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1.1 INTRODUCTION

Computational systems biology, a rapidly evolving field, is at the interface of com-
puter science, mathematics, physics, and biology. It endeavors to study, analyze, and
understand complex biological systems by taking a coordinated integrated systems
view using computational methodologies. From the middle of the twentieth century
till present, we have been witnessing breakthrough discoveries in biology that range
from molecular structure of deoxyribonucleic acid (DNA) to the generation of the se-
quence of the euchromatic portion of the human genome. There have also been recent
advances in sophisticated computational methodologies, high-throughput biotech-
nologies, and computational power. The stunning developments in diverse disciplines
such as biology and computer science are playing a key role in the fast progression of
the emerging field. Computational systems biology provides a point of convergence
for genomics, proteomics, metabolomics, and computational modeling. It is charac-
terized by its focus on experimental data, computational techniques, and hypotheses
testing [1–3].

Open and unsolved problems in biology range from understanding structure and
dynamics of biological systems to prediction and inference in the complex systems.
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In the postgenomic era, systems-based approaches may provide a solution to such
unsolved problems. It is believed that some answer to the question “what is life” may
be obtained by taking a broader, integrated view of biology [4]. However, applica-
tions of systems-based techniques to biology are not new. Such methods and frame-
works have been applied to analyze biological processes since early twentieth century
[5, 6]. Norbert Wiener’s groundbreaking work [7] is a well-known example of these
applications.

The purpose and objective of this chapter is to review cutting-edge and long-
ranging research in the field of computational systems biology in the recent years.
However, the review is not meant to be exhaustive. We briefly describe novel method-
ologies to build multiscale biological models in Section 1.2. In Section 1.3, we present
an overview of the applications of proteomics techniques to study biological pro-
cesses. We then summarize computational systems biology methods to examine and
understand aging in Section 1.4. Section 1.5 describes systems-based techniques for
drug design, where such methods are revolutionizing the process of drug discovery.
Efficient software tools and infrastructure are crucial to solving complex biological
problems. In Section 1.6, we review tools for systems biology.

1.2 MULTISCALE COMPUTATIONAL MODELING

In the postgenomic era, researchers seek to focus their attention to studying and
analyzing biological networks and pathways by the use of multiscale computational
modeling techniques. A model can be viewed as a representation of a biological
system, where the representation can comprise a set of differential equations [8], a set
of first-order logic clauses [9], and so on. Biological models that incorporate multiple
scales such as time and space or multiple timescales may be viewed as multiscale
models [10]. Chapter 2 gives an in-depth account of mathematical and computational
models in systems biology.

Development of efficient and effective computational methodologies to perform
modeling, simulation, and analysis of complex biological processes is a challenging
task. Traditionally, mathematical and computational models have been developed by
considering a single scale. However, it is now feasible to incorporate multiple scales
in the process of model building due to recent advances in computational power and
technology. Generally, multiscale models are constructed by using sophisticated tech-
niques including numerical methods and integration approaches. Multiscale model
of the heart [11, 12] is a well-known example of an application of these modeling
techniques.

Multiscale computational modeling and simulation methods are showing
promising results in the field of oncology. The development of three-dimensional
multiscale brain tumor model by Zhang et al. [13] is an attempt in this direction.
The dynamics of tumor growth were simulated by using an agent-based multiscale
model where microscopic scale, macroscopic scale, and molecular scale were incor-
porated in the in silico model. In micro-macroscopic environment, a virtual brain
tissue block was represented by points in three-dimensional lattice. The lattice was
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divided into four cubes that illustrated the behavior of chemotactically acting tumor
cells. The chemotaxis distribution of transforming growth factor alpha (TGF�), glu-
cose, and oxygen tension were illustrated in a set of mathematical equations. It was
observed that the amount of TGF� and glucose was chemoattractant, and diffu-
sion of glucose occurred at a constant rate. In order to incorporate molecular scale,
epidermal growth factor receptor (EGFR) gene–protein interaction network model
[14] was used in conjunction with cell cycle module. The authors used a simplified
EGFR network that comprised of EGFR and TGF� genes. The mathematical model
of EGFR gene–protein network was represented as a set of differential equations.
The authors utilized the cell cycle model presented in Tyson and Novak [15] and
Alacron et al. [16]. The implementation of the software systems was carried out
by combining in-house code with an agent-based software tool, namely, MASON
(http://cs.gmu.edu/ eclab/projects/mason/). In order to study and ana-
lyze tumor growth and spread, 10 simulations were performed. The results demon-
strated an increase in tumor volume with respect to time, where the relationship
between tumor volume and time was not linear. There was a sharp increase in volume
growth at later time intervals. The study found that migrating and proliferating cells
exhibited a dynamic behavior with respect to time. Furthermore, the cells caused spa-
tiotemporal tumor growth. The results showed that the number of migrating cells was
greater than the number of proliferating cells over time, where the high concentration
of phospholipase C gamma (PLC�) might be the key factor behind the phenomenon.
In summary, the study demonstrated a successful construction of multiscale computa-
tional model of the complex multifaceted biological process. However, the approach
is not free from shortcomings as described below:

• A simple EGFR network was used.
• Clonal heterogeneity within tumor was not examined.

It has been found that the distribution of tumor cells is not homogeneous, and the
cells exhibit heterogeneous patterns. Techniques that account for clonal heterogene-
ity of tumor cell populations can be vital to analyze and study the development of
cancerous diseases. Furthermore, clonal heterogeneity can strongly impact the design
of effective therapeutic strategies. Therefore, many studies examined heterogeneity
in tumors [17, 18]. Zhang et al. [19] extended their multiscale computational mod-
eling technique [13] to investigate the clonal heterogeneity by incorporating genetic
instability. The extended model included doubling time of cell and cell cycle. Other
parameters such as cell–cell adhesion were also considered so that the strength of
the chemoattractants’ (TGF�, oxygen tension, and glucose) impact on cancer cells
adhesion and rate of cell migration could be investigated. The authors used Shannon’s
entropy for the quantification of tumor heterogeneity. Shannon entropy in this context
can be calculated as follows: Let ci denote the occurrence of clone i in the tumor,
the entropy is given by

∑
i ci ln(ci), where the higher values of Shannon’s entropy

represent more clonal heterogeneity.
The results of the study showed an increase in tumor total volume over time, where

the tumor was categorized into three regions on the basis of the distance between it
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and the nutrient source. It was observed that there was a general increase in the values
of Shannon’s entropy for all the three regions. However, there was highest clonal
heterogeneity in the region closest to the nutrient source at early time stages where
the region exhibited a homogeneous pattern at later stages. The study inferred that
cancer could spread faster due to clonal heterogeneity as compared to homogeneous
cell populations in tumor.

The complexity of the mechanisms of development and morphogenesis establishes
a need to design effective and efficient computational techniques to investigate and
analyze the biological process. In a recent study, Robertson et al. [20] presented a
multiscale computational framework to investigate morphogenesis mechanisms in
Xenopus laevis. Mammalian cells share similarities with X. laevis in terms of signal-
ing network and cell behavior. A multiscale model was constructed by integrating
an intercellular signaling pathway model with the multicellular model of mesendo-
derm migration. The authors implemented Wnt/�-catenin signaling pathway model
that was presented by Lee et al. [21], whereas an agent-based approach was applied
to build mesendoderm migration model. In order to simulate mesendoderm cells’
migration, it was viewed that each cell comprised of nine sections, where each sec-
tion was modeled as an agent. Mesendoderm migration was facilitated by the use of
fibronectin extracellular matrix substrate. The study found that fibronectin gradient
was a key factor behind the cellular movement. It was also observed that polar-
ity signals [22] might be important for mesendoderm migration and morphogene-
sis. The simulations also demonstrated the importance to keep the cadherin binding
strength in balance with the integrin binding strength. Although the study estab-
lishes the efficacy of multiscale computational methodologies to studying morpho-
genesis, the proposed approach may not be computationally attractive for large-scale
simulations.

Physiome project [12] is well known for the development of multiscale mod-
eling infrastructures. Given that standard modeling languages are useful for
sharing biological data and models, three markup languages, namely, CellML
(http://www.cellml.org/), FieldML, and ModelML, have been developed in
the project. CellML [23] is characterized by its ability to capture three-dimensional
information regarding cellular structures. It can also incorporate mathematical knowl-
edge and metadata. FieldML, a related language, is known for its incorporation of
spatial information. The third systems biology modeling language, namely, Mod-
elML, is characterized by its ability to encode physical equations that illustrate com-
plex biological processes. The efficacy of the languages was established by building
multiscale heart models [12].

It has been found that same input, to constituent parts of a system, can produce
different outputs. Such variations may be produced by factors including alterations
in the concentration of system’s components. It is desirable to design techniques and
methods that can provide robustness to variations. Shinar et al. [24] presented a robust
method by exploiting molecular details. The authors coined the term “input–output
relation” for the association between input signal strength and output. The study
investigated the input–output relation in bacterial signaling systems.
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1.3 PROTEOMICS

Proteomics, the study of proteins, is viewed crucial to analyze and understand biolog-
ical systems, as protein is the building block of life. Mass spectrometry (for details see
Chapter 17) is a well-known proteomics technology that is showing a huge impact on
the development of the field of computational systems biology. Several recent stud-
ies have identified the significant role of proteomics techniques in solving complex
biological problems [25–27].

Proteomics methods and data can be useful for the reconstruction of biological
networks. Recently, Rho et al. [28] presented a computational framework to recon-
struct biological networks. The framework is based on the use of proteomics data and
technologies to build and analyze computational models of biological networks. It is
termed as integrative proteomic data analysis pipeline (IPDAP). IPDAP incorporates
a number of network modeling and analysis tools. The component tools of IPDAP can
be applied to reconstruct biological networks by fusing different types of proteomics
data. The successful application of IPDAP to different cellular and tissue systems
demonstrated the efficacy and functionality of the framework.

In another study, Zhao et al. [29] investigated signal transduction by applying
techniques from optimization theory and exploiting proteomics and genomics data.
They formulated the network identification problem as an integer linear programm-
ing problem. The proteomics (protein–protein interaction) data were represented as
weighted undirected graph, where the nodes and the edges represented proteins and
interaction between pair of proteins, respectively. The results of the study confirmed
the efficacy of the approach in searching optimal signal transduction networks from
the data.

Cell cycle comprises a series of ordered events by which cell replication and
division take place. Studying cell cycle regulation provides useful insights in cancer
growth and spread. The relationship between cell cycle and cancer has been a focus
of many studies [30, 31]. In Sigal et al. [32], a proteomics approach was applied to
investigate cell cycle mechanisms. The approach is based on the use of time-lapse
microscopy to study protein dynamics. The study identified cell cycle-dependent
changes in protein localization, where 40 percent of the investigated nuclear proteins
demonstrated cell cycle dependence. Another challenging problem is to find patterns
of polarized growth in cells where such growth is viewed as an important process
in organisms. In order to investigate the biological problem, Narayanaswamy et al.
[33] conducted a study by using budding yeast as the model system. The proposed
computational method is based on the use of microarray image analysis and a machine
learning technique, namely, naive Bayes algorithm. The study found 74 localized
proteins including previously uncharacterized proteins and observed novel patterns
of cell polarization in budding yeast.

In a recent study [34], a computational technique is presented for predicting peptide
retention times. The method is at the intersection of two machine learning approaches,
namely, neural networks and genetic algorithms. In order to predict the retention times,
an artificial neural network is trained and the predicted values are further optimized
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by using a genetic algorithm. The method was successfully applied to Arabidopsis
proteomics data.

1.4 COMPUTATIONAL SYSTEMS BIOLOGY AND AGING

Aging is a complex phenomenon that has not been well understood. In aging, we
witness gradual diminishing/decreasing functions at different levels, including or-
gans and tissues. Cell division has been viewed as a key process in aging since long
[35, 36]. Recently, de Magalhaes and Faragher [37] have elucidated that aging might
be affected by variations in cell division. Hazard rates and nutrition may be the key
factors that influence the longevity of cellular organisms [38]. There are a number of
theories that describe how aging occurs. Kirkwood [38] listed five different theories
that are as follows:

• Somatic mutation theory
• Telomere loss theory
• Mitochondrial theory
• Altered proteins and waste accumulation theory
• Network theory

Aging has been extensively studied in Caenorhabditis elegans (nematode), mice,
humans, and fruit flies. A number of genes that extend organisms’ life span have been
discovered. Several studies on aging found that genetic mutations could increase
longevity [39–41]. Furthermore, aging genes with their associated pathways may
influence the variations in aging between different species but may not have any
affect on the differences in aging within a particular specie [42]. Gene expression
and pathway analysis can provide useful means to identify aging-related similarities
and differences between various species [43], where the efficacy of DNA microarray
technology, in studying aging, is significant [44]. In a recent study on aging, DNA
microarray experiments were utilized to show that aging in C. elegans is influenced
by GATA transcriptional circuit [45].

Advances in computational systems biology have led to the development of tools
and methods for solving highly complex problem of aging. For example, Xue et al. [46]
addressed the key issue regarding aging by applying an analytic method to human/fruit
fly protein–protein interaction network, namely, NP analysis [47]. The method is based
on the identification of active modules in network, where the chosen module com-
prised of protein–protein interaction subnetwork between genes that show (positive
or negative) correlation during aging. The application of the method to human brain
aging identified four modules. Among these modules, the two showed transcription-
ally anticorrelation with each other. The other two modules comprised of immunity
genes and translational genes, respectively. In order to study correlation between genes
in other species during aging, the method was applied to fruit fly interactome. The
results of the study showed that in addition to two transcriptionally anticorrelated
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genes modules, there were two other modules that demonstrated such anticorrelation.
On the basis of these findings, the authors suggest that only a few modules are associ-
ated with aging. The other key result of the study is the identification of the influence
of module connecting genes on aging.

In another study, Garan et al. [48] presented a computational systems biology
framework for studying neuroendocrine aging. The framework allows fusion of het-
erogeneous data from different disciplines such as endocrinology, cell biology, ge-
netics, and so on. The method can be effective in identifying underlying relationship
between the components that define aging.

Machine learning provides useful approaches and techniques to conduct studies
on aging. In Swindell et al. [49], a number of machine learning methods were used
to predict mouse life span. Twenty-two learning algorithms were applied to the prob-
lem, where the results demonstrated usefulness of support vector machines (SVMs),
stabilized linear discriminant analysis, and nearest shrunken centroid in solving the
problem, hence establishing the efficacy of machine learning technique for aging
research. Agent-based modeling techniques have also been used to understand the
biological processes of aging. The study published by Krivenko and Burtsev [50] is
indicative of the success of such approaches for aging related studies. The authors
applied their technique to simulate evolution and studied important factors including
kin recognition and aggression.

Analysis of pathways for aging can also facilitate the understanding of complex
diseases such as cancer. The probability of the occurrence of a cancer can be sub-
stantially lowered by downregulating the aging pathways [39]. Recently, Bergman
et al. [51] investigated longevity genes. They conducted an extensive study by using
more than 1200 subjects. On the basis of system-based analysis, the authors rec-
ommend that the investigation of genetic pathways can lead to the development of
strategies that may regulate age-related diseases and disorders.

1.5 COMPUTATIONAL SYSTEMS BIOLOGY IN DRUG DESIGN

Millions of people are suffering from fatal diseases such as cancer, AIDS, and many
other bacterial and viral illnesses. Computational systems biology approaches can
provide a solution to the key issue that is how to design lifesaving and cost-effective
drugs so that the diseases can be cured and prevented. Pharmaceutical companies
view that systems-based computational techniques will be highly useful in designing
effective therapeutic drugs [52–54]. Furthermore, advanced and sophisticated meth-
ods will accelerate drug discovery and development. In 2007, FDA approved only 17
new drugs [55] and approximately 50 drugs in 2008 (http://www.fda.gov/).

It is believed that the association between systems-based biological methods and
drug design is age-old. Herbal drugs were developed by observing the diseases; hence,
today’s drug design has been (directly/indirectly) influenced by such early attempts
[56]. Computational systems biology approaches may revolutionize therapeutic inter-
vention in clinical medicine [2]. Effective systems-based drug design techniques can
be developed by exploiting the knowledge of the robustness of biological systems [57].
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An overview of a number of computational methods’ (Petri nets, cellular automata
techniques, hybrid methods, pi calculus, agent systems, and differential equations-
based methods) application to the task of drug design can be found in Materi and
Wishart [52].

Identification of novel drug targets in diseases is a key problem. In order to solve
such problems, Chu and Chen [58] recently presented a systems-based approach for
the identification of apoptosis drug targets. The selection of the drug targets by utiliz-
ing the approach can be viewed as a multistage discovery process. In the first stage,
a protein–protein interaction network is constructed by a number of datasets and on-
line interactome databases. In the second stage, a stochastic model of protein–protein
interactions is constructed. In order to refine the model, false protein interactions are
removed by utilizing an information theoretic measure, namely, Akaike’s informa-
tion criterion to microarray data. Finally, drug targets are identified by conducting a
network-level comparison between normal and cancer cells.

Transcription factors-based methods can play an important role in devising an
effective therapeutic and preventive interventions strategy for diseases. In Rosen-
berger et al. [59], the role of activating transcription factor 3 (ATF3) was inves-
tigated for murine cytomegalovirus (MCMV) infection. Mouse was used as the
model system. The study demonstrated negative regulation of interferon-gamma
(IFN-�) expression caused by ATF3 in natural killer cells. The mice that had zero
ATF3 exhibited high resistance to MCMV infection.

In another study, Nelander et al. [60] introduced a computational systems biology
methodology for the prediction of pathway responses to combinatorial drug pertur-
bations or drug combinations. The method is based on the use of multiple input–
output model. Given that the linear models are not able to capture crucial information
required for the task at hand, the authors presented nonlinear multiple input–output
model. The approach was applied to analyze perturbations in MCF7 human breast
carcinoma cells, where a number of compounds including rottlerin, rapamycin, and
and so on were selected as perturbants. The leave-one-out cross-validation results
showed the efficacy of the method.

Genetic causes of diseases can provide information that is crucial to design effective
therapeutic approaches. A network that illustrates the association between diseases
and their related genes can be highly informative. The human disease network pre-
sented in Goh et al. [61] is an attempt in this direction. The graph theoretic framework
is based on the construction of a network to analyze and investigate the association
between phenotypes and disease genes. In the constructed bipartite graph, one set of
nodes represents genetic disorders and the second set denotes known disease genes
in human genome. The edge between the disease and a gene represents the mutation
in gene caused by the disease. The network provides a means to study novel patterns
of gene disease associations.

Screening toxic compounds is a key issue in drug design and development. In
Amini et al. [62], a novel computational methodology was introduced as an accurate
means of predicting toxicity of compounds. The technique integrates two machine
learning approaches, namely, SVMs [63] and inductive logic programming (ILP), and
is termed support vector inductive logic programming (SVILP). The method works
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by obtaining a set of rules from an ILP system, hence mapping the compounds into
relational ILP space. The induced rules are then applied to compute the similarity
between two compounds by the use of a novel kernel function. The function, given
by an inner product in relational ILP space, is a weighted sum over all the common
hypothesized rules. The ILP kernel is used in conjunction with SVMs to compute tox-
icity. The authors applied their method to a diverse and broad ranging toxicity dataset,
namely, DSSTox [64]. The effectiveness of the method was established by using a
cross-validation experimental methodology to predict the toxicity of the compounds.
The results of the study confirmed the efficacy of the method for drug design and
development. In Lodhi et al. [65], the method is extended to classify mutagens and
recognize protein folds. The extended method learns a multiclass classifier by using
a divide-and-conquer reduction strategy that divides multiclasses into binary groups
and solves each individual problem by inducing an SVILP. The extended multiclass
SVILP was successfully applied to classify compounds.

The database storing detailed kinetic knowledge can be a useful resource as it
can provide information that is required to build models of biological processes.
In order to provide such a knowledge base, a database of kinetic data, namely,
KDBI, has been developed [66]. The database contains various types of data, in-
cluding protein–protein interactions and protein–small molecule interactions. It in-
cludes 19,263 records, where 2635 entries belong to protein–protein interactions
and 11,873 records contain information regarding protein–small molecule interac-
tions. The database also comprises ordinary differential equations-based pathways
models.

1.6 SOFTWARE TOOLS FOR SYSTEMS BIOLOGY

In this section, we will very briefly describe software tools that are designed for
modeling, simulating, and analyzing complex biological processes. Bioconductor is
a project that provided a number of useful tools for conducting systems biology-
based studies. The design of effective infrastructure is crucial for the development of
efficient and user-friendly tools. Software infrastructures may be developed by using
only a basic computer language and generator (a software tool) [67]. Chapter 15
provides an in-depth description of a text mining tool for systems biology. Table 1.1
summarizes a number of software packages for studying and investigating biological
systems.

SQUAD [68] is an example of modeling tools for systems biology. It constructs
dynamic models of signaling networks, where the unavailability of kinetic data do
not hinder its performance. The underlying methodology of the systems is based on
the integration of Boolean and continuous modeling techniques. The implementation
is written in Java, whereas C++ has been used to code algorithms for the computa-
tion of steady states. SQUAD supports a number of input formats, including NET
(text file), MML (xml file), and SMBL (systems biology markup language). The
system performs simulations as follows: It takes as input a directed graph represent-
ing the structure of the network. The steady states of the graph are identified by
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Table 1.1 Software tools for systems biology

Tools Biological systems Input format Platform

Modeling

SQUAD Signaling and regulatory XML, MML, and Windows and
networks NET Linux

CellNetAnalyzer Metabolic, signaling, and Network Composer All platforms
regulatory networks and ASCII (approximately)

BioTapestry Signaling and CSV and tabular Linux, Mac, and
regulatory networks Windows

Sensitivity Analysis

SBML-SAT Signaling, regulatory SBML Linux, Mac, and
and metabolic network Windows

Visualization

Cytoscape Molecular interaction MS Excel, SIF, All platforms
networks and so on (approximately)

CellProfiler Cell images DIB Linux, Mac, and
Windows

using a Boolean algorithm. Then, a dynamic model is constructed. Finally, a user
can perform simulations. SQUAD has a user-friendly graphical interface and can be
downloaded from http://www.enfin.org/dokuwiki/doku.php?id=squad:

start.
CellNetAnalyzer [69] is a related software tool for modeling and analyzing bio-

logical process. It can be applied to analyze signaling, regulatory, and metabolic
networks. The software tool is implemented in MATLAB, and C has been used to
code some underlying techniques. The input data can be provided to CellNetAnalyzer
by using Network Composer or ASCII file. It is available at http://www.mpi-
magdeburg.mpg.de/projects/cna/cna.html.

BioTapestry [70] is another biological modeling tool. It can perform analysis and
modeling of large biological networks. Linux, Windows, and Mac are supported
platforms. BioTapestry is available at http://www.biotapestry.org/.

Sensitivity analysis is an important aspect of computational modeling for sys-
tems biology. SBML-SAT [71] performs sensitivity analysis of biological systems,
and the systems are represented in the form of ordinary differential equations. It in-
corporates and implements a number of well-known sensitivity analysis techniques.
Windows, Mac, and Linux are supported platforms. SBML-SAT is implemented in
MATLAB, where the input data need to be coded in SBML format. It is available at
http://sysbio.molgen.mpg.de/SBML-SAT/.

We now briefly describe Cytoscape [72] that facilitates the visualization and analy-
sis of biological networks. It also allows data integration. The supported input formats
are delimited text files, MS Excel, SIF (simple interaction format), SMBL, GO (gene
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association), and so on. It enables the identification of active modules in biological
networks. Cytoscape also allows export of network structures as images in different
formats. Cytoscape is available at http://www.cytoscape.org/.

The development of CellProfiler [73, 74] is an attempt to study complex bio-
logical processes by using image analysis software packages. The tool comprises
two components, namely, CellProfiler and CellProfiler Analyst. The images are pro-
cessed by using CellProfiler. CellProfiler Analyst is applied to analyze the processed
data produced by CellProfiler. The tool can analyze hundreds and thousands of im-
ages. It is characterized by its capability of recognizing nonmammalian cells and
quantification of phenotypes. It supports processing and analysis of multidimen-
sional images and can perform illumination correction and cell identification by
using standard and advanced methods. The tool is implemented in MATLAB and
is available for Windows, Unix, and Mac platforms. The software tool is available at
http://www.cellprofiler.org/.

1.7 CONCLUSION

The review presented in the chapter shows that computational systems biology en-
compasses a range of complex problems and methodologies. We are witnessing a
rapid development in the field that will revolutionize and give answers to unsolved
questions in biology. Biotechnology will be on the forefront due to the influence of
systems-based approaches on medicine, agriculture, and so on [75, 76]. We believe
that the growing popularity of systems-based computational techniques to studying
and analyzing biological processes will foster collaboration between researchers from
diverse disciplines and will lead to significant development and progress in the field
of computational systems biology.
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