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1

SIGNAL THEORY
AND ANALYSIS

A signal, in general, refers to an electrical waveform whose amplitude varies with
time. Signals can be fully described in either the time or frequency domain. This
chapter discusses the characteristics of signals and identifies the main tools used
for signal processing. Some functions widely used in signal processing are described
in Section 1.1. A quick review of the linear system and convolution theory is covered
in Section 1.2. Fourier series representation of periodic signals is discussed in Section
1.3. Fourier transform of nonperiodic signals and periodic signals are covered in
Sections 1.4 and 1.5, respectively. Section 1.6 describes sampling theory together
with signal interpolation. Some advanced sampling and interpolation techniques are
reviewed in Section 1.7.

1.1 SPECIAL FUNCTIONS USED IN SIGNAL PROCESSING

1.1.1 Delta or Impulse Function δ(t)

The delta function or impulse function δ(t) is defined as

δ(t) = ∞ for t = 0,

= 0 for t �= 0.

and ∫ ∞

−∞
δ(t)dt = 1. (1.1)
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2 SIGNAL THEORY AND ANALYSIS

On the basis of this definition, one can obtain

∫ ∞

−∞
f (t)δ(t)dt = f (0)

and

∫ ∞

−∞
f (t)δ(t − t0)dt = f (t0).

1.1.2 Sampling or Interpolation Function sinc (t)

The function sinc (t) is defined as

sinc (t) = 1 for t = 0

= sin (π t)

π t
otherwise

and

∫ ∞

−∞
sinc (t)dt = 1. (1.2)

A sinc (t) function for t = −4 to 4 is depicted in Fig. 1.1. Notice that sinc (t) = 0
for all integers of t, and its local maxima corresponds to its intersection with the
cos (π t).
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FIGURE 1.1 A sinc (t) function.
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LINEAR SYSTEM AND CONVOLUTION 3

1.2 LINEAR SYSTEM AND CONVOLUTION

A linear system, as shown in Fig. 1.2, can be represented as a box with input x, output
y and a system operator H that defines the relationship between x and y. Both x and
y can be a set of components.

H
x y

FIGURE 1.2 A linear system.

A system is linear if and only if

H(a x + b y) = a H x + b H y. (1.3)

where a and b are constants, x is the system’s input signal, and y is the output signal.
In addition, a linear system having the fixed input–output relation

Hx(t) = y(t)

is time-invariant if and only if

Hx(t − τ ) = y(t − τ )

for any x(t) and any τ . In the following discussion, only the linear and time-invariant
system is considered.

Let pτ (t) be a pulse with amplitude 1/�τ and duration �τ ; then any function f (t)
can be represented as

f (t) ≈
∞∑

n=−∞
f (n�τ )pτ (t − n�τ )�τ. (1.4a)

Figure 1.3 illustrates the relationship between pτ (t) and the function f (t). Figure
1.3a shows a rectangular polygon with amplitude 1/�τ and duration�τ ; Fig. 1.3b

f(t)

tt

pτ(t)

1/∆τ

∆τ0

(a) (b)

0
3∆τ

f(3∆τ)

FIGURE 1.3 Graphical representations of a function in terms of pulses.
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4 SIGNAL THEORY AND ANALYSIS

displays how a function f (t) can be approximated by a series of delayed rectangular
polygon pτ (t− n�τ ) with amplitude f (n�τ )�τ .

As �τ → 0, n�τ → τ . Therefore

pτ (t) → δ(t)

and

pτ (t − n�τ ) → δ(t − τ ).

The summation of Eq. (1.4a) then becomes

f (t) =
∫ ∞

−∞
f (τ )δ(t − τ )dτ . (1.4b)

Let h(t) be the impulse response of a system:

H δ(t) = h(t).

Then, for any input function x(t), the output function y(t) can be expressed as

y(t) = H x(t)

= H
∫ ∞

−∞
x(τ )δ(t − τ )dτ

=
∫ ∞

−∞
x(τ )h(t − τ )dτ

= x(t) ∗ h(t). (1.5)

where the asterisk (symbol ∗) refers to convolution. If x(t) = δ(t), then

y(t) = x(t) ∗ h(t)

= δ(t) ∗ h(t)

= h(t).

Equation (1.5) states the relationship between the input function x(t), the impulse
response or system function h(t), and the output function y(t). It serves as a funda-
mental equation and is widely used in linear and time-invariant systems. A simple
block diagram that illustrates this relationship is shown in Fig. 1.4

y(t)x(t)
h(t)

FIGURE 1.4 A time-invariant linear system.
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1.2.1 Key Properties of Convolution

1.2.1.1 Commutative
By letting λ = t − τ , Eq. (1.5) becomes

y(t) =
∫ ∞

−∞
x(τ )h(t − τ )dτ

=
∫ ∞

−∞
x(t − λ)h(λ)dλ

= h(t) ∗ x(t).

Therefore

y(t) = x(t) ∗ h(t)
= h(t) ∗ x(t). (1.6)

1.2.1.2 Associative
If

y(t) = [x(t) ∗ h(t)] ∗ z(t),

then

y(t) = x(t) ∗ [h(t) ∗ z(t)]
= [x(t) ∗ z(t)] ∗ h(t). (1.7)

1.2.1.3 Distributive
If

y(t) = x(t) ∗ h(t) + x(t) ∗ z(t),

then

y(t) = x(t) ∗ [h(t) + z(t)]. (1.8)

1.2.1.4 Timeshift
If

y(t) = x(t) ∗ h(t),

then

y(t − τ ) = x(t − τ ) ∗ h(t)
= x(t) ∗ h(t − τ ). (1.9)
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6 SIGNAL THEORY AND ANALYSIS

1.3 FOURIER SERIES REPRESENTATION OF PERIODIC SIGNALS

A signal gp(t) is called a periodic signal with period T0 if it remains unchanged after
it has been shifted forward or backward by T0, that is

gp(t) = gp(t +/− T0),

where T0 = 2π /ω0.
There are three different Fourier series representations for a periodic signal. The

first two representations are in terms of trigonometric functions, while the third is in
exponential form. The three Fourier series representations of a periodic signal gp(t)
are described below.

1.3.1 Trigonometric Fourier Series

A periodic signal gp(t) can be represented as

gp(t) = a0 +
∞∑

n=1

ancos (nω0t) +
∞∑

n=1

bn sin (nω0t), (1.10a)

where an and bn for n = 1,2, . . . can be computed as

a0 = 1

T0

∫ T0

0
gp(t) dt, (1.10b)

an = 2

T0

∫ T0

0
gp (t)cos (nω0t) dt, (1.10c)

bn = 2

T0

∫ T0

0
gp (t)sin (nω0t) dt. (1.10d)

1.3.2 Compact Trigonometric Fourier Series

Alternatively, a periodic signal gp(t) can be represented as

gp(t) = c0 +
∞∑

n=1

cn cos(nω0 + θn), (1.11a)

where

c0 = a0, (1.11b)

cn =
√

a2
n + b2

n, (1.11c)

θn = tan−1 bn

an
. (1.11d)
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1.3.3 Exponential Fourier Series

A periodic signal gp(t) can also be represented as

gp(t) =
∞∑

n=−∞
Gne jnω0t , (1.12a)

where

Gn = 1

T0

∫ T0

0
gp (t)e− jnω0t dt,

or

G0 = a0, (1.12b)

Gn = an − j bn

2
, (1.12c)

G−n = an + j bn

2
. (1.12d)

Example 1.1 Figure 1.5 shows a periodic signal gp(t), which is expressed as

gp(t) =
∞∑

n=−∞
g(t − nT0),

with

g(t) = A for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

t

g
p
(t)

A

τ/2−τ/2
(0,0) T

0 2T
0

−T
0

−2T
0

FIGURE 1.5 A periodic signal gp(t).
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The Fourier series coefficients of gp(t) in terms of these three representations can be
computed as the following equations show:

1. From Eq. (1.10)

gp(t) = a0 +
∞∑

n=1

an cos (nω0t) +
∞∑

n=1

bn sin (nω0t).

a0 = 1

T0

∫ T0

0
gp(t)dt

= 1

T0

∫ τ/2

−τ/2
A dt

= Aτ

T0
.

an = 2

T0

∫ T0

0
gp (t) cos (nω0t) dt

= 2

T0

∫ τ/2

−τ/2
A cos nω0 t dt

= 2A

nπ
sin

nπτ

T0
.

bn = 2

T0

∫ T0

0
gp (t) sin (nω0t) dt

= 2

T0

∫ τ/2

−τ/2
A sin (nω0t) dt

= 0.

2. From Eq. (1.11)

gp(t) = c0 +
∞∑

n=1

cn cos (nω0 + θn).

c0 = a0

= Aτ

T0
.

cn =
√

a2
n + b2

n

= an

= 2A

nπ
sin

nπτ

T0
.

θn = tan−1 bn

an

= 0.
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3. From Eq. (1.12)

gp(t) =
∞∑

n=−∞
Gne jnω0t .

G0 = a0.

Gn = G−n

= an

2

= A

nπ
sin

nπτ

T0

= Aτ

T0

sin (nπτ/T0)

nπτ/T0

= Aτ

T0
sinc

(
nτ

T0

)
.

Figure 1.6 displays the Gn for the case when A = 1 and τ = T0 / 2. Notice that
the Fourier series coefficients of {Gn} are discrete and the dashed line represents the
envelope of {Gn}.

G
n

−3−7
−5 5

3 7

1/2

n
0 1−1

FIGURE 1.6 Fourier series coefficients of a periodic pulse.

Example 1.2 Let the periodic signal gp(t) in Example 1.1 be modified with τ = 0
and A = ∞, such that Aτ = 1:

gp(t) =
∞∑

n=−∞
g (t − nT0)

=
∞∑

n=−∞
δ(t − nT0).
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The three Fourier series representations of a periodic impulse train can be com-
puted as follows:

1. From Eq. (1.10)

a0 = 1

T0

∫ T0

0
gp(t)dt

= lim
τ→0
A→∞

1

T0

∫ τ/2

−τ/2
δ(t)dt

= 1

T0
.

an = lim
τ→0
A→∞

2

T0

∫ τ/2

−τ/2
δ (t) cos (nω0t) dt

= 2

T0
.

bn = 0.

Therefore

gp(t) =
∞∑

n=−∞
δ(t − nT0)

= 1

T0
+

∞∑
n=1

2

T0
cos (nω0t).

2. From Eq. (1.11)

c0 = a0

= 1

T0
.

cn =
√

a2
n + b2

n

= an

= 2

T0
.

θn = tan−1 bn

an

= 0.
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Therefore

gp(t) =
∞∑

n=−∞
δ(t − nT0)

= 1

T0
+

∞∑
n=1

2

T0
cos (nω0t).

3. From Eq. (1.12)

G0 = a0

= 1

T0
.

Gn = G−n

= an

2

= 1

T0
.

Therefore

gp(t) =
∞∑

n=−∞
δ(t − nT0)

=
∞∑

n=−∞

1

T0
e jnω0t .

1.4 NONPERIODIC SIGNAL REPRESENTATION
BY FOURIER TRANSFORM

A periodic signal gp(t) can always be represented in one of the three Fourier series
forms described in the previous section. Consider the signal based on exponential
representation as shown in Eq. (1.12a), that is

gp(t) =
∞∑

n=−∞
Gne jnω0t ,

where Gn can be derived as

Gn = 1

T0

∫ T0

0
gp(t)e− jnω0t dt
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or

Gn = 1

T0

∫ T0/2

−T0/2
gp(t)e− jnω0t dt.

A nonperiodic signal g(t) can be considered as a periodic signal gp(t) with the
period T0 → ∞:

g(t) = lim
T0→∞

gp(t).

Notice that T0 → ∞ implies ω0 = (2π/T0) → 0.
Let ω0 ≈ �ω; then

T0Gn =
∫ T0/2

−T0/2
gp(t)e− jn �ωt dt.

From the integration shown above, it can be seen that T0Gn is a function of n�ω;
therefore, one can define

T0Gn = G(n�ω),

and

gp(t) =
∞∑

n=−∞

G(n�ω)

T0

e jn �ωt

=
∞∑

n=−∞

G(n�ω)�ω

2π
e jn �ωt .

Now

g(t) = lim
T0→∞

gp(t)

= lim
T0→∞

1

2π

∞∑
n=−∞

G(n�ω)e jn �ωt�ω

= 1

2π

∫ ∞

−∞
G(ω)e jωt dω. (1.13)

Similarly

G(ω) = lim
�ω→0

G(n�ω)

= lim
T0→∞

T0Gn

=
∫ ∞

−∞
g(t)e− jωt dt. (1.14)
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Equations (1.13) and (1.14) are referred to as the Fourier transform pair. G(ω)
in Eq. (1.14) is considered as the direct Fourier transform of g(t), while g(t) in
Eq. (1.13) is the inverse Fourier transform of G(ω). The transform pair can also be
expressed as

G(ω) = F [g(t)]

and

g(t) = F
−1[G(ω)].

The Fourier transform pair can also be expressed symbolically as

g(t) ↔ G(ω).

Some key properties of the Fourier transform are listed below:

1. G(−ω) = G∗(ω) (1.15)

where the asterisk (*) denotes complex conjugate of .

2. If g(t) ↔ G(ω), then

G(t) ↔ 2πg(−ω). (1.16)

3. g(at) ↔ 1

|a|G
(ω

a

)
. (1.17)

4. g(t − t0) ↔ G(ω)e− jωt0 . (1.18)

5. g(t)e jω0t ↔ G(ω − ω0). (1.19)

6. If g1(t) ↔ G1(ω) and g2(t) ↔ G2(ω), then

g1 (t) ∗ g2 (t) ↔ G1(ω)G2(ω), (1.20)

where the asterisk denotes convolution.

7. If g1(t) ↔ G1(ω) and g2(t) ↔ G2(ω), then

g1(t)g2(t) ↔ 1

2π
G1 (ω) ∗ G2 (ω) . (1.21)

where the asterisk denotes convolution.
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Example 1.3 Let g(t) be defined as

g(t) = 1 for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

The Fourier transform of g(t) can be computed as

G(ω) = F [g(t)]

=
∫ ∞

−∞
g(t)e− jωt dt

=
∫ τ/2

−τ/2
e− jωt dt

= τ
sin ωτ/2

ωτ/2

= τ sinc (ωτ/2π ).

Figure 1.7 displays the time domain function g(t) and its Fourier transform G(ω).

g(t)

t

1

τ/2−τ/2

(0,0)

G(ω)

ω(0,0)

τ

4π/τ

2π/τ 6π/τ

−4π/τ
−2π/τ−6π/τ

FIGURE 1.7 A single pulse g(t) and its Fourier transform G(ω).

By comparing Figs. 1.6 and 1.7, one can see that the Fourier series coefficients
of a periodic pulse train is the discrete version of the Fourier transform of a single
pulse.

Example 1.4 Let G(ω) be defined as

G(ω) = 1 for − 2π fm ≤ ω ≤ 2π fm,

= 0 otherwise.
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The inverse Fourier transform of G(ω) can be computed as

g(t) = F
−1[G(ω)]

= 1

2π

∫ ∞

−∞
G(ω)e jωt dω

= 1

2π

∫ 2π fm

−2π fm

e jωt dω

= 2 fm
sin 2π fmt

2π fmt

= 2 fm sinc (2 fmt).

Figure 1.8 displays the frequency domain function G(ω) and its inverse Fourier
transform g(t).

g(t)

t

1

(0,0)

G(ω)

ω (0,0)−2πfm
2πfm

2fm

−1/fm

−3/2fm
−1/2fm 1/2fm 3/2fm

1/fm−2/fm
2/fm

FIGURE 1.8 A single-pulse frequency spectrum G(ω) and its inverse Fourier transform g(t).

Example 1.5 Let g(t) = δ(t), the Fourier transform of g(t) can be computed as

G(ω) = F [g(t)]

=
∫ ∞

−∞
g(t)e− jωt dt

=
∫ ∞

−∞
δ(t)e− jωt dt

= 1.
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Therefore, δ(t) and 1 are a Fourier transform pair:

δ(t) ↔ 1.

Similarly, if G(ω) = δ(ω), then

g(t) = F
−1[G(ω)]

= 1

2π

∫ ∞

−∞
δ(ω)e jωt dω

= 1

2π
.

Therefore, 1 and 2πδ(ω) are a Fourier transform pair:

1 ↔ 2πδ(ω).

1.5 FOURIER TRANSFORM OF A PERIODIC SIGNAL

Although the Fourier transform was derived from the nonperiodic signal, it can also
be used to represent the periodic signal. The Fourier transform of a periodic sig-
nal can be computed by first representing the periodic signal in terms of a Fourier
series expression, then transforming each Fourier series coefficient (represented in
exponential form) into the frequency domain. The following examples illustrate the
Fourier transform of periodic signals.

Example 1.6 Let gp(t) be a periodic impulse train, expressed as

gp(t) =
∞∑

n=−∞
δ(t − nT0).

The Fourier transform of gp(t) can be computed by first expressing the periodic signal
gp(t) in terms of the Fourier series in the exponential form. Thus, from Example 1.2,
we obtain

gp(t) =
∞∑

n=−∞
Gne jnω0t

= 1

T0

∞∑
n=−∞

e jnω0t ,
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where ω0 = 2π/T0. From Example 1.5, the Fourier transform of gp(t) can then be
computed as

G(ω) = F [gp(t)]

= 1

T0

∞∑
n=−∞

∞∫
−∞

e− j(ω−nω0)t dt

= 2π

T0

∞∑
n=−∞

δ(ω − nω0).

Figure 1.9 displays the time-domain impulse train gp(t) and its Fourier transform
G(ω). Both gp(t) and G(ω) appear to be impulse trains. Notice that the amplitude of
the impulse train in the frequency domain is ω0 and its spectrum repeated at ± nω0

with n = 1,2, . . . and ω0 = 2π/T0.

1

t

g
p
(t)

T0
(0,0)

G(ω)

ω

ω0

−2ω0
2ω0

ω0
−ω0 (0,0)

FIGURE 1.9 A periodic impulse train and its Fourier transform.

Example 1.7 Consider the signal gp(t) shown in Example 1.1, expressed as

gp(t) =
∞∑

n=−∞
g (t − nT0),

where

g(t) = A for − τ

2
≤ t ≤ τ

2
,

= 0 otherwise.

The Fourier transform of the periodic pulse train gp(t) can be computed in two
steps:

Step 1 A periodic signal should first be expressed in terms of the Fourier series
in exponential form:

gp(t) =
∞∑

n=−∞
Gne jnω0t .
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The Fourier series coefficients Gn can be computed as

G0 = Aτ

T0
.

Gn = G−n

= an

2

= A

nπ
sin

nπτ

T0
.

Therefore, gp(t) can be expressed as

gp(t) =
∞∑

n=−∞

A

nπ
sin

(
nπτ

T0

)
e jnω0t .

Step 2 The Fourier transform of gp(t) can then be computed as

G(ω) = F [gp(t)]

=
∞∫

−∞

∞∑
n=−∞

A

nπ
sin

(
nπτ

T0

)
e jnω0t e− jωt dt

=
∞∑

n=−∞

A

nπ
sin

(
nπτ

T0

) ∞∫
−∞

e− j(ω−nω0)t dt .

Example 1.5 has shown that

1 ↔ 2πδ(ω).

Therefore

G(ω) = 2π

∞∑
n=−∞

A

nπ
sin

nπτ

T0
δ(ω − nω0)

= A
2πτ

T0

∞∑
n=−∞

sin(nπτ/T0)

nπτ/T0
δ (ω − nω0).

If τ = T0 /2 and A = 1, then

G(ω) = π

∞∑
n=−∞

sinc (n/2) δ(ω − nω0).
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G(ω)

ω−ω0

−3ω0−7ω0

−5ω0
5ω0

ω0

3ω0
7ω0

π

FIGURE 1.10 Fourier transform of a periodic pulse train.

Notice that G(ω) is a discrete signal that exists when ω = nω0 with n equal to an
integer. Figure 1.10 demonstrates the frequency spectrum of G(ω) for n = −8 to 8,
and its envelope is shown as sinc (n/2).

Note that from Figs. 1.6 and 1.10, for the same periodic sequence gp(t), the am-
plitude of Fourier series coefficients Gn and the amplitude of Fourier transform G(ω)
are the same with a scaling difference of only 2π .

1.6 SAMPLING THEORY AND INTERPOLATION

The sampling theory states that any signal that is frequency band-limited to fm can
be reconstructed from samples taken at a uniform time interval of Ts ≤ 1/(2fm).
The time interval Ts = 1/(2fm) is called the Nyquist interval, and the corresponding
sampling rate is known as the Nyquist rate. The sampling theory can be derived as
explained below.

Consider a signal x(t) with its Fourier transform as X(ω) and its frequency spec-
trum band-limited to fm. Let gp(t) be a unit impulse train as described in Example
1.6. Multiplication of x(t) with gp(t) yields the sampled signal xs(t):

xs(t) = x(t)gp(t)

= x(t)
∞∑

n=−∞
δ(t − nTs). (1.22)

As shown in Example 1.6, a periodic pulse train can be expressed in terms of the
Fourier series; that is, with ωs = 2π /Ts, are obtains

xs(t) = x(t)
1

Ts

∞∑
n=−∞

e jnωs t

= 1

Ts

∞∑
n=−∞

x(t)e jnωs t .
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FIGURE 1.11 Graphical representations of the sampling theory.

By taking the Fourier transform of xs(t), one obtains

Xs(ω) = 1

Ts

∞∑
n=−∞

X (ω − nωs). (1.23)

This equation states that after multiplication of x(t) by the unit impulse train gp(t),
the new frequency spectra Xs(ω) consists of X(ω), plus replica located at ω = ± nωs,
for n = 0,1,2, . . . . The amplitude of Xs(ω) is attenuated by a factor of 1/Ts.

Figure 1.11 illustrates the sampling theory. The original signal x(t) and its analog
frequency spectrum |X(ω)| are shown in Figs. 1.11a and 1.11b. A periodic impulse
train gp(t) and its spectra are shown in Figs. 1.11c and 1.11d. By multiplying x(t) with
gp(t), one can then display the resultant xs(t) in Fig. 1.11e with the corresponding
spectra shown in Fig. 1.11f.

From Fig. 1.11f, one can see that to prevent overlap between the neighboring
spectra, the sampling frequency ωs = 2π /Ts must satisfy the requirement that ωs ≥
(2 × 2π fm) = 2ωm.

To reconstruct the original signal x(t) from the digitized signal xs(t), one needs to
filter out the spectrum X(ω), as shown in Fig. 1.11b, from the spectra Xs(ω), as shown
in Fig. 2.11f. A lowpass filter (LPF) with a cutoff frequency at 2π fm and a gain equal
to Ts meets the filtering requirement. By passing the xs(t) through this lowpass filter,
one can reconstruct the original signal x(t).
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Letting H(ω) be such a rectangular LPF, one can compute the time-domain func-
tion h(t) as

h(t) = 1

2π

∫ 2π fm

−2π fm

Tse jωt dω

= 2 fm Ts
sin (2π fmt)

2π fmt
.

Let the sampling frequency fs = 2fm; then

h(t) = sinc (2 fmt). (1.24)

In the time domain, passing the signal xs(t) through the filter h(t) is equivalent to
having xs(t) convolved with h(t):

x(t) = xs(t) ∗ h(t)

=
[

x (t)
∞∑

n=−∞
δ (t − nTs)

]
∗ h(t)

=
∞∑

n=−∞
x (nTs)δ(t − nTs) ∗ sinc (2 fmt)

=
∞∑

n=−∞
x(nTs) sinc (2 fmt − 2 fmnTs)

=
∞∑

n=−∞
x(nTs) sinc (2 fmt − n). (1.25)

Equation (1.25) states that x(t) can be reconstructed from its discrete samples
x(nTs) and the interpolation function sinc (2fmt –n). Notice that x(nTs) are all equally
spaced with time interval Ts for integers n = −∞ to ∞, and also that x(t) is a con-
tinuous function in the time domain. Thus, Eq. (1.25) can be used to find x(t1), for
t1 = nTs + �Ts with � < 1, based on the discrete values of x(nTs). The new discrete
time sequence x(t1) can be considered as a resampling of x(t), or interpolated from
x(nTs).

In practical applications, the resampling process that utilizes the interpolation fil-
ter sinc (2fmt) is simplified by two approximations. First, the interpolation filter is
chosen with a finite number of sidelobes. For radar image processing, an 8-tap sinc
filter is normally used to generate a new interpolated sample. The second approxima-
tion involves choosing a finite number of interpolation intervals (or fractional shifts).
This means that the value of � < 1 is discrete and finite. A set of 16 sinc filters with
a minimum of 1

16 interpolation sample intervals, or � = 1
16 , serves well for radar
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FIGURE 1.12 Interpolation filters.

image processing. This set of 16 sinc filters provides a fractional sample shift from
1

16 , 2
16 , . . . , 15

16 . The 16
16 = 1 is not considered a sample shift.

Figure 1.12 displays the waveforms of 16 sets of interpolation filters with each
having 8-tap coefficients. Figure 1.12a shows a reference sinc (t) function with 5
sidelobes around the mainlobe. The window function is normally applied to the inter-
polation filter, yet no window or rectangular window is used here for simplification.
Figure 1.12b displays four interpolation filters with delays equal to 1

16 , 5
16 , 9

16 , and 13
16

sample intervals with respect to the top reference function, respectively. Figure 1.12c
displays the digitized version of all 16 interpolation filters, and each one corresponds
to a 1

16 sample delay from each other.
Table 1.1 lists the coefficients of the 16 interpolation filters, with each one having

8 coefficients. The first row of filters has a shift of 1
16 sample interval, while the last

one has 16
16 = 1 or no sample shift. From Table 1.1 and Fig. 1.12c, one can see that

the interpolation filters are symmetric; that is, filter coefficients of row 1 with 1
16

sample shift are the same as that of row 15 with 15
16 sample shift, except that they are

time-reversed. The filter coefficients of rows 1, 5, 9, and 13 of Table1.1 correspond
to the four sinc filters shown in Fig. 1.12b.

To illustrate the principle of resampling based on an interpolation filter, consider
a signal x(n) that consists of three normalized frequencies, f 1 = 0.15, f 2 = 0.25, and
f 3 = 0.45, and is expressed as

x(n) = 0.35 cos (2πn f1) + 0.2 sin (2πn f2) − 0.4 cos (2πn f3),

where n = 1,2, . . . , 32.
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TABLE 1.1 16 sets of 8-tap interpolation filters

−0.0203 0.0301 −0.0584 0.9936 0.0662 −0.0321 0.0211 −0.0158
−0.0390 0.0573 −0.1083 0.9745 0.1392 −0.0650 0.0424 −0.0314
−0.0555 0.0808 −0.1489 0.9432 0.2177 −0.0976 0.0629 −0.0464
−0.0693 0.1000 −0.1801 0.9003 0.3001 −0.1286 0.0818 −0.0600
−0.0799 0.1144 −0.2016 0.8469 0.3850 −0.1568 0.0985 −0.0718
−0.0871 0.1238 −0.2139 0.7842 0.4705 −0.1810 0.1120 −0.0811
−0.0908 0.1281 −0.2172 0.7136 0.5550 −0.1998 0.1218 −0.0876
−0.0909 0.1273 −0.2122 0.6366 0.6366 −0.2122 0.1273 −0.0909
−0.0876 0.1218 −0.1998 0.5550 0.7136 −0.2172 0.1281 −0.0908
−0.0811 0.1120 −0.1810 0.4705 0.7842 −0.2139 0.1238 −0.0871
−0.0718 0.0985 −0.1568 0.3850 0.8469 −0.2016 0.1144 −0.0799
−0.0600 0.0818 −0.1286 0.3001 0.9003 −0.1801 0.1000 −0.0693
−0.0464 0.0629 −0.0976 0.2177 0.9432 −0.1489 0.0808 −0.0555
−0.0314 0.0424 −0.0650 0.1392 0.9745 −0.1083 0.0573 −0.0390
−0.0158 0.0211 −0.0321 0.0662 0.9936 −0.0584 0.0301 −0.0203
−0.0000 0.0000 −0.0000 0.0000 1.0000 −0.0000 0.0000 −0.0000

To resample x(n) to obtain a new set of digitized samples with a 0.5 sample
shift, row 8 of the interpolation filter from Table 1.1 is chosen. The new set of data
x(n + 0.5) is computed from Eq. (1.25) by convolving the eight old data samples of
x(n) with the interpolation filter. Figure 1.13 displays the results of the resampling
process. Only the effective samples from samples 4–28 of the convolution output are
displayed for comparison.
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FIGURE 1.13 Original and half-sample-shifted digital signals.
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Figure 1.13a shows the digitized signal x(n), marked by hollow circles (◦), to-
gether with the original analog signal x(t). Figure 1.13b shows the interpolated (or
half-sample-shifted) signal x′ (n), marked by asterisks (*), together with the origi-
nal analog signal x(t). As can be seen, the interpolated and digitized signal closely
matches the original signal.

The sampling theory discussed so far is based on a unit impulse train. In practice,
the impulse train is replaced with a finite-time-duration pulse train. Assuming, that
all conditions are the same except that the narrow pulse train with duration τ is used,
the only difference will be that the amplitude of the Fourier series coefficient 1/Ts is
replaced with sin (nπτ /Ts)/nπ . This, in turn, causes Eq. (1.23) to become

Xs(ω) =
∞∑

n=−∞

sin (nπτ/Ts)

nπ
X (ω − nωs) (1.26)

The lowpass filter defined in Eq. (1.24) can then be applied to the digitized signal
xs(t). Accordingly, the x(t) can again be reconstructed from its digitized samples xs(t)
by passing the xs(t) through a lowpass filter h(t). The new reconstruction equation,
based on a pulse train with duration τ , can be obtained by modifying Eq. (1.25) to
become

x (t) =
∞∑

n=−∞

sin (nπτ/Ts)

nπ
x (nTs) sinc (2 fmt − n) (1.27)

1.7 ADVANCED SAMPLING TECHNIQUES

1.7.1 Sampling with Bandpass Signal

The sampling theory discussed in Section 1.6 generally applies to baseband signals
with a maximum frequency component fm. In the case where a signal is band-limited
with fl ≤ f ≤ fm and its center frequency is greater than zero, the Nyquist sampling
period Ts ≤1/(2fm) must be modified to reduce the sample rate for signal processing.

Figure 1.14 shows the frequency spectra |G(ω)| of a bandpass signal g(t).
Figure 1.14a shows the frequency spectra |G(ω)| of g(t), while Fig. 1.14b shows
the frequency spectra |Gs(ω)| of a sampled signal gs(t). From the sampling the-
ory, the spectrum of the sampled signal will consist of the attenuated spectrum from
the original signal and its replica located at ± nωs, where n = 0,1,2, . . .. The two-
sided spectra, a and b, shown in Fig. 1.14a are repeated around ± ωs, ± 2ωs . . . in
Fig. 1.14b. The spectra na and nb are the repeated spectra around ± nωs.

From Fig. 1.14, it can be seen that no spectrum is overlapped as long as the con-
ditions of fs = 2 (fm − fl) and fl = kfs with k as an integer are satisfied. If the latter
condition is not true, then a higher sampling frequency of fs > 2 (fm − fl) will be
needed.
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FIGURE 1.14 Frequency spectra of a digitized bandpass signal.

Resampling is necessary for some applications, such as digital communication or
audio/video processing. Resampling is used to reduce the computation complexity
for signals with a finite bandwidth. Some resampling techniques will now be
discussed.

1.7.2 Resampling by Evenly Spaced Decimation

Evenly spaced sample decimation can be used to reduce the sample rate by an inte-
gral factor. Consider the case of downsampling on a sequence x(n) by an integer M =
f old/f new, where f old and f new are the old and new sampling rates, respectively. Such
a downsampling process can simply retain every Mth sample and discard the others
if the frequency aliasing does not occur after downsampling. However, frequency
overlap indeed occurs in most downsampling processes. Therefore, a lowpass Finite
Impulse Response (FIR) filter is normally used to limit the bandwidth of the signal at
a new sampling rate. Both the input sequence x(n) and the FIR filter function h(n) op-
erate at an old sample rate f old, but the output sequence y(m) operates at a new sample
rate f new. Figure 1.15a shows the block diagram of downsampling with a FIR filter-
ing. Figures 1.15b and 1.15c show the signal frequency spectra before and after the
decimation for the case when M = 2. As can be seen from Fig. 1.15c, the signal fre-
quency spectra must be band-limited with f new ≥ 2fm to avoid the aliasing problem.

1.7.3 Resampling by Evenly Spaced Interpolation

Evenly spaced sample interpolation can be used to increase the sample rate by an
integral factor. Consider the case of upsampling on a sequence x(n) by an integer
M = f new/f old, where f old and f new are the old and new sampling rates, respectively.
Upsampling by M can be implemented by inserting M−1 zeros for every sample of



P1: OTA/XYZ P2: ABC
c01 JWBK230/Wang July 8, 2008 1:3 Printer Name: Yet to Come

26 SIGNAL THEORY AND ANALYSIS

|X(ω)|

ω

|Y(ω)|

ω(0,0)

−ω
old ω

old
−ω

m ω
m(0,0)

−ω
new

ω
new

(b)

(c)

h
3h

1 h
2 h

4
h

0 h
N-1h

N-2

M : 1

x(n)

y(m)

D D DDD DDD

(a)

ω
old

−ω
old

FIGURE 1.15 Downsampling with a FIR filter.

x(n), and then passing it through a lowpass filter operating at the f new sampling rate.
The lowpass filter is required to filter out the frequency spectra at sampling rate f new.

Figure 1.16 illustrates the process of interpolation with the sample rate increased
by M = 3. The overall system diagram is shown in Fig. 1.16a, with x(n) as the
input and y(m) as the output. Figures 1.16b and 1.16c show the original signal x(n)
and its corresponding spectra |X(ω)| with sample rate f old. By inserting two zeros
for every sample of x(n), one obtains a new signal sequence x′(m). Figures 1.16d
and 1.16e show the new sequence x′(m) and its corresponding spectra |X′(ω)| with
sample rate f new. After passing x′(m) through a lowpass filter (LPF), one obtains the
interpolated signal y(m) as shown in Fig. 1.16f, and its frequency spectra are shown
in Fig. 1.16g.

1.7.4 Resampling by Fractional Rate Interpolation

The interpolation process described in the previous section increases the sample rate
with an integral factor. In cases where the sample rate change factor M is not an



P1: OTA/XYZ P2: ABC
c01 JWBK230/Wang July 8, 2008 1:3 Printer Name: Yet to Come

ADVANCED SAMPLING TECHNIQUES 27

Zero insertion FIR LPF
x(n) x'(m) y(m)

xs(n)

n
(0,0)

Ts

(b) |X(ω)|

ωωs
(0.0)

(c)

xs'(m)

m
(0,0)

Ts'

(d) |X'(ω)|

ω
(0.0)

(e)

(f) |Y(ω)|

ω−ωs' (0.0)

(g)

ωs 
= 2π/Ts

ωs' = 2π/Ts'

(a)

y(m)

m
(0,0)

LPFLPFLPFωs' = 2π/Ts'

−ωs'

−ωs

ωs'

ωs'

Ts'

FIGURE 1.16 Interpolation with zero insertion and FIR LPF.

integer, interpolation followed by decimation can be used to obtain any sample rate
change. Let the new sample rate change factor be M = I + F, where I is an inte-
ger and F is a fractional value. Then M = U/D, where U and D correspond to the
upsampling and downsampling rates, respectively.

Consider the case of M = 2.5 with U = 5 and D = 2. Let the original digitized
signal and sampling frequency be x(n) and fs, respectively. To implement the in-
terpolation at a resampling rate of 2.5, one can first upsample x(n) with sampling
frequency equal to 5fs by inserting four zeros between each sample of x(n). The new
sequence of samples x′(n) are then lowpass-filtered (operating at 5fs) and followed
by downsampling with sampling frequency equal to 2fs. Figure 1.17a illustrates the
overall process of interpolation with U = 5 and D = 2. Figure 1.17b shows the origi-
nal signal spectra |X(ω)| with sample rate fs. By inserting four zeros for every sample
of x(n) followed with a lowpass FIR filter operating at new sampling rate f new = 5fs,
one obtains a new sequence x′(m). Figure 1.17c shows the spectra of |X′(ω)|. The
new sequence x′(m) is then decimated by dumping one out of every sample of x′(m).
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FIGURE 1.17 Fractional rate interpolation with M = 2.5.

The spectra of interpolated signal y(n′) running at 2.5fs is shown in Fig. 1.17d. Al-
ternatively, one can just compute one FIR filter output for every two samples shifted
into the FIR filter.

1.7.5 Resampling from Unevenly Spaced Data

Before discussing the resampling method based on unevenly spaced data, the Jaco-
bian of transformation will be explained. This process is used extensively during the
transformation between different coordinate systems.

1.7.5.1 Jacobian of Transformation. A signal can be transformed from one
coordinate system into a different coordinate system. Variables inevitably change
during a transformation from one system to another. The transformation can be linear
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or nonlinear. The transformation from one system to another may therefore cause an
extra factor to appear. This extra factor is called the Jacobian of transformation.

Consider the case where u = g(v), then (du/dv) = (dg(v)/dv) = g′(v) and

b∫
a

f (u)du =
d∫

c

f (g(v))g′(v)dv.

The extra factor g′(v) in this integration is called the Jacobian of transformation.
In general, let x = g(u,v) and y = h(u,v) be a transformation from (x,y) domain to

(u,v) domain. Then, the Jacobian of transformation, or simply Jacobian, is defined
as

J (u, v) = ∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣
∂x

∂u

∂x

∂v

∂y

∂u

∂y

∂v

∣∣∣∣∣∣∣∣
= ∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
. (1.28)

Let f (x,y) be a function in the R(x,y) region, and a transformation of x = g(u,v)
and y = h(u,v) transforms f (x,y) from R(x,y) into S(u,v) region. If g(u,v) and h(u,v)
have continuous partial derivatives such that the Jacobian is never zero, then∫∫

R

f (x, y) dx dy =
∫∫
S

f (g(u, v), h(u, v))

∣∣∣∣∂(x, y)

∂(u, v)

∣∣∣∣ du dv

=
∫∫
S

f (g(u, v), h(u, v))J (u, v) du dv.

As an example, let x = g (r, θ ) = r cos θ and y = h(r,θ ) = r sin θ . From Eq. (1.28),
the Jacobian of transformation is

J (r, θ ) = ∂x

∂r

∂y

∂θ
− ∂x

∂θ

∂y

∂r
= cos θ · r cos θ + r sin θ · sin θ

= r.

Therefore, the integration shown above becomes∫∫
R

f (x, y) dx dy =
∫∫
S

f (g(r, θ ), h(r, θ )) r dr dθ.

This is the well-known rectangular-to-polar coordinate transformation.
The operation of integration in the analog domain is equivalent to summation in

the digital domain. The principle of the Jacobian of transformation can therefore be
applied to the interpolation or resampling in the digital signal processing field.
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FIGURE 1.18 Interpolation on evenly spaced data.

The sampling theory states that given a set of evenly spaced data x(n) with sam-
pling frequency fs = 2fm, one can interpolate x(n) with another set of evenly spaced
data x(k). Assume that the sampling frequency is normalized to one, that is, t =
kTs = k. Then Eq. (1.24) becomes

x(k) =
∞∑

n=−∞
x(n) sinc (k − n); k = −∞ to ∞. (1.29)

The interpolated data x(k) and the original data x(n) can be considered as in k and
n coordinate systems, respectively, and they are related as

n = k − �

= g(k),

where � is a fractional number and 0 < � < 1. The summation of Eq. (1.29) is the
discrete convolution of x(n) with sinc (n), and the data sequence x(n) is transformed
from n space to k space. Figure 1.18 shows the interpolation of evenly spaced sam-
ples from the view point of transformation between coordinate systems.

The Jacobian of transformation is then

J (k) = dn

dk
= 1.

Therefore, Eq. (1.29) holds without any extra factor for transformation from an
evenly spaced system to another evenly spaced system.
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FIGURE 1.19 Generation of unevenly spaced data index.

Now, consider the case where one tries to resample a set of evenly spaced data f (k)
from a set of unevenly spaced data f (n) with no aliasing. Before the resampling pro-
cess, the unevenly spaced signal f (n) must be defined and generated. As an example,
the index n of data f (n) is generated nonlinearly through the transformation g(k) as

n = g(k)

=
√

(2k)2 − s2, (1.30)

where k is an evenly spaced variable and equal to half of the radius of a circle with
origin at (0,0). The symbol s is a constant and s < 2k.

Figure 1.19 shows the mapping relation of Eq. (1.30), with the unevenly spaced
data index n obtained from Eq. (1.30) when k = 1,1.25,1.5, . . . , 3, and s = si < 1.
The evenly spaced data index k is the intersection point between the circle with radius
r = 2k and the horizontal axis (abscissa), which is labeled as 1,2,3, . . . . The unevenly
spaced data index n is obtained by mapping the intersection point between the circle
of radius r = 2k and the line s = si to the horizontal axis, which is labeled as a, b, c. . .

The Jacobian of transformation from the n space to k space is therefore

J (k) = dg(k)

dk

= 4k√
4k2 − s2

i
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This Jacobian is then used to transform the data f (n) in n domain to f (k) in k do-
main. The interpolation equation for evenly spaced data shown in Eq. (1.29) therefore
becomes

f (k) =
∞∑

n=−∞
J (k) f (n) sinc (k − n)

= 4k√
4k2 − s2

i

∞∑
n=−∞

f (n) sinc (k − n); k = −∞ to ∞, 2k > si .

(1.31)

Notice that in this equation, the variable n shown in summation serves as an index
of the unevenly spaced sample. Figure 1.20 shows, as an example, how the unevenly

n
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64 531 2

f (k)

f (n)

FIGURE 1.20 Relationship between evenly and unevenly spaced data.
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FIGURE 1.21 Interpolation on unevenly spaced data.

spaced data f (n) and the evenly spaced data f (k) were transformed from the data
indices n and k. Given the unevenly spaced data f (n), shown as dots (•), the interpo-
lated and evenly spaced data f (k) can therefore be generated from Eq. (1.31), which
are denoted by small hollow circles (◦).

The evenly spaced signal f (k) shown in Fig. 1.13 will now be used to illustrate
the interpolation on the basis of the unevenly spaced samples. The signal f (k) is
expressed as

f (k) = 0.35 cos (2πk f1) + 0.2 sin (2πk f2) − 0.4 cos (2πk f3),

where f 1 = 0.25, f 2 = 0.45, and f 3 = 0.15 are all normalized frequencies. We will
reverse the process by generating an unevenly spaced data f (n) from f (k) first, then
try to interpolate from f (n) to obtain f (k).

The unevenly spaced samples f (n) are generated by computing the unevenly
spaced index n for various k from Eq. (1.30). Once the index n is computed, the
value of f (n) can be obtained.

Consider the case of k ranging from 0.5 to 6.5 with �k = 0.25 and s = 0.75; the
corresponding Jacobian can be computed as

J (k) = 4k√
4k2 − (0.75)2

.
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The 8-tap filters shown in Table 1.1 will be used in this example, and Eq. (1.31)
then becomes

f (k) = 4k√
4k2 − (0.75)2

4∑
n=−3

f (n) sinc (k − n) .

Figure 1.21a shows the plot of unevenly spaced f (n) with n =
√

4k2 − (0.75)2 ≈
2k − �k and k = 0.5,0.75, . . . , 6.5, 0 < �k = (0.75)2/(4k) < 1. A total of 25 sinc (x)
functions are generated, each corresponding to different �k. Figure 1.21b displays
the interpolated plot of evenly spaced samples f (k), k = 0.5,0.75, . . . , 6.5. For com-
parison purposes, the original evenly spaced signal is displayed in Fig. 1.21c. Notice
that Fig. 1.21a is plotted based on the index n′ = 2n, Figs. 1.21b and 1.21c are plotted
based on the index k′ = 4k −1. Notice also that f (n) appears to be unevenly spaced at
the left part of the display, and becomes approximately evenly spaced at the right end
of the plot as expected. Just like the original digitized samples shown in Fig. 1.21c,
the interpolated signal is evenly spaced and matches quite well with the bottom sig-
nal. Only a few samples at both ends differ from the original, because of the edge
effect of convolution, which is covered in the next chapter.


