptions about refactoring.

❑ In the second part of this chapter, I want you to take a look at the specifics of Visual Basic
as a programming language and how refactoring can be even more relevant for Visual
Basic programmers because of some historic issues related to Visual Basic.

I’ll start with some background on refactoring in general.

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 3

A Quick Refactoring Overview
When approaching some programming task, you have a number of ways in which you can go about it.
You start off with one idea, but as you go along and get into more detail, you inevitably question your
work along these lines: “Should I place this method in this class or maybe in this other class? Do I need
a class to represent this data as a type or am I well off using the primitive? Should I break this class into
more than one? Is there an inheritance relationship between these two classes or should I just use com-
position?” And if you share your thoughts with some of your peers, you are bound to hear even more
options for designing your system. However, once you commit yourself to one approach, it may seem
very costly to change these initial decisions later on. Refactoring teaches you how to efficiently modify
your code in such a way that the impact of those modifications is kept at a minimum. It also helps you
think about the design as something that can be dealt with at any stage of the project, not at all cast in
stone by initial decisions. Design, in fact, can be treated in a very flexible way.

All design decisions are the result of your knowledge, experience, and creativity. However, programming
is a vast playfield, and it’s easy to get tangled in contradictory arguments. In VB .NET you are, first and
foremost, guided by object-oriented principles and rules. Unfortunately, very often it is not so clear how
these rules work out in practice. Refactoring teaches you some simple heuristics that can help improve
your design by inspecting some of the visible characteristics of your code. These guidelines that refactor-
ing provides will set you on the right path in improving the design of your code.

The Refactoring Process
Refactoring is an important programming practice and has been around for some time. Pioneered by the
Smalltalk community, it has been applied in a great number of programming languages, and it has taken
its place in many programmers’ bags of tricks. It will help you write your code in such a way that you
will not dread code revision. Being a programmer myself, I know this is no small feat!

So, how do you perform refactoring? The refactoring process is fairly simple and consists of three
basic steps:

1. Identify code smells.

You’ll see what code smell means very soon, but, in short, this first step is concerned with identi-
fying possible pitfalls in your code, and code smells are very helpful in identifying those pitfalls.

2. Apply the appropriate refactoring.

This second step is dedicated to changing the structure of your code by means of refactoring trans-
formations. These transformations can often be automated and performed by a refactoring tool.

3. Execute unit tests.

This third step helps you rectify the state of your code after the transformations. Refactoring is
not meant to change any behavior of your code observable from the “outside.” This step generally
consists of executing appropriate unit tests that will prove the behavior of your code didn’t change
after performing refactoring.

Definition: Refactoring is a set of techniques used to identify the design flows and to
modify the internal structure of code in order to improve the design without changing
code’s visible behavior.

4

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 4

You might have noticed the word design used in the refactoring definition earlier in the chapter. This is
a broad term and can take on very different meanings depending on your background, programming
style, and knowledge. Design in this sense simply means that refactoring builds upon object-oriented
theory with the addition of some very simple heuristics dedicated to identifying shortcomings and weak
spots in your code. These antipatterns are generally referred to as code smells and a great part of refactor-
ing can be seen simply as an attempt to eliminate code smells.

The code smell can be something as simple as a very large method, a very large class, or a class consisting
only of data and with no behavior. I’ll dedicate a lot of time to code smells in the book, because improving
your sense of code smell can be very important in a successful refactoring process.

The aim of refactoring is to improve the design of your code. You generally do this by applying modifi-
cations to your code. The refactoring methodology and its techniques help you in this task by making it
easier to perform and even automate such modifications.

A Look at the Software Situation
As software developers, your success depends on being able to fulfill different types of expectations. You
have to keep in mind many different aspects of your development work; here are just a few of the concerns:

❑ Very often you will hear that the most important one is satisfying user requirements, generally
meaning that you should create software that does what the client paid for.

❑ You also need to guarantee the quality of your product. You strive to reduce defects and to
release a program that has the minimum number of bugs.

❑ You have to think about usability, making programs that are easy to understand and exploit.

❑ You tend to be especially concerned about performance, always inventing new ways to minimize
memory usage and the number of cycles needed in order to solve some problem.

❑ You need to do all of this in a timely manner, so you are always looking for ways to augment
productivity.

These issues cause us to focus, and rightly so, on the final product (also known as the binary) and how it
will behave for the final user. However, in the process of producing the binary, you actually work with
source code. You create classes, add properties and methods, organize them into the namespaces, write logic
using loops and conditions, and so on. This source code, at a click of a button, is then transformed, com-
piled, or built into a deliverable, a component, an executable, or something similar. There is an inevitable
gap between the artifacts you work on — the source — and the artifacts you are producing — the binary.

In a way, this gap is awkward and not so common in the other areas of human activity. Take a look at
stonemasonry, for example. While the mason chips away pieces of stone and polishes the edges, he or
she can see the desired result slowly appearing under the effort. With software, the process is not at all
as direct. You write source code that is then transformed into the desired piece of software. Even with
the visual tools, which largely bridge this gap between source and binary, all you do in the end is create

Definition: Code smell is a sensation you develop that tells you that there might be a
flaw in your code.

5

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 5

the source that is later on processed and turned into a compiled unit. Imagine a cook that can only write
down a recipe and try the cooked meal, but is not allowed to handle the ingredients or taste the meal
while it is being prepared.

What’s more, there are many ways to write the source that will produce the same resulting binary. This can
easily lead you to forget or sacrifice some qualities inherent to the source code itself, because the source
code can be considered just a secondary artifact. While these qualities are not directly transformed to a final
product, they have an immense impact on the whole process of creation and maintenance.

This leads to the following question: Can we distinguish between well written and poorly written code,
even if the final result is the same? In the following sections, I’ll explore this question, and you’ll see
how refactoring can clarify doubts you might have.

Refactoring Encourages Solid Design
No matter your previous programming experience, I am certain you will agree that you can indeed
distinguish between good and bad code.

Assessing code may begin on a visual level. Even with a simple glance you can see if the code is indented
and formatted so it is pleasing to view, if the agreed naming conventions are used, and so on.

At a less superficial level, you start to analyze code according to principles and techniques of software
design. In Visual Basic, you follow the object-oriented software paradigm. You look into how well classes
are structured and encapsulated, what their responsibilities are, and how they collaborate. You use lan-
guage building blocks like classes and interfaces; and features like encapsulation, inheritance, and poly-
morphism in building a cohesive structure that describes the problem domain well. In a certain way you
build your own ad-hoc language on top of a common language that will communicate your intentions
and design decisions.

There are a number of sophisticated principles you need to follow in order to achieve a solid design.
When you create software that is reusable, extendible, and reliable, and that communicates its purpose
well, you can say you have reached your goal of creating well-designed code.

Refactoring gives you a number of recipes to ensure that your software conforms to the principles of
well-designed code. And when you stray from your path, it helps you reorganize and impose the best
design decisions with ease.

Refactoring Accommodates Change
Popular software design techniques like object-oriented analysis and design, UML diagramming, use-
case analysis, and others often overlook one very important aspect of the software creation process:
constant change. From the first moment it is conceived, software is in continuous flux. Every so often,
requirements will change even before the first release, new features will be added, defects corrected, and
even some planned design decisions, when confronted with real-world demands, overruled. Software
construction is a very complex activity, and it is futile attempting to come up with a perfect solution up
front. Even if some more sophisticated techniques like modeling are used, you still come short of think-
ing about every detail and every possible scenario. It is this state of flux that is often the biggest chal-
lenge in the process of making software. You have no choice but to be ready to adapt, count on change,
and react readily when it happens. If you are not ready to react, the design decisions you made are soon
obscured, and the dangerous malaise of rotting design settles in.

6

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 6

Refactoring is a relatively simple way to prepare for change, implement change, and control the adverse
effects these changes can have on your design.

Refactoring Prevents Design Rot
Software is definitely one of the more ephemeral human creations. Driven by new advances and technolo-
gies, software creations are soon replaced with more modern or advanced versions. Even so, during its
lifetime software will journey through a number of reincarnations. It is constantly modified and updated,
new features are added and old ones removed, defects resolved and adaptations performed. It is quite
common that more than one person will put their hands on the same piece of software, each with his or
her own style and preferences. Rarely will it be the same team of people that will see the software from
the beginning to the end.

Go back for a moment to the stonemason example. Now imagine that there is more than one person
working on the same stone, that these people can change during the collaboration, and that the original
plan is often itself changed with new shapes added or removed and different materials used. That may
be a task for somebody of Michelangelo’s stature, but definitely not for the ordinary craftsman.

No wonder then that initial ideas soon are forgotten, thought-out structure superseded by new solu-
tions, and original design diluted. The initial intentions become less pronounced and the metaphors
more difficult to comprehend, and the source is closer and closer to a meaningless cluster of symbols
that still, but a lot less reliably, performs the intended function. This ailment steals in quietly, step by
step, often unnoticed, and you end up with source that is difficult to maintain, modify, or upgrade.

What I’ve just described are the symptoms of rotting design, something that can occur even before the
first release lives to see the light of a day. Refactoring helps you prevent design rot.

So, as you have moved along in this brief survey of the software landscape, I’ve pointed out several chal-
lenges that developers face and how refactoring can help. Next, I want to discuss refactoring in more detail.

The Refactoring Process: A Closer Look
I just discussed a few key areas of software development that can often lead to poor code. You need to
stand guard for the quality of your code constantly. In effect, you need to have the design qualities of
your code in mind at all times.

While this sounds sensible, thinking continuously about design and code quality can often be costly and
quite complicated. The refactoring methodology and its techniques help you in this task by making it
easier to perform and even automate modifications that will keep the design active.

In this section I’m going to take a look at the refactoring activities you would typically complete during
a software development cycle.

Using Code Smells
As a first step in your refactoring activity, you take a look at the code in order to assess its design qualities.
Refactoring teaches you a set of relatively simple heuristics called code smells that can help you with this
task, along with well-known notions and principles of object-oriented design. Programming, being complex

7

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 7

as it is, makes it difficult to impose precise rules or metrics, so these smells are more general guidelines
and are susceptible to taste and interpretation. Along with gaining more experience and knowledge, you
develop more expertise in identifying and eliminating bad smells in your code.

Transforming the Code
The next step leads you to modifying the code’s internal structure. Here, refactoring theory has devel-
oped a set of formal rules that enable you to execute these transformations in such a way that, for a client,
these modifications are transparent. You do not have to tackle the theory behind these rules. The tool-
makers use these rules to make certain that refactoring modifies the code in a predictable way.

For example, let me illustrate this modification that preserves the original behavior of the code with an
example. In Table 1-1, imagine you transformed the code at the left side into the code on the right side.

Table 1-1: Two Forms of Writing the Code that Will Execute in the Same Way

All you did here was to replace the literal value 1.5 with a constant OvertimeIndex. Executing the
code on both sides provides identical results, but the one on the right can be a lot easier to maintain or
modify. And it is definitely easier to understand. Now you understand that the literal 1.5 has a special
meaning and has not been selected by chance.

Automating Refactoring Transformations
Refactoring rules have one great consequence: it is possible to automate a large number of these trans-
formations. Automation is really the key to letting refactoring show its best. Refactoring tools will check
for the validity of what you are trying to perform and let you apply a transformation only if it doesn’t
break the code. Even without a tool, refactoring is worth your while; however, manual refactoring can be
slow and tedious.

Free Literal Value Literal as Constant

Public Class Employee

Private hoursWorked As Integer

Private overtimeHoursWorked _
As Integer

Private hourlyWage As Decimal

Public Function GetWage() _
As Decimal

Return (hoursWorked * _
hourlyWage) + _
(overtimeHoursWorked * _
hourlyWage _
* 1.5)

End Function
End Class

Public Class Employee

Public Const OvertimeIndex _
As Decimal = 1.5

Private hoursWorked As Integer

Private overtimeHoursWorked _
As Integer

Private hourlyWage As Decimal

Public Function GetWage() _
As Decimal

Return (hoursWorked _
*hourlyWage) + _
(overtimeHoursWorked _
* hourlyWage _
* OvertimeIndex)

End Function
End Class

8

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 8

Figure 1-1 shows the Refactor! for VB Visual Studio add-in from Developer Express integrated with
Visual Studio 2005.

Figure 1-1

The Benefits of Refactoring
In light of all this, it is pertinent to ask what benefits refactoring brings. After all, it is not about adding
new features or resolving bugs, and you end up with code that basically does what it used to, so why
should you invest the time and money to perform this activity? What are the benefits of keeping your
design optimal at all times? How does refactoring pay off?

Keeping the Code Simple
With the fact that software development is a continuous, evolving process, refactoring can bring impor-
tant qualities to your code. Keeping your code lean at all times can be challenging, especially when
you’re under pressure to deliver the results quickly. So how does your code become overly complex?
There are several ways this happens.

❑ In one typical scenario, you add a function here, a property there, another condition will crop
up, and so on. This will soon produce a situation where classes and methods have grown and
gone beyond their original purposes. They have too many responsibilities, communicate with
many other elements, and are prone to change for many different reasons. It also becomes a
breeding ground for duplicated code.

9

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 9

❑ In another scenario, you start off with a very thorough design that proves to be more than you
really need. Simple code does only what it is supposed to do; you need not be so concerned
much with trying to have your solution respond to any possible situation even before it hap-
pens. You can easily develop a tendency to overengineer your code, using complex structures
when simple ones will do. (You can easily identify this school of thought by how many “what
if” statements are used in discussions of the code.) This situation is motivated by an urge to
anticipate future requirements even before they are expressed by the client.

❑ Performance has proved to be a lure for generations of programmers. You might spend numer-
ous hours in order to obtain nanosecond gains in execution time. Without trying to lessen the
importance of this key quality of software, you should bear in mind the right moment to deal
with it. It can be very difficult to find the critical line you need to change in order to improve
performance even for systems already in production; there is even less of a probability that you
can find it while the system is in plain development and you are not sure what the rest of the
pieces will end up looking like. Using the IDE as the performance-testing environment can be
equally misleading.

How can you avoid such pitfalls? Once you become aware of them, you should deal with them quickly.
Keeping things on the simple side will be greatly rewarded each time you need to add a feature, resolve
a bug, or perform some optimization.

❑ If you see that a method has grown out of proportion, it is time to add a new method(s) that will
take off some of the burden.

❑ If a class has too many members, maybe it can be restructured into a group of collaborating
classes or into a class hierarchy.

❑ If a modification left some code without any use and you are certain that it will never be executed,
there’s no need to keep it; it should be eliminated.

All these solutions represent typical refactorings. After a smell is discovered, the solution is a restructuring
of the problematic code.

When code is simple, it is easy to navigate — you don’t lose time in long debugging sessions in order to find
the right spot. The names of classes, methods, and properties are meaningful; code purpose is easy to grasp.
This type of code won’t have you reaching for documentation or desperately searching through the com-
ments. Even after a short time spent with such code, you feel it does not hide any major mysteries. In simple
words, you are in control.

Keeping the Code Readable
Programming is intellectually a very intense activity. You are often so immersed in your work that you
tend to have a deep and detailed understanding of your creation in order to maintain complete control
over it. You may try to memorize every single detail of the code. You feel proud when you are able to
immediately correct a bug or change some behavior. After all, it is what makes you good in the work
you perform. As you become more productive, you develop strategies and gain your own programming
style. There is nothing wrong with being expert with the code you create, unless that expertise becomes
the only weapon you have in your arsenal.

Unfortunately, sometimes you can forget one important fact; when developing software you seldom
work alone. And in order to be able to work in a team, you must write code so it is easily comprehended

10

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 10

by others. Others might need to modify, maintain, or optimize the code. In that case, if confronted with
cryptic or hermetic code, others could lose numerous hours in a pure attempt to understand the code.
Sooner or later you’ll have a computer do all your bidding, but until then, writing source in such way
that it is easy for others to understand can prove to be a much more difficult task. Ironically, you can find
yourself in the “other person” role even with your own code. Your memory has its limits, and after a
while you may not be able to remember every detail of the code you yourself wrote.

Readability can depend on different factors. Visual disposition is easily corrected and standardized
with the IDE. Other factors, like the choice of identifier names, require a carefully thought-out approach.
Because programmers often come from different backgrounds and have different experiences, the best
bet is relying on natural language itself. You have to translate your decisions into code so they are easily
understandable from a reading of the code, not only visible as a consequence of code execution. Code
becomes really meaningful when a relation between it and a problem domain is correctly established.

As a programmer, you continuously develop your vocabulary. Using well-known idioms, patterns, and
accepted conventions can increase the clarity of your code.

Reliance on comments and documentation can also affect the capacity of code to communicate with the
reader. Because these artifacts never get executed, they are the first to suffer from obsolescence. Secondly,
they are notorious for containing superfluous information.

I will try to illustrate this with two code snippets that perform equally during execution. Try reading
first the snippet on the left side in Table 1-2, and then the one on the right.

Table 1-2: An Example of Code that is Difficult to Read and the Same Code
in a More Readable Form

If I have proved my point, you will find the second snippet more to your liking. In case you still are not
convinced, as an interesting experiment, you can try obfuscating your code with some obfuscation tool
and then trying to find your way around it. Even with the smallest code base, it soon becomes impossible
to understand the code. No wonder, because obfuscation is a process completely opposite to refactoring.

Refactoring tools can help you improve readability by letting you rename identifiers in your code in a
safe and systematic way and by letting you transform your code along well-known patterns and
idioms — you use comments in a more profound manner. Strong structure in the code gives you confi-
dence that the information you obtain from reading the code relates well to execution time.

All this sounds very good. However, you can often hear arguments against refactoring. While some of those
arguments are well founded, let me first deal with some opinions often heard that are not very constructive.

Difficult to Read More Readable Code

Dim oXMLDom As _
New DOMDocument40
Dim oNodes As IXMLDOMNodeList
‘loads the file into XMLDom object
oXMLDom.Load(App.Path + _
“\ portfl.xml”)
oNodes = _
oXMLDom.selectNodes(“//stock[1]/*“)

Dim portfolio As _
New DOMDocument40
Dim stocks As IXMLDOMNodeList

portfolio.Load(App.Path + _
“\portfl.xml”)
stocks =
portfolio.selectNodes(“//stock[1]/*“)

11

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 11

Debunking Common Misconceptions
Like any topic that creates a huge amount of interest among developers, refactoring has produced
an avalanche of opinions and contributions, some of more and others of less value. In certain cases I
found those opinions so unfounded that I call them misconceptions. I feel it is worthwhile taking some
time to debunk them, because they can add confusion and can lead you astray from a quest to adopt
this valuable technique.

Refactoring Violates the Old Adage, “If It Ain’t Broke, Don’t Fix It”
Often portrayed as longstanding engineering wisdom, this posture only promotes complacency.
Refactoring does teach against it, but for a reason.

Early on you learn how even a minuscule detail in code can make all the difference, often paying dearly
for this knowledge. A small change can provoke software to break in a surprising manner and at the
worst moment. So once you burn your hands you often become reluctant to make any change that is not
absolutely necessary. This can work well for a moment, but then a situation comes up where bugs have
to be resolved and petitions for new features cannot be evaded anymore. You are faced with the same
code you tried not to confront.

Those who adopt this “if it ain’t broke, don’t fix it” position look upon refactoring as unnecessary meddling
with something that already serves its purpose. Actually, this conformist posture that tries to maintain the
“status quo” is the result of an intent to rationalize the fear of confronting the code and the fact that you do
not have control over it.

Refactoring Is Nothing New
This misconception could be restated as, “Refactoring is just another word for what we all know already.”
Which means you have all learned about good code, object-oriented design, style, good practices, and so
on, and refactoring is just another buzzword that someone invented to sell some books.

Okay, refactoring does not pretend to be imposing a radically new paradigm like object-oriented or aspect-
oriented programming. What it does do is radically change the way you program: it defines rules that
make it possible to apply complex transformations to code at the click of a button. You do not look at your
code as some frozen construct that is not susceptible to change. Instead, you see yourself as capable of
maintaining the code in optimum shape, responding efficiently to any new condition.

Refactoring Is Rocket Science
Programming is hard. It’s a complex activity that requires a lot of intellectual effort. Some of the knowl-
edge can be very difficult to grasp. With Visual Basic .NET, VB programmers had to acquire the ability to
work in a fully capable object-oriented language. For many, this was baffling at first. The good part is it
definitely pays off.

The great thing about refactoring is how simple it can be. It equips you with a very small set of simple
rules to start off. This, coupled with a good tool, makes first steps in refactoring a breeze. Compared to
other techniques an advanced programmer should know nowadays, like UML or design patterns, I’d
say refactoring has the easiest learning curve, a lot like VB itself compared to other programming lan-
guages. Very soon, the time spent in learning refactoring will start to reap rewards. Of course, as with
any other thing in life, gaining mastery requires a lot of time and effort.

12

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 12

Refactoring Causes Poor Performance
A longer way to state this might be, “Because after refactoring you usually end up with a larger num-
ber of more fine-grained elements like methods and classes, so much indirection must incur some
performance cost.”

If you go back in time a little, you’ll discover that this argument curiously sounds like the one used to
voice initial skepticism toward object-oriented programming. The truth is that the differences between
refactored and unstructured code are, at best, minimal. Except in some very specialized systems, this is
not a concern.

Experience shows that performance flows are generally afflicted by some precise spots in code. Fixing
those during an optimization phase will get you the required levels of performance. Being able to easily
identify the critical pieces of code can prove to be very valuable. By producing understandable code in
which duplication and total size is minimized, refactoring greatly aids this task.

Refactoring Breaks Good Object-Oriented Design
Well-structured and refactored code can look awkward to an untrained eye. Methods are so short that they
often seem without substance. Classes seem without enough weight, consisting of only a few members. It
seems as if nothing ever happens in our code.

Having to manage a greater number of elements like classes and methods can imply that there is more
complexity to deal with. This argument is actually misleading. The truth is that the same complexity was
always present, only in refactored code it is expressed in such a cleaner, more structured way.

Refactoring Offers No Short-Term Benefits
Refactoring actually makes you program faster. So far, I do not know of any study that I could call upon
in order to prove what I just said, but my own experience tells me this is the case. All the same, it is only
logical that this is so. Because we have a smaller quantity of code overall, less duplication, and a clearer
picture, unless we are dealing with some trivial and unrealistically small scale code, benefits become
apparent very soon.

Refactoring Works Only for Agile Teams
Because it’s often mentioned as one of the pillar techniques in agile methodologies, refactoring is interpreted
as working only for teams adhering to these principles.

Refactoring is indispensable for agile teams. Even if your team has a different methodology, most of the
time you are the one in charge charge of the way you code. Best results in refactoring are achieved if you
adopt refactoring in small steps, performing it regularly while you code. Some practices, like strict code
ownership or a waterfall process, can play against refactoring. If you can prove that refactoring makes
sense from a programming point of view, you can start building your support base, first with your peers
and then by spreading the word to the rest of your team.

That dispenses with some of the common misconceptions surrounding refactoring. At this point, you
may be wondering how all of this relates to Visual Basic. That is the topic of the next section.

13

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 13

Visual Basic and Refactoring
It is fair to say that in the Visual Basic community, refactoring has had a slow start. One of the main rea-
sons for this was the lack of proper tool support. While some tools with refactoring capabilities appeared
on the market some years ago, only recently did dedicated refactoring tools for VB appear. Lack of tools
coupled with lack of information and scarce literature suited for VB developers led to slow adoption of
the technique. It seems, however, that in this case the developer community was ahead of the industry
policy makers and commercial institutions. Refactoring support was voted the number-one desired fea-
ture for the 2005 edition of Visual Basic IDE. Realizing the importance this feature has for VB developers,
Microsoft partnered with Developer Express to release a free Visual Basic refactoring add-in for Visual
Studio 2005.

Visual Basic History and Legacy Issues
While refactoring was slow to take over in the Visual Basic community, it can be argued that refactoring
has even greater importance for Visual Basic programmers than for programmers in some other languages.
Visual Basic longevity means that VB developers need to deal with a host of legacy issues even today. In
this effort, refactoring can be a great help by providing the programmer with the tools for unobtrusive
transformation of legacy constructs into more appropriate contemporary code.

Visual Basic has been in existence for more than 15 years. During that time it has earned a huge following —
it has become one of the most popular programming environments in existence. Thanks to its syntax based
on the BASIC programming language and the graphical environment for drawing GUI elements, it has
proven to be an easily accessible programming environment with a gradual learning curve. And thanks to
Microsoft’s policy of spreading the use of Visual Basic in other forms and other environments like Windows
Scripting, Visual Basic for Applications used for Office automation, Active Server Pages, and others, the
circle of VB adopters has significantly increased.

Visual Basic Evolution
Since its inception, Visual Basic has undergone a steady process of evolution and improvements.
In version four, class constructs were added to Visual Basic, paving the way for object-oriented pro-
gramming in Visual Basic. However, not until VB .NET did Visual Basic unleash the full power of
object-oriented programming. In VB .NET, implementation inheritance support was added.

With the advent of the .NET Framework, Microsoft decided to make a more significant overhaul of the
language and to make it more appropriate for the new platform. Significant improvements were made:

❑ Added inheritance support

❑ Optional static type checking (Option Strict)

❑ Structured Error Handling (Try-Catch-Finally)

❑ Attributes

Many other programming elements were removed or replaced in an attempt to clean up the language syn-
tax and make it more in the spirit of the .NET Framework. In the .NET Framework, all code gets compiled
into Intermediate Language and then traduced into native binary. This is true for code programmed in
VB .NET also. This makes it possible for VB code to interact with code programmed in other languages.

14

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 14

VB programmers can use code programmed in C# or managed C++. The reverse is also true — C# or C++
programmers, or programmers in any other .NET language for that matter, can import and use assemblies
programmed in Visual Basic .NET. This is not so different from the interoperability provided by COM in the
pre-.NET era, with the distinction that it is also possible to inherit types programmed in different languages.

This continuous work on language improvement continues even today. For example, in Visual Basic 2005,
support for generic types was added. In the 2008 version of VB, new features like LINQ, XML Literals,
Extension Methods, and Lambda Expressions continue to keep VB at the forefront of .NET programming
languages.

Along with market forces that are continuously moving Visual Basic forward in making it more powerful
and advanced so that it stays as efficient as other programming languages, some frictional forces stand in
the way of its progress. Its long history and success are the main reasons for keeping some of its older lan-
guage elements that would normally be completely replaced with newer ones. With C# Microsoft had a
clean slate for language design. With Visual Basic, it has to take into account a huge amount of existing
code that should be migrated and a great number of developers who need to upgrade their skills.

Legacy Code
The huge popularity and widespread adoption of Visual Basic resulted in a great amount of pre-.NET
code still in production even today, almost six years after the advent of .NET. Migrating VB6 or prior
code to .NET is not a simple affair. While Microsoft provided an automated migration tool, this upgrade
can not be realistically performed without user interaction. Code produced by the Migration Wizard will
often leave portions of code that should be upgraded manually.

This in part demonstrates a somewhat brave decision by Microsoft not to subject VB .NET to upgrade
necessities and backward-compatibility issues. But because a completely automated upgrade is not
possible, a number of features were kept in VB .NET in order to provide at least some possibility of
upgrade. Such features are:

❑ Old-style error handling (On error...)

❑ Optional static typing as opposed to mandatory static type checking (Option Strict...)

❑ Module language construct, etc.

Unfortunately, code with such features left over after the upgrade has not been fundamentally upgraded.
It can execute in a new, .NET environment, but nevertheless it has kept old deficiencies.

Legacy Programming
In the computer industry, new technologies are the order of the day. As programmers, you are destined
to upgrade your skills continuously and to acquire new knowledge. Unless you do so, the spectrum of
employment opportunities and chances for career advancement can be greatly reduced. VB programmers
were exposed to this process of continuous skill improvement throughout the history and evolution of VB,
but never was the challenge as great as with the release of VB .NET.

By making VB a modern, fully object-oriented language with native access to the .NET Framework,
Microsoft gave VB programmers a much more powerful tool. However, to be able to harness this power,
programmers had to acquire new skills. It can be argued that with the advent of VB .NET a “paradigm
shift” has been produced. The changes are significant and go beyond a simple upgrade. These changes
require new skills and new ways of thinking.

15

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 15

However, because of many old elements that were kept in VB .NET, it is possible to program in VB .NET
in the “old style,” just as in VB6 or prior. But if that way is used, no benefits are gained from the new
platform. This is not a new phenomenon in the history of programming. C++ and Java had their syntax
based on C language syntax in order to attract and facilitate transfer of C programmers to these new lan-
guages. However, it was soon noticed that a number of these programmers started using new tools and
environments in the old style, relying on old constructs and design applicable to the old programming
language. With C++ and Java, this meant that programmers continued using procedural design instead
of relying on new, object-oriented design. Admittedly, in VB the gap is not that great. Even in VB6 you
can define a class, create an instance, or define and implement an interface. Nonetheless, using inheri-
tance and generics and understanding the benefits of static typing are important challenges for someone
coming from a classic VB background, and surmounting these challenges requires a major shift in the
way programming is approached.

Legacy Language Elements
So these backward forces I’ve discussed led to a situation in which many of the obsolete language elements
were kept in VB .NET for the purpose of upgrades of existing code or with the intention of facilitating the
transition of programmers to a new platform.

Unfortunately, these features can just as easily be used in newly created VB .NET code, although there
are other, much better alternatives. To be able to distinguish between the two, a solid command of
VB .NET and object-oriented principles is required.

Dealing with Legacy Issues Through Refactoring
Building on the fundamentals of object-oriented theory, refactoring goes a step further than a traditional
approach to programming does. With refactoring, it is easy to identify weak spots in your code and apply
small-scale transformations that do not change the behavior of code but can deal with the shortcomings.
In that sense, some of the legacy language elements can be considered undesirable, and, just like any other
smell, this legacy code smell can be dealt with through the refactoring process. By defining procedures that
can transform legacy elements and fundamentally upgrade the code, refactoring can greatly alleviate issues
related to upgrade and make your old code fully capable and equally useful in the .NET world.

Summary
This introductory chapter has given you a brief overview of refactoring, explaining its relevance and
benefits. You have seen how refactoring helps you design your applications and prevent design rot, and
at the same time accommodate any change that your software might be exposed to.

You have learned the three important stages in each cycle of the refactoring process: smell identification,
refactoring, and testing. These three stages are mandatory for successful refactoring. In order to make
this process even more productive, you can rely on automated refactoring tools that take a lot of the
drudgery and complexity out of refactoring, making it easily accessible and applicable.

You have also also been presented with some of the most common misconceptions of refactoring that
you might come across, just so you won’t be surprised by the diversity of opinions on the subject and
can make your own informed choices.

16

Part I: Introduction to Refactoring

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 16

In the second part of the chapter, I put Visual Basic into focus. A very popular and successful tool, it was
not immune to changes and advances in the programming world. While it has evolved significantly, its
longevity means that a host of legacy and backward-compatibility characteristics were preserved inside
the language in an attempt to make the upgrade to new versions less upsetting. Unfortunately, this also
meant that a lot of programmers continued to program in the legacy style, not reaping the benefits of the
advances of this fully object-oriented language that came with th advent of VB .NET.

You have seen how refactoring can play a significant role in the transition and upgrade of legacy code
to VB .NET. You can rely on it while you acquire new knowledge and sharpen your programming and
design skills.

Now it’s time to see some of this in practice. In the next chapter you are going to see refactoring at work.
I will write some code and use a small application to illustrate the power of the refactoring process.

17

Chapter 1: Refactoring: What’s All the Fuss About?

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 17

79796c01.qxd:WroxPro 2/25/08 8:55 AM Page 18

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Preserve
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /ENU (Malloy's general settings for optimal printing.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [684.000 864.000]
>> setpagedevice

