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1
INTRODUCTION

1.1 INTRODUCTION

In this chapter we motivate the philosophy of Bayesian processing from a probabilistic
perspective. We show the coupling between model-based signal processing (MBSP)
incorporating the a priori knowledge of the underlying processes and the Bayesian
framework for specifying the distribution required to develop the processors. The idea
of the sampling approach evolving from Monte Carlo (MC) and Markov chain Monte
Carlo (MCMC) methods is introduced as a powerful methodology for simulating the
behavior of complex dynamic processes and extracting the embedded information
required. The main idea is to present the proper perspective for the subsequent chapters
and construct a solid foundation for solving signal processing problems.

1.2 BAYESIAN SIGNAL PROCESSING

The development of Bayesian signal processing has evolved in a manner proportional
to the evolution of high performance/high throughput computers. This evolution has
led from theoretically appealing methods to pragmatic implementations capable of
providing reasonable solutions for nonlinear and highly multi-modal (multiple dis-
tribution peaks) problems. In order to fully comprehend the Bayesian perspective,
especially for signal processing applications, we must be able to separate our thinking
and in a sense think more abstractly about probability distributions without worrying
about how these representations can be “applied” to realistic processing problems. Our
motivation is to first present the Bayesian approach from a statistical viewpoint and
then couple it to useful signal processing implementations following the well-known
model-based approach [1, 2]. Here we show that when we constrain the Bayesian
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distributions in estimation to Markovian representations using primarily state–space
models, we can construct sequential processors capable of “pseudo real-time” oper-
ations that are easily be utilized in many physical applications. Bayes’ rule provides
the foundation of all Bayesian estimation techniques. We show how it can be used to
both theoretically develop processing techniques based on a specific distribution (e.g.,
Poisson, Gaussian, etc.) and then investigate properties of such processors relative to
some of the most well-known approaches discussed throughout texts in the field.

Bayesian signal processing is concerned with the estimation of the underlying
probability distribution of a random signal in order to perform statistical inferences [3].
These inferences enable the extraction of the signal from noisy uncertain measurement
data. For instance, consider the problem of extracting the random variate, say X, from
the noisy data, Y . The Bayesian approach is to first estimate the underlying conditional
probability distribution, Pr(X|Y ), and then perform the associated inferences to extract
X̂ , that is,

P̂r(X|Y ) ⇒ X̂ = arg max
X

P̂r(X|Y )

where the caret, X̂ denotes an estimate of X. This concept of estimating the under-
lying distribution and using it to extract a signal estimate provides the foundation of
Bayesian signal processing developed in this text.

Let us investigate this idea in more detail. We start with the previous problem of
trying to estimate the random parameter, X, from noisy data Y = y. Then the associ-
ated conditional distribution Pr(X|Y = y) is called the posterior distribution because
the estimate is conditioned “after (post) the measurements” have been acquired. Esti-
mators based on this a posteriori distribution are usually called Bayesian because
they are constructed from Bayes’ rule, since Pr(X|Y ) is difficult to obtain directly.
That is,

Pr(X|Y ) = Pr(Y |X) × Pr(X)

Pr(Y )
(1.1)

where Pr(X) is called the prior distribution (before measurement), Pr(Y |X) is called
the likelihood (more likely to be true) and Pr(Y ) is called the evidence (scales the
posterior to assure its integral is unity). Bayesian methods view the sought after
parameter as random possessing a “known” a priori distribution. As measurements
are made, the prior is transformed to the posterior distribution function adjusting the
parameter estimates. Thus, the result of increasing the number of measurements is
to improve the a posteriori distribution resulting in a sharper peak closer to the true
parameter as shown in Fig. 1.1.

When the variates of interest are dynamic, then they are functions of time and
therefore, Xt → X and Yt → Y . Bayes’ rule for the joint dynamic distribution is

Pr(Xt |Yt) = Pr(Yt |Xt) × Pr(Xt)

Pr(Yt)
(1.2)

In Bayesian theory, the posterior defined by Pr(Xt |Yt) is decomposed in terms
of the prior Pr(Xt), its likelihood Pr(Yt |Xt) and the evidence or normalizing factor,
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FIGURE 1.1 Bayesian estimation of the random variate X transforming the prior, Pr(X ) to
the posterior, Pr(X|Y ) using Bayes’ rule.

Pr(Yt). Bayesian signal processing in this dynamic case follows the identical path,
that is,

P̂r(Xt |Yt) ⇒ X̂t = arg max
Xt

P̂r(Xt |Yt)

So we begin to see the versatility of the Bayesian approach to random signal
processing. Once the posterior distribution is determined, then all statistical inferences
or estimates are made. For instance, suppose we would like to obtain the prediction
distribution. Then it can be obtained as

Pr(Xt+1|Yt) =
∫

Pr(Xt+1|Xt , Yt) × Pr(Xt |Yt) dXt

and a point estimate might be the conditional mean of this distribution, that is,

E{Xt+1|Yt} =
∫

Xt+1Pr(Xt+1|Yt) dXt+1

This relation shows how information that can be estimated from the extracted
distribution is applied in the estimation context by performing statistical inferences.

Again, even though the Bayesian signal processing concept is simple, conceptually,
the real problem to be addressed is that of evaluating the integrals which is very
difficult because they are only analytically tractable for a small class of priors and
likelihood distributions. The large dimensionality of the integrals cause numerical
integration techniques to break down, which leads to the approximations we discuss
subsequently for stabilization. Next let us consider the various approaches taken
to solve the probability distribution estimation problems using non-parametric or
parametric representations. This will eventually lead to the model-based approach [4].
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1.3 SIMULATION-BASED APPROACH TO BAYESIAN PROCESSING

The simulation-based approach to Bayesian processing is founded on Monte Carlo
(MC) methods that are stochastic computational techniques capable of efficiently
simulating highly complex systems. Historically motivated by games of chance and
encouraged by the development of the first electronic computer (ENIAC), the MC
approach was conceived by Ulam (1945), developed by Ulam, Metropolis and von
Neumann (1947) and coined by Metropolis (1949) [5–9]. The method evolved in
the mid-1940s during the Manhattan project by scientists investigating calculations
for atomic weapon designs [10]. It evolved further from such areas as computational
physics, biology, chemistry, mathematics, engineering, materials and finance to name
a few. Monte Carlo methods offer an alternative approach to solving classical numer-
ical integration and optimization problems. Inherently, as the dimensionality of the
problem increases classical methods are prone to failure while MC methods tend to
increase their efficiency by reducing the error—an extremely attractive property. For
example, in the case of classical grid-based numerical integration or optimization
problems as the number of grid points increase along with the number of problem
defining vector components, there is an accompanying exponential increase in com-
putational time [10–15]. The stochastic MC approach of selecting random samples
and averaging over a large number of points actually reduces the computational error
by the Law of Large Numbers irrespective of the problem dimensionality. It utilizes
Markov chain theory as its underlying foundation establishing the concept that through
random sampling the resulting “empirical” distribution converges to the desired pos-
terior called the stationary or invariant distribution of the chain. Markov chain Monte
Carlo (MCMC) techniques are based on sampling from probability distributions based
on a Markov chain, which is a stochastic system governed by a transition probability,
having the desired posterior distribution as its invariant distribution. Under certain
assumptions the chain converges to the desired posterior through proper random
sampling as the number of samples become large—a crucial property (see [10] for
details). Thus, the Monte Carlo approach has evolved over a long time period and
is well understood by scientists and statisticians, but it must evolve even further to
be useful for signal processors to become an effective tool in their problem solving
repertoire.

Perhaps the best way to visualize the MC methods follows directly from the exam-
ple of Frenkel [11]. Suppose that a reasonable estimate of the depth of the Mississippi
river is required. Using numerical quadrature techniques the integrand value is mea-
sured at prespecified grid points. We also note that the grid points may not be in
regions of interest and, in fact, the integrand may vanish as shown in Fig. 1.2. On the
other hand, the surveyor is in the Mississippi and performing a (random) walk within
the river measuring the depth of the river directly. In this sampling approach mea-
surements are accepted as long as the surveyor is in the river and rejected if outside.
Here the “average” depth is simply the sample average of the measurements much
the same as a sampling technique might perform. So we see that a refinement of the
brute force integration approach is to use random points or samples that “most likely”
come from regions of high contribution to the integral rather than from low regions.
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FIGURE 1.2 Monte Carlo sampling compared with numerical grid based integration for
depth of Mississippi estimation.

Modern MC techniques such as in numerical integration seek to select ran-
dom samples in high regions of concentration of the integrand by drawing samples
from a proposed function very similar to the integrand. These methods lead to the
well-known importance sampling approaches (see Chapter 3). Besides numerical inte-
gration problems that are very important in statistical signal processing for extracting
signals/parameters of interest, numerical optimization techniques (e.g., genetic algo-
rithms, simulated annealing, etc.) benefit directly from sampling technology. This
important discovery has evolved ever since and become even more important with
the recent development of high speed/high throughput computers.

Consider the following simple example of estimating the area of a circle to illustrate
the MC approach.

Example 1.1

Define a sample space bounded by a square circumscribing (same center) a circle
of radius r. Draw uniform random samples say z := (X, Y ) such that z ∼ U(−r, +r);
therefore, the number of random samples drawn from within the circle of radius r to
the number of total samples drawn (bounded by the square) defines the probability

Pr(Z = z) = No. circle samples

Total No. of (square) samples

From geometry we know that the probability is simply the ratio of the two areas
(circle-to-square), that is,

Pr(Z = z) = πr2

4r2
= π/4
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Let r = 1, then a simple computer code can be written that:

• Draws the X ,Y -coordinates from z ∼ U(−1, +1);
• Calculates the range function, ρ = √

X2 + Y2;
• Counts the number of samples that are less than or equal to ρ;

• Estimates the probability, P̂r(Z = z).

The area is determined by multiplying the estimated probability by the area of the
square. The resulting sample scatter plot is shown in Fig. 1.3 for a 10,000 sample
realization resulting in π ≈ 3.130. As the number of samples increase the estimate of
the area (π) gets better and better demonstrating the MC approach. ���

In signal processing, we are usually interested in some statistical measure of a
random signal or parameter usually expressed in terms of its moments [16–23]. For
example, suppose we have some signal function, say f (X), with respect to some
underlying probabilistic distribution, Pr(X). Then a typical measure to seek is its
performance “on the average” which is characterized by the expectation

EX{ f (X)} =
∫

f (X) Pr(X) dX (1.3)

Area = 3.130

FIGURE 1.3 Area of a circle of unit radius using a Monte Carlo approach (area is
estimated as 3.130 using 10,000 samples).



CH001.tex 2/2/2009 18: 57 Page 7

1.3 SIMULATION-BASED APPROACH TO BAYESIAN PROCESSING 7

Instead of attempting to use direct numerical integration techniques, stochastic
sampling techniques or Monte Carlo integration is an alternative. As mentioned,
the key idea embedded in the MC approach is to represent the required distribution as
a set of random samples rather than a specific analytic function (e.g., Gaussian). As the
number of samples becomes large, they provide an equivalent (empirical)
representation of the distribution enabling moments to be estimated directly
(inference).

Monte Carlo integration draws samples from the required distribution and then
forms sample averages to approximate the sought after distributions. That is, MC
integration evaluates integrals by drawing samples, {X(i)} from the designated distri-
bution Pr(X). Assuming perfect sampling, this produces the estimated or empirical
distribution given by

P̂r(X) ≈ 1

N

N∑
i=1

δ(X − X(i))

which is a probability mass distribution with weights, 1
N and random variable or

sample, X(i). Substituting the empirical distribution into the integral gives

EX{ f (X)} =
∫

f (X) P̂r(X) dX ≈ 1

N

N∑
i=1

f (X(i)) ≡ f (1.4)

which follows directly from the sifting property of the delta or impulse function. Here
f is said to be a Monte Carlo estimate of EX{ f (X)}.

As stated previously, scientists (Ulam, von Neumann, Metropolis, Fermi, Teller,
etc. [7]) created statistical sampling-based or equivalently simulation-based methods
for solving problems efficiently (e.g., neutron diffusion or eigenvalues of the
Schrodinger relation). The MC approach to problem solving is a class of stochastic
computations to simulate the dynamics of physical or mathematical systems captur-
ing their inherent uncertainties. The MC method is a powerful means for generating
random samples used in estimating conditional and marginal probability distributions
required for statistical estimation and therefore signal processing. It offers an alter-
native numerical approach to find solutions to mathematical problems that cannot
easily be solved by integral calculus or other numerical methods. As mentioned, the
efficiency of the MC method increases (relative to other approaches) as the problem
dimensionality increases. It is useful for investigating systems with a large number of
degrees of freedom (e.g., energy transport, materials, cells, genetics) especially for
systems with input uncertainty [5].

These concepts have recently evolved to the signal processing area and are of high
interest in nonlinear estimation problems especially in model-based signal processing
applications [16] as discussed next.
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1.4 BAYESIAN MODEL-BASED SIGNAL PROCESSING

The estimation of probability distributions required to implement Bayesian proces-
sors is at the heart of this approach. How are these distributions obtained from data or
simulations? Nonparametric methods of distribution estimation ranging from simple
histogram estimators to sophisticated kernel smoothing techniques rooted in classi-
fication theory [3] offer reasonable approaches when data are available. However,
these approaches usually do not take advantage of prior knowledge about the under-
lying physical phenomenology generating the data. An alternative is to parameterize
the required distributions by prior knowledge of their actual form (e.g., exponential,
Poisson, etc.) and fit their parameters from data using optimization techniques [3].
Perhaps the ideal realization is the parameterization of the evolution dynamics associ-
ated with the physical phenomenology using underlying mathematical representation
of the process combined with the data samples. This idea provides the essence of the
model-based approach to signal processing which (as we shall see) when combined
with the Bayesian processors provide a formidable tool to attack a wide variety of
complex processing problems in a unified manner. An alternative view of the underly-
ing processing problem is to decompose it into a set of steps that capture the strategic
essence of the processing scheme. Inherently, we believe that the more a priori knowl-
edge about the measurement and its underlying phenomenology we can incorporate
into the processor, the better we can expect the processor to perform—as long as the
information that is included is correct! One strategy called the model-based approach
provides the essence of model-based signal processing [1].

Simply stated, the model-based approach is “incorporating mathematical models
of both physical phenomenology and the measurement process (including noise) into
the processor to extract the desired information.” This approach provides a mechanism
to incorporate knowledge of the underlying physics or dynamics in the form of math-
ematical process models along with measurement system models and accompanying
noise as well as model uncertainties directly into the resulting processor. In this way
the model-based processor (MBP) enables the interpretation of results directly in terms
of the problem physics. It is actually a modeler’s tool enabling the incorporation of any
a priori information about the problem to extract the desired information. The fidelity
of the model incorporated into the processor determines the complexity of the model-
based processor with the ultimate goal of increasing the inherent signal-to-noise ratio
(SNR). These models can range from simple, implicit, non-physical representation
of the measurement data such as the Fourier or wavelet transforms to parametric
black-box models used for data prediction, to lumped mathematical representation
characterized by ordinary differential equations, to distributed representations char-
acterized by partial differential equation models to capture the underlying physics of
the process under investigation. The dominating factor of which model is the most
appropriate is usually determined by how severe the measurements are contaminated
with noise and the underlying uncertainties. If the SNR of the measurements is high,
then simple non-physical techniques can be used to extract the desired information;
however, for low SNR measurements more and more of the physics and instrumen-
tation must be incorporated for the extraction. For instance, consider the example of
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Signal extraction

Cantilever 
model

Chemistry 
model 

Noise 
models

MBP

Noise

Raw data 
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dynamics

Cantilever 
array 
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FIGURE 1.4 Model-based approach to signal processing: process (chemistry
and physics), measurement (microcantilever sensor array) and noise (Gaussian)
representations.

detecting the presence of a particular species in a test solution using a microcantilever
sensor measurement system [4].

Example 1.2

The model-based processing problem is characterized in Fig. 1.4 representing the
process of estimating the presence of a particular species of material in solution using
the multichannel microcantilever sensor system. Here the microcantilever sensor is
pre-conditioned by depositing attractor material on its levers to attract molecules
of the target species. Once calibrated, the test solution flows along the levers with
the target molecules attracted and deposited on each “tuned” microcantilever creating
a deflection that is proportional to the concentration. This deflection is measured using
a laser interferometric technique and digitized for processing. The process model is
derived directly from the fluidics, while the measurement model evolves from the
dynamics of the microcantilever structure. The resulting processor is depicted in
Fig. 1.5, where we note the mathematical models of both the process dynamics and
microcantilever measurement system. Since parameters, �, of the model are unknown
a priori calibration data is used to estimate them directly and then they are employed
in the MBP to provide the enhanced signal estimate shown in the figure. Even though
nonlinear and non-Gaussian, the processor appears to yield reasonable estimates. See
Sec. 10.3 [4] for details. ���

The above example demonstrates that incorporating reasonable mathematical
models of the underlying phenomenology can lead to improved processing capability;
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however, even further advantages can be realized by combining the MBP concepts in
conjunction with Bayesian constructs to generalize solutions.

Combining Bayesian and model-based signal processing can be considered a para-
metric representation of the required distributions using mathematical models of the
underlying physical phenomenology and measurement (sensor) system. Certainly, if
we assume the distribution is Gaussian and we further constrain the processes to be
Markovian (only depending on the previous sample), then the multivariate Gaussian
can be completely characterized using state–space models resulting in the well-known
Kalman filter in the linear model case [2].

Since we are primarily concerned with pseudo real-time techniques in this text, we
introduce the notion of a recursive form leading to the idea of sequential processing
techniques. That is, we investigate “recursive” or equivalently “sequential” solutions
to the estimation problem. Recursive estimation techniques evolved quite naturally
during the advent of the digital computer in the late fifties, since both are sequential
processes. It is important to realize the recursive solution is identical to the batch
solution after it converges, so there is no gain in estimator performance properties;
however, the number of computations is significantly less than the equivalent batch
technique. It is also important to realize that the recursive approach provides the
underlying theoretical and pragmatic basis of all adaptive estimation techniques;
thus, they are important in their own right [2]!

Many processors can be placed in a recursive form with various subtleties emerging
in the calculation of the current estimate (X̂old). The standard technique employed
is based on correcting or updating the current estimate as a new measurement data
sample becomes available. The estimates generally take the recursive form:

X̂new = X̂old + KEnew (1.5)

where

Enew = Y − Ŷold = Y − CX̂old

Here we see that the new estimate is obtained by correcting the old estimate with
a K-weighted error. The error term Enew is the new information or innovation—the
difference between the actual and the predicted measurement (Ŷold) based on the old
estimate (X̂old). The computation of the weight matrix K depends on the criterion
used (e.g., mean-squared error, absolute error, etc.).

Consider the following example, which shows how to recursively estimate the
sample mean.

Example 1.3

The sample mean estimator can easily be put in recursive form. The estimator is
given by

X̂(N) = 1

N

N∑
t=1

y(t)
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Extracting the Nth term from the sum, we obtain

X̂(N) = 1

N
y(N) + 1

N

N−1∑
t=1

y(t)

Identify X̂(N − 1) from the last term,

X̂(N) = 1

N
y(N) + N − 1

N
X̂(N − 1)

The recursive form is given by

X̂(N)︸ ︷︷ ︸
NEW

= X̂(N − 1)︸ ︷︷ ︸
OLD

+ 1

N︸︷︷︸
WT

[y(N) − X̂(N − 1)]︸ ︷︷ ︸
ERROR

This procedure to develop the “recursive form” is very important and can be applied
to a multitude of processors. Note the steps in determining the form:

1. Remove the Nth-term from the summation;

2. Identify the previous estimate in terms of the N − 1 remaining terms; and

3. Perform the algebra to determine the gain factor and place the estimator in the
recursive form of Eq. 1.5 for a scalar measurement. ���

1.5 NOTATION AND TERMINOLOGY

The notation used throughout this text is standard in the literature. Where necessary,
vectors are represented by boldface, lowercase, x, and matrices by boldface, upper-
case, A. We denote the real part of a signal by Re x and its imaginary part by Im x.
We define the notation N to be a shorthand way of writing 1, 2, . . . , N . It will be
used in matrices, A(N) to mean there are N-columns of A. As mentioned previously,
estimators are annotated by the caret, such as x̂. We also define partial derivatives at
the component level by ∂

∂θi
, the Nθ-gradient vector by ∇θ and higher order partials

by ∇2
θ .

The most difficult notational problem will be with the “time” indices. Since this
text is predominantly discrete-time, we will use the usual time symbol, t to mean
a discrete-time index, that is, t ∈ I for I the set of integers. However, and hopefully
not too confusing, t will also be used for continuous-time, that is, t ∈ R for R the set
of real numbers denoting the continuum. When used as a continuous-time variable,
t ∈ R it will be represented as a subscript to distinguish it, that is, xt. This approach of
choosing t ∈ I primarily follows the system identification literature and for the ease
of recognizing discrete-time variable in transform relations (e.g., discrete Fourier
transform). The rule-of-thumb is therefore to “interpret t as a discrete-time index
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unless noted by a subscript as continuous in the text.” With this in mind we will
define a variety of discrete estimator notations as x̂(t|t − 1) to mean the estimate at
time (discrete) t based upon all of the previous data up to t − 1. We will define these
symbols prior to their use within the text to assure no misunderstanding of its meaning.

With a slight abuse of notation, we will use the terminology distribution of X,
Pr(X) in general, so as not to have to differentiate between density for continuous
random variables or processes and mass for discrete variates. It will be obvious from
the context which is meant. In some cases, we will be required to make the distinction
between cumulative distribution function (CDF) and density (PDF) or mass (PMF)
functions. Here we use the uppercase notation, PX (x) for the CDF and lower case
pX (x) for the PDF or PMF.

Subsequently we will also need to express a discrete PMF as a continuous PDF
using impulse or delta functions as “samplers” much the same as in signal process-
ing when we assume there exists an impulse sampler that leads to the well-known
Nyquist sampling theorem [2]. Thus, corresponding to a discrete PMF we can define
a continuous PDF through the concept of an impulse sampler, that is, given a discrete
PMF defined by

pX (x) ≈ p(X = xi) =
∑

i

pi δ(x − xi) (1.6)

then we define the equivalent continuous PDF as pX (x). Moments follow from the
usual definitions associated with a continuous PDF, for instance, consider the defi-
nition of the expectation or mean. Substituting the equivalent PDF and utilizing the
sifting property of the impulse function gives

E{x} =
∫ ∞

−∞
x pX (x) dx =

∫ ∞

−∞
x

(∑
i

pi δ(x − xi)

)
dx =

∑
i

xipi (1.7)

which is precisely the mean of the discrete PMF.
Also, as mentioned, we will use the symbol ∼ to mean “distributed according to”

as in x ∼ N (m, v) defining the random variable x as Gaussian distributed with mean
m and variance v. We may also use the extended notation: N (x : m, v) to include
the random variable x as well. When sampling we use the non-conventional right
arrow “action” notation → to mean “draw a sample from” a particular distribution
such as xi → Pr(x)—this again will be clear from the context. When resampling, that
is, replacing samples with new ones we use the “block” right arrow such as xj ⇒ xi

meaning new sample xj replaces current sample xi.
Finally in a discrete (finite) probabilistic representation, we define a purely discrete

variate as xk(t) := Pr(x(t) = Xk) meaning that x can only take on values (integers) k
from a known set X = {X1, . . . , Xk , . . . , XN } at time t. We also use the symbol, ���
to mark the end of an example.
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MATLAB NOTES

MATLAB is command oriented vector-matrix package with a simple yet effective
command language featuring a wide variety of embedded C language con-
structs making it ideal for signal processing applications and graphics. All of
the algorithms we have applied to the examples and problems in this text are
MATLAB-based in solution ranging from simple simulations to complex appli-
cations. We will develop these notes primarily as a summary to point out to the
reader many of the existing commands that already perform the signal processing
operations discussed in the presented chapter and throughout the text.
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PROBLEMS

1.1 Estimate the number of times a needle when dropped between two parallel
lines intersects a line. One was to accomplish this is experimentally by setting
up the experiment and doing it—this is the famous Buffon’s needle experiment
performed in 1725.

(a) Set up the experiment and perform the measurements for 100 samples.
Estimate the underlying probabilities.

(b) Analyze the experiment using a “closed form” approach.

(c) How do your answers compare?

Note that this is one of the first Monte Carlo approaches to problem solving.

1.2 Suppose we have three loaded dice with the following six “face” probabilities
(each):

D1 =
{

1

12
,

1

6
,

1

12
,

1

3
,

1

6
,

1

6

}

D2 =
{

1

6
,

1

6
,

1

6
,

1

12
,

1

12
,

1

3

}

D3 =
{

1

6
,

1

6
,

1

6
,

1

12
,

1

12
,

1

3

}

Applying Bayes’ rule, answer the following questions:

(a) Selecting a die at random from the three, what is the probability of rolling
a 6?

(b) What is the probability that die two (D = D2) was selected, if a six (R = 6)
is rolled with the chosen die?
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1.3 A binary communication transmitter (T ) sends either a 0 or a 1 through a
channel to a receiver (R) with the following probabilities for each as:

Pr(T1) = 0.6 Pr(T0) = 0.4

Pr(R1|T1) = 0.9 Pr(R0|T1) = 0.1

Pr(R1|T0) = 0.1 Pr(R0|T0) = 0.9

(a) What is the probability that R1 is received?

(b) What is the probability that R0 is received?

(c) What is the probability that the true transmitted signal was a 1, when a 1
was received?

(d) What is the probability that the true transmitted signal was a 0, when a 0
was received?

(e) What is the probability that the true transmitted signal was a 1, when a 0
was received?

( f) What is the probability that the true transmitted signal was a 0, when a 1
was received?

(g) Draw a probabilistic directed graph with nodes being the transmitters
and receivers and links being the corresponding prior and conditional
probabilities?

1.4 We are asked to estimate the displacement of large vehicles (semi-trailers)
when parked on the shoulder of a freeway and subjected to wind gusts created
by passing vehicles. We measure the displacement of the vehicle by placing
an accelerometer on the trailer. The accelerometer has inherent inaccuracies
which is modeled as

y = Kax + n

with y, x, n the measured and actual displacement and white measurement noise
of variance Rnn and Ka the instrument gain. The dynamics of the vehicle can
be modeled by a simple mass-spring-damper.

(a) Construct and identify the measurement model of this system.

(b) Construct and identify the process model and model-based estimator for
this problem.

1.5 Think of measuring the temperature of a liquid in a beaker heated by a burner.
Suppose we use a thermometer immersed in the liquid and periodically observe
the temperature and record it.

(a) Construct a measurement model assuming that the thermometer is lin-
early related to the temperature, that is, y(t) = k �T (t). Also model the
uncertainty of the visual measurement as a random sequence v(t) with
variance Rvv.



CH001.tex 2/2/2009 18: 57 Page 17

PROBLEMS 17

(b) Suppose we model the heat transferred to the liquid from the burner as

Q(t) = CA �T (t)

where C is the coefficient of thermal conductivity, A is the cross-sectional area,
and �T (t) is the temperature gradient with assumed random uncertainty w(t)
and variance Rww. Using this process model and the models developed above,
identify the model-based processor representation.

1.6 We are given an RLC series circuit driven by a noisy voltage source Vin(t) and
we use a measurement instrument that linearly amplifies by K and measures the
corresponding output voltage. We know that the input voltage is contaminated
by and additive noise source, w(t) with covariance, Rww and the measured
output voltage is similarly contaminated with noise source, v(t) with Rvv.

(a) Determine the model for the measured output voltage, Vout(t) (measure-
ment model).

(b) Determine a model for the circuit (process model).

(c) Identify the general model-based processor structures. In each scheme,
specify the models for the process, measurement and noise.

1.7 A communications satellite is placed into orbit and must be maneuvered using
thrusters to orientate its antennas. Restricting the problem to the single axis
perpendicular to the page, the equations of motion are

J
d2θ

dt2
= Tc + Td

where J is the moment of inertia of the satellite about its center of mass,
Tc is the thruster control torque, Td is the disturbance torque, and θ is the
angle of the satellite axis with respect to the inertial reference (no angular
acceleration) A. Develop signal and noise models for this problem and identify
each model-based processor component.

1.8 Consider a process described by a set of linear differential equations

d2c

dt2
+ dc

dt
+ c = Km

The process is to be controlled by a proportional-integral-derivative (PID)
control law governed by the equation

m = Kp

(
e + 1

Ti

∫
e dt + Td

de

dt

)
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and the controller reference signal r is given by

r = e + c

Suppose the reference is subjected to a disturbance signal and the measurement
sensor, which is contaminated with additive noise, measures the “square” of
the output. Develop the model-based signal and noise models for this problem.

1.9 The elevation of a tracking telescope is controlled by a DC motor. It has a
moment of inertia J and damping B due to friction, the equation of motion is
given by

J
d2θ

dt2
+ B

dθ

dt
= Tm + Td

where Tm and Td are the motor and disturbance torques and θ is the elevation
angle. Assume a sensor transforms the telescope elevation into a proportional
voltage that is contaminated with noise. Develop the signal and noise models
for the telescope and identify all of the model-based processor components.

1.10 Suppose we have a two-measurement system given by

y =
[

3
4

]
+ v

where Rvv = diag[1, 0.1].

(a) What is the batch least-squares estimate (W = I) of the parameter x, if
y = [7 21]′?

(b) What is the batch weighted least-squares estimate of the parameter x with
W selected for minimum variance estimation?

1.11 Calculate the batch and sequential least-squares estimate of the parameter
vector x based on two measurements y(1) and y(2) where

y(1) = C(1)x + v(1) =
[

2
1

]

y(2) = c′x + v(2) = 4

C =
[

1 1
0 1

]
, c′(1) = [1 2], W = I


