
Michael c01.tex V4 - 11/21/2008 6:25pm Page 1

P A R T

I

The Basics of Shell Scripting
Chapter 1: Scripting Quick Start and Review

Chapter 2: 24 Ways to Process a File Line-by-Line

Chapter 3: Automated Event Notification

Chapter 4: Progress Indicators Using a Series of Dots,
a Rotating Line, or Elapsed Time

CO
PYRIG

HTED
 M

ATERIA
L

Michael c01.tex V4 - 11/21/2008 6:25pm Page 2

Michael c01.tex V4 - 11/21/2008 6:25pm Page 3

C H A P T E R

1
Scripting Quick Start

and Review

We are going to start out by giving a targeted refresher course. The topics that follow
are short explanations of techniques that we always have to search the book to find;
here they are all together in one place. The explanations range from showing the fastest
way to process a file line-by-line to the simple matter of case sensitivity of UNIX and
shell scripts. This should not be considered a full and complete list of scripting topics,
but it is a very good starting point and it does point out a sample of the topics covered
in the book. For each topic listed in this chapter there is a very detailed explanation
later in the book.

We urge everyone to study this entire book. Every chapter hits a different topic
using a different approach. The book is written this way to emphasize that there is
never only one technique to solve a challenge in UNIX. All the shell scripts in this book
are real-world examples of how to solve a problem. Thumb through the chapters, and
you can see that we tried to hit most of the common (and some uncommon!) tasks
in UNIX. All the shell scripts have a good explanation of the thinking process, and
we always start out with the correct command syntax for the shell script targeting a
specific goal. I hope you enjoy this book as much as I enjoyed writing it. Let’s get
started!

Case Sensitivity

UNIX is case sensitive. Because UNIX is case sensitive, our shell scripts are also case
sensitive.

UNIX Special Characters

All of the following characters have a special meaning or function. If they are used
in a way that their special meaning is not needed, they must be escaped. To escape,

3

Michael c01.tex V4 - 11/21/2008 6:25pm Page 4

4 Part I ■ The Basics of Shell Scripting

or remove its special function, the character must be immediately preceded with a
backslash, \, or enclosed within ’ ’forward tic marks (single quotes).

\ / ; , . ~ # $? & * () [] ‘ ’ " + - ! ^ = | < >

Shells

A shell is an environment in which we can run our commands, programs, and shell
scripts. There are different flavors of shells, just as there are different flavors of
operating systems. Each flavor of shell has its own set of recognized commands and
functions. This book works with the Bourne, Bash, and Korn shells. Shells are located
in either the /usr/bin/ directory or the /bin/ directory, depending on the UNIX
flavor and specific version.

Table 1-1

SHELL DIRECTORY

Bourne /bin/sh or /usr/bin/sh

Bash /bin/bash or /usr/bin/bash

Korn /bin/ksh or /usr/bin/ksh

Shell Scripts

The basic concept of a shell script is a list of commands, which are listed in the order of
execution. A good shell script will have comments, preceded by a pound sign or hash
mark, #, describing the steps. There are conditional tests, such as value A is greater
than value B, loops allowing us to go through massive amounts of data, files to read
and store data, variables to read and store data, and the script may include functions.

We are going to write a lot of scripts in the next several hundred pages, and we
should always start with a clear goal in mind. With a clear goal, we have a specific
purpose for the script, and we have a set of expected results. We will also hit on some
tips, tricks, and, of course, the gotchas in solving a challenge one way as opposed to
another to get the same result. All techniques are not created equal.

Shell scripts and functions are both interpreted. This means they are not compiled.
Both shell scripts and functions are ASCII text that is read by the shell command
interpreter. When we execute a shell script, or function, a command interpreter
goes through the ASCII text line-by-line, loop-by-loop, test-by-test, and executes each
statement as each line is reached from the top to the bottom.

Functions

A function is written in much the same way as a shell script but is different in that it
is defined, or written, within a shell script most of the time, and is called within the

Michael c01.tex V4 - 11/21/2008 6:25pm Page 5

Chapter 1 ■ Scripting Quick Start and Review 5

script. This way we can write a piece of code, which is used over and over, just once
and use it without having to rewrite the code every time. We just call the function
instead.

We can also define functions at the system level that is always available in our
environment, but this is a topic for later discussion.

A function has the following form:

function function_name

{

commands to execute

}

or

function_name ()

{

commands to execute

}

When we write functions into our scripts we must remember to declare, or write,
the function before we use it. The function must appear above the command statement
calling the function. We can’t use something that does not yet exist.

Running a Shell Script

A shell script can be executed in the following ways:

ksh shell_script_name

will create a Korn shell and execute the shell_script_name in the newly created
Korn shell environment. The same is true for sh and bash shells.

shell_script_name

will execute shell_script_name if the execution bit is set on the file (see the manual
page on the chmod command, man chmod). The script will execute in the shell that
is declared on the first line of the shell script. If no shell is declared on the first line of
the shell script, it will execute in the default shell, which is the user’s system-defined
shell. Executing in an unintended shell may result in a failure and give unpredictable
results.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 6

6 Part I ■ The Basics of Shell Scripting

Table 1-2 Different Types of Shells to Declare

COMMAND DESCRIPTION

#!/bin/sh or #!/usr/bin/sh Declares a Bourne shell

#!/bin/ksh or #!/usr/bin/ksh Declares a Korn shell

#!/bin/csh or #!/usr/bin/csh Declares a C shell

#!/bin/bash or #!/usr/bin/bash Declares a Bourne-Again (Bash) shell

Declare the Shell in the Shell Script
Declare the shell! If we want to have complete control over how a shell script is going
to run and in which shell it is to execute, we must declare the shell in the first line of the
script. If no shell is declared, the script will execute in the default shell, defined by the
system for the user executing the shell script. If the script was written, for example,
to execute in Bash shell, bash, and the default shell for the user executing the shell
script is the C shell, csh, the script will most likely have a failure during execution. To
declare a shell, one of the declaration statements in Table 1-2 must appear on the first
line of the shell script.

Comments and Style in Shell Scripts

Making good comments in our scripts is stressed throughout this book. What is
intuitively obvious to us may be total Greek to others who follow in our footsteps.
We have to write code that is readable and has an easy flow. This involves writing
a script that is easy to read and easy to maintain, which means that it must have
plenty of comments describing the steps. For the most part, the person who writes
the shell script is not the one who has to maintain it. There is nothing worse than
having to hack through someone else’s code that has no comments to find out what
each step is supposed to do. It can be tough enough to modify the script in the first
place, but having to figure out the mindset of the author of the script will sometimes
make us think about rewriting the entire shell script from scratch. We can avoid this
by writing a clearly readable script and inserting plenty of comments describing what
our philosophy is and how we are using the input, output, variables, and files.

For good style in our command statements, we need it to be readable. For this
reason it is sometimes better, for instance, to separate a command statement onto three
separate lines instead of stringing, or piping, everything together on the same line of
code; it may be just too difficult to follow the pipe and understand what the expected
result should be for a new script writer. However, in some cases it is more desirable to
create a long pipe. But, again, it should have comments describing our thinking step
by step. This way someone later will look at our code and say, ‘‘Hey, now that’s a
groovy way to do that.’’

Michael c01.tex V4 - 11/21/2008 6:25pm Page 7

Chapter 1 ■ Scripting Quick Start and Review 7

Command readability and step-by-step comments are just the very basics of a
well-written script. Using a lot of comments will make our life much easier when we
have to come back to the code after not looking at it for six months, and believe me; we
will look at the code again. Comment everything! This includes, but is not limited to,
describing what our variables and files are used for, describing what loops are doing,
describing each test, maybe including expected results and how we are manipulating
the data and the many data fields. A hash mark, #, precedes each line of a comment.

The script stub that follows is on this book’s companion web site at www.wiley.com/
go/michael2e. The name is script.stub. It has all the comments ready to get started
writing a shell script. The script.stub file can be copied to a new filename. Edit the
new filename, and start writing code. The script.stub file is shown in Listing 1-1.

#!/bin/bash

#

SCRIPT: NAME_of_SCRIPT

AUTHOR: AUTHORS_NAME

DATE: DATE_of_CREATION

REV: 1.1.A (Valid are A, B, D, T and P)

(For Alpha, Beta, Dev, Test and Production)

#

PLATFORM: (SPECIFY: AIX, HP-UX, Linux, OpenBSD, Solaris

or Not platform dependent)

#

PURPOSE: Give a clear, and if necessary, long, description of the

purpose of the shell script. This will also help you stay

focused on the task at hand.

#

REV LIST:

DATE: DATE_of_REVISION

BY: AUTHOR_of_MODIFICATION

MODIFICATION: Describe what was modified, new features, etc--

#

#

set -n # Uncomment to check script syntax, without execution.

NOTE: Do not forget to put the comment back in or

the shell script will not execute!

set -x # Uncomment to debug this shell script

#

##

DEFINE FILES AND VARIABLES HERE

##

Listing 1-1 script.stub shell script starter listing

Michael c01.tex V4 - 11/21/2008 6:25pm Page 8

8 Part I ■ The Basics of Shell Scripting

##

DEFINE FUNCTIONS HERE

##

##

BEGINNING OF MAIN

##

End of script

Listing 1-1 (continued)

The shell script starter shown in Listing 1-1 gives you the framework to start writing
the shell script with sections to declare variables and files, create functions, and write
the final section, BEGINNING OF MAIN, where the main body of the shell script is
written.

Control Structures

The following control structures will be used extensively.

if . . . then statement

if [test_command]

then

commands

fi

if . . . then . . . else statement

if [test_command]

then

commands

else

commands

fi

Michael c01.tex V4 - 11/21/2008 6:25pm Page 9

Chapter 1 ■ Scripting Quick Start and Review 9

if . . . then . . . elif . . . (else) statement
if [test_command]

then

commands

elif [test_command]

then

commands

elif [test_command]

then

commands

.

.

.

else (Optional)

commands

fi

for . . . in statement
for loop_variable in argument_list

do

commands

done

while statement
while test_condition_is_true

do

commands

done

until statement
until test_condition_is_true

do

commands

done

Michael c01.tex V4 - 11/21/2008 6:25pm Page 10

10 Part I ■ The Basics of Shell Scripting

case statement
case $variable in

match_1)

commands_to_execute_for_1

;;

match_2)

commands_to_execute_for_2

;;

match_3)

commands_to_execute_for_3

;;

.

.

.

*) (Optional - any other value)

commands_to_execute_for_no_match

;;

esac

N O T E The last part of the case statement, shown here,

*)

commands_to_execute_for_no_match

;;

is optional.

Using break, continue, exit, and return

It is sometimes necessary to break out of a for or while loop, continue in the next block
of code, exit completely out of the script, or return a function’s result back to the script
that called the function.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 11

Chapter 1 ■ Scripting Quick Start and Review 11

The break command is used to terminate the execution of the entire loop, after
completing the execution of all the lines of code up to the break statement. It
then steps down to the code following the end of the loop.

The continue command is used to transfer control to the next set of code, but it
continues execution of the loop.

The exit command will do just what one would expect: it exits the entire script.
An integer may be added to an exit command (for example, exit 0), which will
be sent as the return code.

The return command is used in a function to send data back, or return a result or
return code, to the calling script.

Here Document

A here document is used to redirect input into an interactive shell script or program. We
can run an interactive program within a shell script without user action by supplying
the required input for the interactive program, or interactive shell script. This is why
it is called a here document: the required input is here, as opposed to somewhere else.

This is the syntax for a here document:

program_name <<LABEL

Program_Input_1

Program_Input_2

Program_Input_3

Program_Input_#

LABEL

Example:

/usr/local/bin/My_program << EOF

Randy

Robin

Rusty

Jim

EOF

Notice in the here documents that there are no spaces in the program input lines,
between the two EOF labels. If a space is added to the input, the here document may
fail. The input that is supplied must be the exact data that the program is expecting,
and many programs will fail if spaces are added to the input.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 12

12 Part I ■ The Basics of Shell Scripting

Shell Script Commands

The basis for the shell script is the automation of a series of commands. We can execute
most any command in a shell script that we can execute from the command line. (One
exception is trying to set an execution suid or sgid, sticky bit, within a shell script; it is
not supported for security reasons.) For commands that are executed often, we reduce
errors by putting the commands in a shell script. We will eliminate typos and missed
device definitions, and we can do conditional tests that can ensure there are not any
failures due to unexpected input or output. Commands and command structure will
be covered extensively throughout this book.

Most of the commands shown in Table 1-3 are used at some point in this book,
depending on the task we are working on in each chapter.

Table 1-3 UNIX Commands Review

COMMAND DESCRIPTION

passwd Changes user password

pwd Prints current directory

cd Changes directory

ls Lists files in a directory

wildcards * matches any number of characters; ? matches a single
character

file Prints the type of file

cat Displays the contents of a file

pr Displays the contents of a file

pg or page Displays the contents of a file one page at a time

more Displays the contents of a file one page at a time

clear Clears the screen

cp or copy Copies a file

chown Changes the owner of a file

chgrp Changes the group of a file

chmod Changes file modes, permissions

rm Removes a file from the system

mv Renames a file

mkdir Creates a directory

Michael c01.tex V4 - 11/21/2008 6:25pm Page 13

Chapter 1 ■ Scripting Quick Start and Review 13

Table 1-3 (continued)

COMMAND DESCRIPTION

rmdir Removes a directory

grep Pattern matching

egrep grep command for extended regular expressions

find Locates files and directories

>> Appends to the end of a file

> Redirects, creates, or overwrites a file

| Strings commands together, known as a pipe

|| Logical OR — command1 || command2 — execute command2
if command1 fails

& Executes in background

&& Logical AND — command1 && command2 — execute command2
if command1 succeeds

date Displays the system date and time

echo Writes strings to standard output

sleep Halts execution for the specified number of seconds

wc Counts the number of words, lines, and characters in a file

head Views the top of a file

tail Views the end of a file

diff Compares two files

sdiff Compares two files side by side (requires 132-character
display)

spell Spell checker

lp, lpr, enq, qprt Prints a file

lpstat Status of system print queues

enable Enables, or starts, a print queue

disable Disables, or stops, a print queue

cal Displays a calendar

who Displays information about users on the system

w Extended who command

(continued)

Michael c01.tex V4 - 11/21/2008 6:25pm Page 14

14 Part I ■ The Basics of Shell Scripting

Table 1-3 (continued)

COMMAND DESCRIPTION

whoami Displays $LOGNAME or $USER environment parameters

who am I Displays login name, terminal, login date/time, and where
logged in

f, finger Displays information about logged-in users, including the users
.plan and .project

talk Enables two users to have a split-screen conversation

write Displays a message on a user’s screen

wall Displays a message on all logged-in users’ screens

rwall Displays a message to all users on a remote host

rsh or remsh Executes a command, or login, on a remote host

df Displays filesystem statistics

ps Displays information on currently running processes

netstat Shows network status

vmstat Shows virtual memory status

iostat Shows input/output status

uname Shows name of the current operating system, as well as
machine information

sar Reports system activity

basename Displays base filename of a string parameter

man Displays the online reference manual

su Switches to another user, also known as super-user

cut Writes out selected characters

awk Programming language to parse characters

sed Programming language for character substitution

vi Starts the vi editor

emacs Starts the emacs editor

Symbol Commands

The symbols shown in Table 1-4 are actually commands, and are used extensively in
this book.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 15

Chapter 1 ■ Scripting Quick Start and Review 15

Table 1-4 Symbol Commands

COMMAND DESCRIPTION

() Runs the enclosed command in a sub-shell

(()) Evaluates and assigns value to a variable and does
math in a shell

$(()) Evaluates the enclosed expression

[] Same as the test command

< > Used for string comparison

$() Command substitution

‘command’ Command substitution

Variables

A variable is a character string to which we assign a value. The value assigned could be
a number, text, filename, device, or any other type of data. A variable is nothing more
than a pointer to the actual data. We are going to use variables so much in our scripts
that it will be unusual for us not to use them. In this book we are always going to
specify a variable in uppercase — for example, UPPERCASE. Using uppercase variable
names is not recommended in the real world of shell programming, though, because
these uppercase variables may step on system environment variables, which are also
in uppercase. Uppercase variables are used in this book to emphasize the variables and
to make them stand out in the code. When you write your own shell scripts or modify
the scripts in this book, make the variables lowercase text. To assign a variable to point
to data, we use UPPERCASE="value_to_assign" as the assignment syntax. To access
the data that the variable, UPPERCASE, is pointing to, we must add a dollar sign, $, as
a prefix — for example, $UPPERCASE. To view the data assigned to the variable, we
use echo $UPPERCASE, print $UPPERCASE for variables, or cat $UPPERCASE, if the
variable is pointing to a file, as a command structure.

Command-Line Arguments

The command-line arguments $1, $2, $3,. . .$9 are positional parameters, with $0

pointing to the actual command, program, shell script, or function and $1, $2, $3,

. . .$9 as the arguments to the command.
The positional parameters, $0, $2, and so on in a function are for the function’s

use and may not be in the environment of the shell script that is calling the function.
Where a variable is known in a function or shell script is called the scope of the
variable.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 16

16 Part I ■ The Basics of Shell Scripting

shift Command

The shift command is used to move positional parameters to the left; for example,
shift causes $2 to become $1. We can also add a number to the shift command to
move the positions more than one position; for example, shift 3 causes $4 to move
to the $1 position.

Sometimes we encounter situations where we have an unknown or varying number
of arguments passed to a shell script or function, $1, $2, $3. . . (also known as
positional parameters). Using the shift command is a good way of processing each
positional parameter in the order they are listed.

To further explain the shift command, we will show how to process an unknown
number of arguments passed to the shell script shown in Listing 1-2. Try to follow
through this example shell script structure. This script is using the shift command to
process an unknown number of command-line arguments, or positional parameters.
In this script we will refer to these as tokens.

#!/usr/bin/sh

#

SCRIPT: shifting.sh

#

AUTHOR: Randy Michael

#

DATE: 12/30/2007

#

REV: 1.1.A

#

PLATFORM: Not platform dependent

#

PURPOSE: This script is used to process all of the tokens which

are pointed to by the command-line arguments, $1, $2, $3,etc. . .

#

REV. LIST:

#

Initialize all variables

TOTAL=0 # Initialize the TOTAL counter to zero

Start a while loop

while true

do

TOTAL=`expr $TOTAL + 1` # A little math in the

shell script, a running

total of tokens processed.

Listing 1-2 Example of using the shift command

Michael c01.tex V4 - 11/21/2008 6:25pm Page 17

Chapter 1 ■ Scripting Quick Start and Review 17

TOKEN=$1 # We always point to the $1 argument with a shift

process each $TOKEN

shift # Grab the next token, i.e. $2 becomes $1

done

echo "Total number of tokens processed: $TOTAL"

Listing 1-2 (continued)

We will go through similar examples of the shift command in great detail later in
the book.

Special Parameters $* and $@

There are special parameters that allow accessing all the command-line arguments at
once. $* and $@ both will act the same unless they are enclosed in double quotes, " ".

Special Parameter Definitions

The $* special parameter specifies all command-line arguments.

The $@ special parameter also specifies all command-line arguments.

The "$*" special parameter takes the entire list as one argument with spaces
between.

The "$@" special parameter takes the entire list and separates it into separate
arguments.

We can rewrite the shell script shown in Listing 1-2 to process an unknown number
of command-line arguments with either the $* or $@ special parameters, as shown in
Listing 1-3.

#!/usr/bin/sh

#

SCRIPT: shifting.sh

AUTHOR: Randy Michael

DATE: 12-31-2007

REV: 1.1.A

PLATFORM: Not platform dependent

#

Listing 1-3 Example using the special parameter $*

Michael c01.tex V4 - 11/21/2008 6:25pm Page 18

18 Part I ■ The Basics of Shell Scripting

PURPOSE: This script is used to process all of the tokens which

Are pointed to by the command-line arguments, $1, $2, $3, etc. . . -

#

REV LIST:

#

#

Start a for loop

for TOKEN in $*

do

process each $TOKEN

done

Listing 1-3 (continued)

We could have also used the $@ special parameter just as easily. As we see in the
preceding code segment, the use of the $@ or $* is an alternative solution to the same
problem, and it was less code to write. Either technique accomplishes the same task.

Double Quotes, Forward Tics, and Back Tics

How do we know which one of these to use in our scripts, functions, and command
statements? This decision causes the most confusion in writing scripts. We are going
to set this straight now.

Depending on what the task is and the output desired, it is very important to use
the correct enclosure. Failure to use these correctly will give unpredictable results.

We use ", double quotes, in a statement where we want to allow character or
command substitution. Double quotes are required when defining a variable with data
that contains white space, as shown here.

NAME="Randal K. Michael"

If the double quotes are missing we get the following error.

NAME=Randal K. Michael

-bash: K.: command not found

We use ’, forward tics (single quotes), in a statement where we do not want character
or command substitution. Enclosing in ’, forward tics, is intended to use the literal text
in the variable or command statement, without any substitution. All special meanings
and functions are removed. It is also used when you want a variable reread each time it
is used; for example, ‘$PWD’ is used a lot in processing the PS1 command-line prompt.
Additionally, preceding the same string with a backslash, \, also removes the special
meaning of a character, or string.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 19

Chapter 1 ■ Scripting Quick Start and Review 19

We use `, back tics, in a statement where we want to execute a command, or script,
and have its output substituted instead; this is command substitution. The` key is located
to the left of the 1 key, and below the Escape key, Esc, on most keyboards. Command
substitution is also accomplished by using the $(command) command syntax. We are
going to see many different examples of these throughout this book.

Using awk on Solaris

We use awk a lot in this book to parse through lines of text. There is one special case
where, on Solaris, we must to use nawk instead. If we need to specify a field separator
other than a blank space, which is the default field delimiter, using awk -F :, for
example, the awk statement will fail on a Solaris machine. To get around this problem,
use nawk if we find the UNIX flavor is Solaris. Add the following code segment to the
variable declaration section of all your shell scripts to eliminate the problem:

Setup the correct awk usage. Solaris needs to

use nawk instead of awk.

case $(uname) in

SunOS) alias awk=nawk

;;

esac

Using the echo Command Correctly

We use the echo command to display text. The echo command allows a lot of cursor
control using backslash operators: \n for a new line, \c to continue on the same line, \b
to backspace the cursor, \t for a tab, \r for a carriage return, and \v to move vertically
one line. In Korn shell the echo command recognizes these command options by
default. In Bash shell we must add the -e switch to the echo command, echo -e

"\n" for one new line.
We can query the system for the executing shell by querying the $SHELL shell

variable in the script. Many Linux distributions will execute in a Bash shell even
though we specify Korn shell on the very first line of the script. Because Bash shell
requires the use of the echo -e switch to enable the backslash operators, we can
use a case statement to alias the echo command to echo -e if the executing shell is
*/bin/bash. Now when we need to use the echo command, we are assured it will
display text correctly.

Add the following code segment to all your Korn shell scripts in the variable
declaration section, and this little problem is resolved:

Set up the correct echo command usage. Many Linux

distributions will execute in Bash even if the

script specifies Korn shell. Bash shell requires

we use echo -e when we use \n, \c, etc.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 20

20 Part I ■ The Basics of Shell Scripting

case $SHELL in

*/bin/bash) alias echo="echo -e"

;;

esac

Math in a Shell Script

We can do arithmetic in a shell script easily. The shell let command and the ((expr))
command expressions are the most commonly used methods to evaluate an integer
expression. Later we will also cover the bc function to do floating-point arithmetic.

Operators
The shells use arithmetic operators from the C programming language (see Table 1-5),
in decreasing order of precedence.

Table 1-5 Math Operators

OPERATOR DESCRIPTION

++ --
</editor query>

Auto-increment and auto-decrement, both prefix and postfix

+ Unary plus

- Unary minus

! ∼ Logical negation; binary inversion (one’s complement)

* / % Multiplication; division; modulus (remainder)

+ − Addition; subtraction

<< >> Bitwise left shift; bitwise right shift

<= >= Less than or equal to; greater than or equal to

< > Less than; greater than

== != Equality; inequality (both evaluated left to right)

& Bitwise AND

^ Bitwise exclusive OR

| Bitwise OR

&& Logical AND

|| Logical OR

Michael c01.tex V4 - 11/21/2008 6:25pm Page 21

Chapter 1 ■ Scripting Quick Start and Review 21

A lot of these math operators are used in the book, but not all. In this book we try to
keep things very straightforward and not confuse you with obscure expressions.

Built-In Mathematical Functions

The shells provide access to the standard set of mathematical functions. They are called
using C function call syntax. Table 1-6 shows a list of shell functions.

Table 1-6 Built-In Shell Functions

NAME FUNCTION

abs Absolute value

log Natural logarithm

acos Arc cosine

sin Sine

asin Arc sine

sinh Hyperbolic sine

cos Cosine

sqrt Square root

cosh Hyperbolic cosine

tan Tangent

exp Exponential function

tanh Hyperbolic tangent

int Integer part of floating-point number

We do not have any shell scripts in this book that use any of these built-in shell
functions except for the int function to extract the integer portion of a floating-point
number.

File Permissions, suid and sgid Programs

After writing a shell script we must remember to set the file permissions to make
it executable. We use the chmod command to change the file’s mode of operation. In
addition to making the script executable, it is also possible to change the mode of the
file to always execute as a particular user (suid) or to always execute as a member of
a particular system group (sgid). This is called setting the sticky bit. If you try to suid

or sgid a shell script, it is ignored for security reasons.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 22

22 Part I ■ The Basics of Shell Scripting

Setting a program to always execute as a particular user, or member of a certain
group, is often used to allow all users, or a set of users, to run a program in the
proper environment. As an example, most system-check programs need to run as an
administrative user, sometimes root. We do not want to pass out passwords, so we
can just make the program always execute as root and it makes everyone’s life easier.
We can use the options shown in Table 1-7 in setting file permissions. Also, please
review the chmod man page, man chmod.

By using combinations from the chmod command options, you can set the permis-
sions on a file or directory to anything that you want. Remember that setting a shell
script to suid or sgid is ignored by the system.

Table 1-7 chmod Permission Options

4000 Sets user ID on execution

2000 Sets group ID on execution

1000 Sets the link permission to directories or sets the save-text
attribute for files

0400 Permits read by owner

0200 Permits write by owner

0100 Permits execute or search by owner

0040 Permits read by group

0020 Permits write by group

0010 Permits execute or search by group

0004 Permits read by others

0002 Permits write by others

0001 Permits execute or search by others

chmod Command Syntax for Each Purpose
The chmod command can be used with the octal file permission representation or by r,
w, x notation. Both of these examples produce the same result.

To Make a Script Executable
chmod 754 my_script.sh

or

chmod u+rwx,g+rx,o+r my_script.ksh

The owner can read, write, and execute. The group can read and execute. The world
can read.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 23

Chapter 1 ■ Scripting Quick Start and Review 23

To Set a Program to Always Execute as the Owner

chmod 4755 my_program

The program will always execute as the owner of the file if it is not a shell script.
The owner can read, write, and execute. The group can read and execute. The world
can read and execute. So, no matter who executes this file, it will always execute as if
the owner actually executed the program.

To Set a Program to Always Execute as a Member of the File
Owner’s Group

chmod 2755 my_program

The program will always execute as a member of the file’s group, as long as the file
is not a shell script. The owner of the file can read, write, and execute. The group can
read and execute. The world can read and execute. So, no matter who executes this
program, it will always execute as a member of the file’s group.

To Set a Program to Always Execute as Both the File Owner
and the File Owner’s Group

chmod 6755 my_program

The program will always execute as the file’s owner and as a member of the file
owner’s group, as long as the program is not a shell script. The owner of the file can
read, write, and execute. The group can read and execute. The world can read and
execute. No matter who executes this program, it will always execute as the file owner
and as a member of the file owner’s group.

Running Commands on a Remote Host

We sometimes want to execute a command on a remote host and have the result
displayed locally. An example would be getting filesystem statistics from a group
of machines. We can do this with the rsh command. The syntax is rsh hostname

command_to_execute. This is a handy little tool but two system files will need to be
set up on all of the hosts before the rsh command will work. The files are .rhosts,
which would be created in the user’s home directory and have the file permissions of
600 (permission to read and write by the owner only), and the /etc/hosts.equiv

file.
For security reasons the .rhosts and hosts.equiv files, by default, are not set

up to allow the execution of a remote shell. Be careful! The systems’ security could be
threatened. Refer to each operating system’s documentation for details on setting up
these files.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 24

24 Part I ■ The Basics of Shell Scripting

Speaking of security, a better solution is to use Open Secure Shell (OpenSSH) instead
of rsh. OpenSSH is a freeware encrypted replacement for rsh, telnet, and ftp, for
the most part. To execute a command on another machine using OpenSSH, use the
following syntax:

ssh user@hostname command_to_execute

or

ssh -l user hostname command_to_execute

This command prompts you for a password if the encryption key pairs have not
been set up. Setting up the key pair relationships manually usually takes a few minutes,
or you can use one of the keyit scripts shown in Listings 1-4 and 1-5 to set up the keys
for you. The details of the procedure are shown in the ssh manual page (man ssh).
You can download the OpenSSH code from http://www.openssh.org.

The keyit.dsa script in Listing 1-4 will set up DSA keys, if the DSA keys exist.

#!/bin/bash

#

SCRIPT: keyit.dsa

PURPOSE: This script is used to set up DSA SSH keys. This script must

be executed by the user who needs the keys setup.

REM_HOST=$1

cat $HOME/.ssh/id_dsa.pub | ssh $REM_HOST "cat >> ~/.ssh/authorized_keys"

Listing 1-4 keyit.dsa script used to set up DSA SSH keys

The keyit.rsa script in Listing 1-5 will set up the RSA keys, if the RSA keys exist.

#!/bin/bash

#

SCRIPT: keyit.rsa

PURPOSE: This script is used to set up RSA SSH keys.

This script must be executed by the user who needs the keys setup.

REM_HOST=$1

cat $HOME/.ssh/id_rsa.pub | ssh $REM_HOST "cat >> ~/.ssh/authorized_keys"

Listing 1-5 keyit.rsa script used to set up RSA SSH keys

If you need to set up the encryption keys for a new user, first su to that user ID, and
then issue one of the following commands.

To set up DSA keys issue this command:

ssh-keygen -t dsa

Michael c01.tex V4 - 11/21/2008 6:25pm Page 25

Chapter 1 ■ Scripting Quick Start and Review 25

To set up RSA keys issue this one:

ssh-keygen -t rsa

Read the ssh-keygen man page for more details: man ssh-keygen.

Setting Traps

When a program is terminated before it would normally end, we can catch an exit
signal. This is called a trap. Table 1-8 lists some of the exit signals.

Table 1-8 Exit Signals

0 — Normal termination, end of script

1 SIGHUP Hang up, line disconnected

2 SIGINT Terminal interrupt, usually Ctrl + C

3 SIGQUIT Quit key, child processes to die before terminating

9 SIGKILL kill -9 command, cannot trap this type of exit status

15 SIGTERM kill command’s default action

19 SIGSTOP Stop, usually Ctrl + z

To see the entire list of supported signals for your operating system, enter the
following command:

kill -l [That’s kill -(ell)]

This is a really nice tool to use in our shell scripts. On catching a trapped signal
we can execute some cleanup commands before we actually exit the shell script.
Commands can be executed when a signal is trapped. If the following command
statement is added in a shell script, it will print to the screen ‘‘EXITING on a TRAPPED
SIGNAL’’ and then make a clean exit on the signals 1, 2, 3, and 15. We cannot trap a
kill -9.

trap ’echo "\nEXITING on a TRAPPED SIGNAL";exit’ 1 2 3 15

We can add all sorts of commands that may be needed to clean up before exiting.
As an example, we may need to delete a set of files that the shell script created before
we exit.

User-Information Commands

Sometimes we need to query the system for some information about users on the
system.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 26

26 Part I ■ The Basics of Shell Scripting

who Command
The who command gives this output for each logged-in user: username, tty, login time,
and where the user logged in from:

rmichael pts/0 Mar 13 10:24 192.168.1.104

root pts/1 Mar 15 10:43 (yogi)

w Command
The w command is really an extended who. The output looks like the following:

12:29PM up 27 days, 21:53,2 users, load average 1.03, 1.17, 1.09

User tty login@ idle JCPU PCPU what

rmichael pts/0 Mon10AM 0 3:00 1 w

root pts/1 10:42AM 37 5:12 5:12 tar

Notice that the top line of the preceding output is the same as the output of
the uptime command. The w command gives a more detailed output than the who

command by listing job process time and total user process time, but it does not
reveal where the users have logged in from. We often are interested in this for security
purposes. One nice thing about the w command’s output is that it also lists what the
users are doing at the instant the command w is entered. This can be very useful.

last Command
The last command shows the history of who has logged in to the system since the wtmp
file was created. This is a good tool when you need to do a little investigation of who
logged in to the system and when. The following is example output:

root ftp booboo Aug 06 19:22 - 19:23 (00:01)

root pts/3 mrranger Aug 06 18:45 still logged in.

root pts/2 mrranger Aug 06 18:45 still logged in.

root pts/1 mrranger Aug 06 18:44 still logged in.

root pts/0 mrranger Aug 06 18:44 still logged in.

root pts/0 mrranger Aug 06 18:43 - 18:44 (00:01)

root ftp booboo Aug 06 18:19 - 18:20 (00:00)

root ftp booboo Aug 06 18:18 - 18:18 (00:00)

root tty0 Aug 06 18:06 still logged in.

root tty0 Aug 02 12:24 - 17:59 (4+05:34)

reboot ~ Aug 02 12:00

shutdown tty0 Jul 31 23:23

root ftp booboo Jul 31 21:19 - 21:19 (00:00)

root ftp bambam Jul 31 21:19 - 21:19 (00:00)

root ftp booboo Jul 31 20:42 - 20:42 (00:00)

root ftp bambam Jul 31 20:41 - 20:42 (00:00)

The output of the last command shows the username, the login port, where the
user logged in from, the time of the login/logout, and the duration of the login session.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 27

Chapter 1 ■ Scripting Quick Start and Review 27

ps Command

The ps command will show information about current system processes. The ps

command has many switches that will change what we look at. Table 1-9 lists some
common command options.

Table 1-9 Common ps Command Options

ps The user’s currently running processes

ps -f Full listing of the user’s currently running processes

ps -ef Full listing of all processes, except kernel processes

ps -A All processes, including kernel processes

ps -Kf Full listing of kernel processes

ps auxw Wide listing sorted by percentage of CPU usage, %CPU

Communicating with Users

Communicate with the system’s users and let them know what is going on! All
Systems Administrators have the maintenance window where we can finally get control
and handle some offline tasks. This is just one example of a need to communicate with
the system users, if any are still logged in.

The most common way to get information to the system users is to use the
/etc/motd file. This file is displayed each time the user logs in. If users stay logged in
for days at a time they will not see any new messages of the day. This is one reason
why real-time communication is needed. The commands shown in Table 1-10 allow
communication to, or between, users who are currently logged into the system.

Table 1-10 Commands for Real-Time User Communication

wall Writes a message on the screen of all logged-in users on
the local host.

rwall Writes a message on the screen of all logged-in users on a
remote host.

write Writes a message to an individual user. The user must
currently be logged in.

talk Starts an interactive program that allows two users to have
a conversation. The screen is split in two, and both users
can see what each person is typing.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 28

28 Part I ■ The Basics of Shell Scripting

N O T E When using these commands, be aware that if a user is using a
program — for example, an accounting software package — and has that
program’s screen on the terminal, the user might not get the message or the
user’s screen may become scrambled.

Uppercase or Lowercase Text for Easy Testing

We often need to test text strings like filenames, variables, file text, and so on, for
comparison. It can sometimes vary so widely that it is easier to uppercase or lowercase
the text for ease of comparison. The tr and typeset commands can be used to uppercase
and lowercase text. This makes testing for things like variable input a breeze. Following
are some examples of using the tr command:

Variable values:

Expected input TRUE

Real input TRUE

Possible input true TRUE True True, and so on

Upcasing:

UPCASEVAR=$(echo $VARIABLE | tr ’[a-z]’ ’[A-Z]’)

Downcasing:

DOWNCASEVAR=$(echo $VARIABLE | tr ’[A-Z]’ ’[a-z]’)

In the preceding example of the tr command, we echo the string and use a pipe
(|) to send the output of the echo statement to the tr command. As the preceding
examples show, uppercasing uses ‘[a-z]’ ‘[A-Z]’.

N O T E The single quotes are required around the square brackets.

’[a-z]’ ’[A-Z]’ Used for lower to uppercase

’[A-Z]’ ’[a-z]’ Used for upper to lowercase

No matter what the user input is, we will always have the stable input of TRUE, if
uppercased, and true, if lowercased. This reduces our code testing and also helps the
readability of the script.

We can also use typeset to control the attributes of a variable in the shell. In the
previous example we are using the variable VARIABLE. We can set the attribute to
always translate all of the characters to uppercase or lowercase. To set the case attribute
of the variable VARIABLE to always translate characters assigned to it to uppercase,
we use

typeset -u VARIABLE

Michael c01.tex V4 - 11/21/2008 6:25pm Page 29

Chapter 1 ■ Scripting Quick Start and Review 29

The -u switch to the typeset command is used for uppercase. After we set the
attribute of the variable VARIABLE, using the typeset command, anytime we assign
text characters to VARIABLE they are automatically translated to uppercase characters.

Example:

typeset -u VARIABLE

VARIABLE="True"

echo $VARIABLE

TRUE

To set the case attribute of the variable VARIABLE to always translate characters to
lowercase, we use

typeset -l VARIABLE

Example:

typeset -l VARIABLE

VARIABLE="True"

echo $VARIABLE

true

Check the Return Code

Whenever we run a command there is a response back from the system about the last
command that was executed, known as the return code. If the command was successful
the return code will be 0, zero. If it was not successful the return will be something
other than 0, zero. To check the return code we look at the value of the $? shell variable.

As an example, we want to check if the /usr/local/bin directory exists. Each of
these blocks of code accomplishes the exact same thing:

test -d /usr/local/bin

if ["$?" -eq 0] # Check the return code

then # The return code is zero

echo ’/usr/local/bin does exist’

else # The return code is NOT zero

echo ’/usr/local/bin does NOT exist’

fi

or

Michael c01.tex V4 - 11/21/2008 6:25pm Page 30

30 Part I ■ The Basics of Shell Scripting

if test -d /usr/local/bin

then # The return code is zero

echo ’/usr/local/bin does exist’

else # The return code is NOT zero

echo ’/usr/local/bin does NOT exist’

fi

or

if [-d /usr/local/bin]

then # The return code is zero

echo ’/usr/local/bin does exist’

else # The return code is NOT zero

echo ’/usr/local/bin does NOT exist’

fi

Notice that we checked the return code using $? once. The other examples use
the control structure’s built-in test. The built-in tests do the same thing of processing
the return code, but the built-in tests hide this step in the process. All three of the
previous examples give the exact same result. This is just a matter of personal choice
and readability.

Time-Based Script Execution

We write a lot of shell scripts that we want to execute on a timed interval or run once
at a specific time. This section addresses these needs with several examples.

Cron Tables
A cron table is a system file that is read every minute by the system and will execute
any entry that is scheduled to execute in that minute. By default, any user can create
a cron table with the crontab -e command, but the Systems Administrator can
control which users are allowed to create and edit cron tables with the cron.allow

and cron.deny files. When a user creates his or her own cron table, the commands,
programs, or scripts will execute in that user’s environment. It is the same thing as
running the user’s $HOME/.profile before executing the command.

The crontab -e command starts the default text editor, vi or emacs, on the user’s
cron table.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 31

Chapter 1 ■ Scripting Quick Start and Review 31

N O T E When using the crontab command, the current user ID is the cron
table that is acted on. To list the contents of the current user’s cron table, issue
the crontab -l command.

Cron Table Entry Syntax

It is important to know what each field in a cron table entry is used for. The following
cron table entry executes the script, /usr/local/bin/somescript.ksh, at 3:15 a.m.,
January 8, on any day of the week that January 8 falls on. Notice that we used a wildcard
for the weekday field.

________________________ Minute of the Hour (0-59)

| _____________________ Hour of the Day (0-23)

| | __________________ Day of the Month (1-31)

| | | _______________ Month of the Year (1-12)

| | | | _________ Day of the Week (0 - 6 for Sunday through Saturday)

| | | | | _________ Command to Execute (Full path is required)

| | | | | |

| | | | | |

15 3 8 1 * /usr/local/bin/somescript.bash 2>&1 >/dev/null

The following cron table entry is another example:

0 0 1 1 * /usr/bin/banner "Happy New Year" > /dev/console

At midnight on New Year’s Eve, 00:00 hours on January 1, on any weekday, this
cron table entry writes to the system’s console (/dev/console) Happy New Year in
large banner letters. Wildcard characters are defined in this table.

Wildcards:

* Match any number of characters

? Match a single character

at Command
Like a cron table, the at command executes commands based on time. Using the at

command, we can schedule a job to run once, at a specific time. When the job is
executed, the at command will send an email of the standard output and standard
error to the user who scheduled the job to run, unless the output is redirected. As
Systems Administrators we can control which users are allowed to schedule jobs with
the at.allow and at.deny files. Refer to each operating system’s man pages before
modifying these files, and refer to them to learn the many ways to use the at command
for timed controlled command execution. To execute a command in 10 minutes, use
the following syntax:

echo ’/usr/local/bin/somescript.bash’ | at now + 10 minutes

Michael c01.tex V4 - 11/21/2008 6:25pm Page 32

32 Part I ■ The Basics of Shell Scripting

You can also use the at command interactively by typing the following:

at now + 10 minutes Enter

Then type the full pathname of the command to execute, press Enter, and then press
Ctrl+D. Here is an example:

at now + 10 minutes

/usr/local/bin/somescript.bash

Ctrl+D

For more at command options, see the at command manual page, man at.

Output Control

How is the script going to run? Where will the output go? These questions come under
output control.

Silent Running
To execute a script in silent mode we can use the following syntax:

/PATH/script_name 2>&1 > /dev/null

In this command statement the script_name shell script will execute without any
output to the screen. The reason for this is that the command is terminated with the
following:

2>&1 > /dev/null

By terminating a command like this it redirects standard error (stderr), specified
by file descriptor 2, to standard output (stdout), specified by file descriptor 1. Then
we have another redirection to /dev/null, which sends all of the output to the bit
bucket.

We can call this silent running. This means that there is absolutely no output from
the script going to our screen. Inside the script there may be some output directed to
files or devices, a particular terminal, or even the system’s console, /dev/console,
but none to the user’s screen. This is especially useful when executing a script from
one of the system’s cron tables.

In the following example cron table entry, we want to execute a script named
/usr/local/bin/systemcheck.ksh, which needs to run as the root user, every 15
minutes, 24 hours a day, 7 days a week, and not have any output to the screen. There
will not be any screen output because we are going to end the cron table entry with
the following:

2>&1 > /dev/null

Michael c01.tex V4 - 11/21/2008 6:25pm Page 33

Chapter 1 ■ Scripting Quick Start and Review 33

Inside the script it may do some kind of notification such as paging staff or sending
output to the system’s console, writing to a file or a tape device, but output such
as echo "Hello World" would go to the bit bucket. But echo "Hello World" >

/dev/console would go to the system’s defined console if this command statement
was within the shell script.

This cron table entry would need to be placed in the root cron table (must be logged
in as the root user) with the following syntax:

5,20,35,50 * * * * /usr/local/bin/systemcheck.ksh 2>&1 >/dev/null

N O T E Most system check–type scripts need to be in the root cron table. Of
course, a user must be logged in as root to edit root’s cron table.

The preceding cron table entry would execute the /usr/local/bin/systemcheck
.ksh every 15 minutes, at 5, 20, 35, and 50 minutes, each hour, 24 hours a day, 7
days a week. It would not produce any output to the screen due to the final 2>&1
> /dev/null. Of course, the minutes selected to execute can be any. We sometimes
want to spread out execution times in the cron tables so that we don’t have a lot of
CPU-intensive scripts and programs starting execution at the same time.

Using getopts to Parse Command-Line Arguments
The getopts command is built into the shell. It retrieves valid command-line options
specified by a single character preceded by a - (minus sign) or + (plus sign). To specify
that a command switch requires an argument to the switch, it is followed by a :

(colon). If the switch does not require any argument, the : should be omitted. All of
the options put together are called the OptionString, and this is followed by some
variable name. The argument for each switch is stored in a variable called OPTARG.
If the entire OptionString is preceded by a : (colon), any unmatched switch option
causes a ? to be loaded into the VARIABLE. The form of the command follows:

getopts OptionString VARIABLE [Argument . . .]

The easiest way to explain this is with an example. For a script we need seconds,
minutes, hours, days, and a process to monitor. For each one of these we want to
supply an argument — that is, -s 5 -m10 -p my_backup. In this we are specifying
5 seconds, 10 minutes, and the process is my_backup. Notice that there does not have
to be a space between the switch and the argument, and they can be entered in any
order. This is what makes getopts so great! The command line to set up our example
looks like this:

SECS=0 # Initialize all to zero

MINUTES=0

HOURS=0

DAYS=0

PROCESS= # Initialize to null

Michael c01.tex V4 - 11/21/2008 6:25pm Page 34

34 Part I ■ The Basics of Shell Scripting

while getopts :s:m:h:d:p: TIMED 2>/dev/null

do

case $TIMED in

s) SECS=$OPTARG

;;

m) ((MINUTES = $OPTARG * 60))

;;

h) ((HOURS = $OPTARG * 3600))

;;

d) ((DAYS = $OPTARG * 86400))

;;

p) PROCESS=$OPTARG

;;

\?) usage

exit 1

;;

esac

done

((TOTAL_SECONDS = SECONDS + MINUTES + HOURS + DAYS))

There are a few things to note in the getopts command. The getopts command
needs to be part of a while loop with a case statement within the loop for this
example. On each option we specified, s, m, h, d, and p, we added a : (colon) after
each switch. This tells getopts that an argument is required. The : (colon) before
the OptionString list tells getopts that if an unspecified option is given, to set the
TIMED variable to the ? character. This allows us to call the usage function and exit

with a return code of 1. The first thing to be careful of is that getopts does not care
what arguments it receives, so we have to take action if we want to exit. The last thing
to note is that the first line of the while loop has output redirection of standard error
(file descriptor 2) to the bit bucket. Anytime an unexpected argument is encountered,
getopts sends a message to standard error (file descriptor 2). Because we expect this
to happen, we can just ignore the messages and discard them to /dev/null. We will
study getopts a lot in this book.

Making a Co-Process with Background Function
We also need to cover setting up a co-process. A co-process is a communications link
between a foreground and a background process. The most common question is why
is this needed? In one of the scripts we are going to call a function that will handle all
of the process monitoring for us while we do the timing control in the main script. The
problem arises because we need to run this function in the background and it has an infinite
loop. Within this background process-monitoring function there is an infinite loop.
Without the ability to tell the loop to break out, it will continue to execute on its own
after the main script, and function, is interrupted. We know what this causes — one or
more defunct processes! From the main script we need a way to communicate with this
loop, thus background function, to tell it to break out of the loop and exit the function
cleanly when the countdown is complete and if the script is interrupted, Ctrl+C. To

Michael c01.tex V4 - 11/21/2008 6:25pm Page 35

Chapter 1 ■ Scripting Quick Start and Review 35

solve this little problem we kick off our proc_watch function as a co-process in the
background. How do we do this, you ask? ”Pipe it to the background” is the simplest
way to put it, and that is what it looks like, too. Look at the next example code block
in Listing 1-6.

############################

function trap_exit

{

Tell the co-process to break out of the loop

BREAK_OUT=’Y’

print -p $BREAK_OUT # Use "print -p" to talk to the co-process

}

############################

function proc_watch

{

This function is started as a co-process!!!

while : # Loop forever

do

Some Code Here

read $BREAK_OUT # Do NOT need a "-p" to read!

if [[$BREAK_OUT = ’Y’]]

then

return 0

fi

done

}

############################

Start of Main

############################

Set a Trap

trap ’trap_exit; exit 2’ 1 2 3 15

TOTAL_SECONDS=300

BREAK_OUT=’N’

proc_watch |& # Start proc_watch as a co-process!!!!

PW_PID=$1 # Process ID of the last background job

until ((TOTAL_SECONDS == 0))

do

((TOTAL_SECONDs = TOTAL_SECONDS - 1))

Listing 1-6 Example code using a co-process

Michael c01.tex V4 - 11/21/2008 6:25pm Page 36

36 Part I ■ The Basics of Shell Scripting

sleep 1

done

BREAK_OUT=’Y’

Use "print -p" to communicate with the co-process variable

print -p $BREAK_OUT

kill $PW_PID # Kill the background co-process

exit 0

Listing 1-6 (continued)

In the code segment in Listing 1-6, we defined two functions. The trap_exit

function will execute on exit signals 1, 2, 3, and 15. The other function is the
proc_watch function, which is the function that we want to start as a background
process. As you can see in proc_watch, it has an infinite loop. If the main script
is interrupted without a means to exit the loop, within the function the loop alone
will continue to execute! To solve this we start the proc_watch as a co-process
by ‘‘piping it to the background’’ using pipe ampersand, |&, as a suffix. Then when
we want to communicate to this co-process background function we use print

-p $VARIABLE_NAME. Inside the co-process function we just use the standard read

$VARIABLE_NAME. This is the mechanism that we are going to use to break out of the
loop if the main script is interrupted on a trapped signal; of course, we cannot catch a
kill -9 with a trap.

Try setting up the scenario described previously with a background function that
has an infinite loop. Then press the Ctrl+C key sequence to kill the main script, and
do a ps -ef | more. You will see that the background loop is still executing! Get the
PID, and do a kill -9 on that PID to kill it. Of course, if the loop’s exit criteria is ever
met, the loop will exit on its own.

Catching a Delayed Command Output

Have you ever had a hard time trying to catch the output of a command that has a
delayed output? This can cause a lot of frustration when you just miss it! There is a
little technique that allows you to catch these delayed responses. The trick is to use an
until loop. Look at the code shown here:

OUTFILE="/tmp/outfile.out" # Define the output file

cat /dev/null > $OUTFILE # Create a zero size output file

Start an until loop to catch the delayed response

Michael c01.tex V4 - 11/21/2008 6:25pm Page 37

Chapter 1 ■ Scripting Quick Start and Review 37

until [-s $OUTFILE]

do

delayed_output_command >> $OUTFILE

done

Show the resulting output

more $OUTFILE

This code segment first defines an output file to store the delayed output data. We
start with a zero-sized file and then enter an until loop that will continue until the
$OUTFILE is no longer a zero-sized file, and the until loop exits. The last step is to
show the user the data that was captured from the delayed output.

Fastest Ways to Process a File Line-by-Line

Most shell scripts work with files, and some use a file for data input. This next
section shows the fastest methods studied in Chapter 2, ‘‘24 Ways to Process a File
Line-by-Line.’’ The two fastest techniques for processing a file line-by-line are shown
in Listings 1-7 and 1-8.

function while_read_LINE_bottom_FD_OUT

{

Zero out the $OUTFILE

>$OUTFILE

Associate standard output with file descriptor 4

and redirect standard output to $OUTFILE

exec 4<&1

exec 1> $OUTFILE

while read LINE

do

echo "$LINE"

:

done < $INFILE

Restore standard output and close file

descriptor 4

exec 1<&4

exec 4>&-

}

Listing 1-7 Method 12 tied for first place

Michael c01.tex V4 - 11/21/2008 6:25pm Page 38

38 Part I ■ The Basics of Shell Scripting

The method in Listing 1-7 is tied for first place. This method uses my favorite input
redirection for files by redirecting input at the bottom of the loop, after the done loop
terminator. This method does use a file descriptor for redirecting standard output,
stdout, to file descriptor 1.

The input redirection using done < $INFILE greatly speeds up any loop that
requires file input. The nice thing about this method of input redirection is that it
is intuitive to use for beginners to shell scripting. I was actually surprised that this
method tied, actually won by 10 mS, using file descriptors for both input and output
files, as shown in Listing 1-8.

function while_read_LINE_FD_IN_AND_OUT

{

Method 22

Zero out the $OUTFILE

>$OUTFILE

Associate standard input with file descriptor 3

and redirect standard input to $INFILE

exec 3<&0

exec 0< $INFILE

Associate standard output with file descriptor 4

and redirect standard output to $OUTFILE

exec 4<&1

exec 1> $OUTFILE

while read LINE

do

echo "$LINE"

:

done

Restore standard output and close file

descriptor 4

exec 1<&4

exec 4>&-

Restore standard input and close file

descriptor 3

exec 0<&3

exec 3>&-

}

Listing 1-8 Method 22 tied for first place

Michael c01.tex V4 - 11/21/2008 6:25pm Page 39

Chapter 1 ■ Scripting Quick Start and Review 39

I tend not to use the method in Listing 1-8 when I write shell scripts, because it
can be difficult to maintain through the code life cycle. If a user is not familiar with
using file descriptors, a script using this method is extremely hard to understand.
The method in Listing 1-7 produces the same timing results, and it is much easier to
understand. Listing 1-9 shows the second-place loop method.

for_LINE_cat_FILE_cmdsub2_FD_OUT ()

{

Method 16

Zero out the $OUTFILE

>$OUTFILE

Associate standard output with file descriptor 4

and redirect standard output to $OUTFILE

exec 4<&1

exec 1> $OUTFILE

for LINE in $(cat $INFILE)

do

echo "$LINE"

:

done

Restore standard output and close file

descriptor 4

exec 1<&4

exec 4>&-

}

Listing 1-9 Method 16 made second place in timing tests

The method shown in Listing 1-10 is another surprise: a for loop using command
substitution with file descriptor file output redirection.

for_LINE_cat_FILE_FD_OUT ()

{

Method 15

Zero out the $OUTFILE

>$OUTFILE

Associate standard output with file descriptor 4

and redirect standard output to $OUTFILE

Listing 1-10 Method 15 made third place in timing tests

Michael c01.tex V4 - 11/21/2008 6:25pm Page 40

40 Part I ■ The Basics of Shell Scripting

exec 4<&1

exec 1> $OUTFILE

for LINE in `cat $INFILE`

do

echo "$LINE"

:

done

Restore standard output and close file

descriptor 4

exec 1<&4

exec 4>&-

}

Listing 1-10 (continued)

The method in Listing 1-11 is the fastest method to process a file line-by-line that
does not use file descriptors.

function while_read_LINE_bottom

{

Method 2

Zero out the $OUTFILE

>$OUTFILE

while read LINE

do

echo "$LINE" >> $OUTFILE

:

done < $INFILE

}

Listing 1-11 The fastest method not using file descriptors

I use this technique in almost every shell script that does file parsing, simply because
of the ease of maintaining the shell script throughout the life cycle.

Using Command Output in a Loop

The technique shown here is a nice little trick to execute a command and use the
command’s output in a loop without using a pipe:

Michael c01.tex V4 - 11/21/2008 6:25pm Page 41

Chapter 1 ■ Scripting Quick Start and Review 41

while read LINE

do

echo "$LINE"

done < <(command)

I know this looks a bit odd. I got this trick from one of my co-workers, Brian Beers.
What we are doing here is input redirection from the bottom of the loop, after the
done loop terminator, specified by the done < notation. The < (command) notation
executes the command and points the command’s output into the bottom of the loop.

N O T E The space between < < in < <(command) is required!

Mail Notification Techniques

In a lot of the shell scripts in this book it is a good idea to send notifications to users
when errors occur, when a task is finished, and for many other reasons. Some of the
email techniques are shown in this section.

Using the mail and mailx Commands
The most common notification method uses the mail and mailx commands. The basic
syntax of both these commands is shown in Listing 1-12.

mail -s "This is the subject" $MAILOUT_LIST < $MAIL_FILE

or

cat $MAIL_FILE | mail -s "This is the subject" $MAILOUT_LIST

or

mailx -s "This is the subject" $MAILOUT_LIST < $MAIL_FILE

or

cat $MAIL_FILE | mailx -s "This is the subject" $MAILOUT_LIST

Listing 1-12 Examples using the mail and mailx commands

Not all systems support the mailx command, but the systems that do have support
use the same syntax as the mail command. To be safe when dealing with multiple
UNIX platforms, always use the mail command.

Using the sendmail Command to Send Outbound Mail
In one shop I worked at I could not send outbound mail from the user named root.
The from field had to be a valid email address that was recognized by the mail server,

Michael c01.tex V4 - 11/21/2008 6:25pm Page 42

42 Part I ■ The Basics of Shell Scripting

and root is not valid. To get around this little problem I changed the command that I
used from mail to sendmail. The sendmail command allows us to add the -f switch
to indicate a valid internal email address for the from field. The sendmail command
is in /usr/sbin/sendmail on AIX, HP-UX, Linux, and OpenBSD, but on SunOS the
location changed to /usr/lib/sendmail. Look at the send_notification function
in Listing 1-13.

function send_notification

{

if [-s $MAIL_FILE -a "$MAILOUT" = "TRUE"];

then

case $(uname) in

AIX|HP-UX|Linux|OpenBSD) SENDMAIL="/usr/sbin/sendmail"

;;

SunOS) SENDMAIL="/usr/lib/sendmail"

;;

esac

echo "\nSending email notification"

$SENDMAIL -f randy@$THISHOST $MAIL_LIST < $MAIL_FILE

fi

}

Listing 1-13 send_notification function

The mail and mailx commands also support specifying a from field by using the
-r switch, as shown in Listing 1-14.

mail -r randy@$THISHOST -s "This is the subject" \
$MAILOUT_LIST < $MAIL_FILE

or

cat $MAIL_FILE | mail -r randy@$THISHOST -s

"This is the subject" $MAILOUT_LIST

or

mailx -r randy@$THISHOST -s "This is the subject"

$MAILOUT_LIST < $MAIL_FILE

or

cat $MAIL_FILE | mailx -r randy@$THISHOST -s

"This is the subject" $MAILOUT_LIST

Listing 1-14 Specifying a from field with mail and mailx

Both techniques should allow you to get the message out quickly.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 43

Chapter 1 ■ Scripting Quick Start and Review 43

Creating a Progress Indicator

Anytime that a user is forced to wait as a long process runs, it is an excellent idea to
give the user some feedback. This section deals with progress indicators.

A Series of Dots
The echo command prints a single dot on the screen, and the backslash c, \c, specifies
a continuation on the same line without a new line or carriage return. To make a series
of dots we will put this single command in a loop, with some sleep time between
each dot. We will use a while loop that loops forever with a 10-second sleep between
printing each dot on the screen:

while true

do

echo ".\c"
sleep 10

done

A Rotating Line
The rotate_line function, shown in Listing 1-15, shows what appears to be a rotating
line as the process runs.

function rotate_line

{

INTERVAL=1 # Sleep time between "twirls"

TCOUNT="0" # For each TCOUNT the line twirls one increment

while : # Loop forever. . .until this function is killed

do

TCOUNT=`expr $TCOUNT + 1` # Increment the TCOUNT

case $TCOUNT in

"1") echo ’-’"\b\c"
sleep $INTERVAL

;;

"2") echo ’\\’"\b\c"
sleep $INTERVAL

;;

"3") echo "|\b\c"
sleep $INTERVAL

;;

Listing 1-15 rotate_line function

Michael c01.tex V4 - 11/21/2008 6:25pm Page 44

44 Part I ■ The Basics of Shell Scripting

"4") echo "/\b\c"
sleep $INTERVAL

;;

*) TCOUNT="0" ;; # Reset the TCOUNT to "0", zero.

esac

done

}

Listing 1-15 (continued)

To use rotate_line in a shell script, use the technique shown in Listing 1-16 to
start and stop the rotation.

######################################

######## Beginning of Main ###########

######################################

rotate_line & # Run the function in the background

ROTATE_PID=$! # Capture the PID of the last background process

/usr/local/bin/my_time_consuming_task.ksh

Stop the rotating line function

kill -9 $ROTATE_PID

Cleanup. . .this removes the left over line.

echo "\b\b "

Listing 1-16 Using rotate_line in a shell script

Elapsed Time
The elapsed_time function requires as input the number of seconds, and produces
as output the time represented in hours, minutes, and seconds. Listing 1-17 shows the
elapsed_time function.

elapsed_time ()

{

SEC=$1

((SEC < 60)) && echo "[Elapsed time: $SEC seconds]\c"

Listing 1-17 elapsed_time function

Michael c01.tex V4 - 11/21/2008 6:25pm Page 45

Chapter 1 ■ Scripting Quick Start and Review 45

((SEC >= 60 && SEC < 3600)) && echo "[Elapsed time: $((SEC / 60)) \
min $((SEC % 60)) sec]\c"

((SEC > 3600)) && echo "[Elapsed time: $((SEC / 3600)) hr \
$(((SEC % 3600) / 60)) min $(((SEC % 3600) % 60)) sec]\c"
}

Listing 1-17 (continued)

An example using the elapsed_time function follows:

elapsed_time 6465

[Elapsed time: 1 hr 47 min 45 sec]

Note that the elapsed_time function continues on the same line of text without
a new line. To add a new line, change the ending \c to \n on each of the three echo

commands.

Working with Record Files

We often want to add a filename to each record in a record file. The code shown in
Listing 1-18 shows a merge process where we loop through a list of record filenames
and, as we append each record file to build the big batch-processing file, we append
the record filename to each record. Check out Listing 1-18, and we will cover the
details at the end.

MERGERECORDFILE=/data/mergerecord.$(date +%m%d%y)

RECORDFILELIST=/data/branch_records.lst

while read RECORDFILENAME

do

sed s/$/$(basename $RECORDFILENAME)/g \
$RECORDFILENAME >> $MERGERECORDFILE

done < $RECORDFILELIST

Listing 1-18 Code for a merge process for fixed-length record files

Listing 1-18 is a merge script for fixed-length record files. We first define a couple
of files. The MERGERECORDFILE variable definition specifies the name of the resulting
merged record data file. The RECORDFILELIST variable defines the file that contains
a list of record files that must be merged. Notice the use of the basename command
to strip the directory part of the $RECORDFILENAME on each loop iteration. As we
feed the while loop from the bottom, after done, to process the $RECORDFILELIST

Michael c01.tex V4 - 11/21/2008 6:25pm Page 46

46 Part I ■ The Basics of Shell Scripting

file line-by-line, we assign a new record file to the RECORDFILENAME variable. We
use this new value in our sed statement that appends the record filename to the end
of each record in the file. As the last step, this record file is appended to the end
of the $MERGERECORDFILE file. Listing 1-19 shows the same technique working with
variable-length record files.

MERGERECORDFILE=/data/mergerecord.$(date +%m%d%y)

RECORDFILELIST=/data/branch_records.lst

FD=:

while read RECORDFILENAME

do

sed s/$/${FD}$(basename $RECORDFILENAME)/g \
$RECORDFILENAME >> $MERGERECORDFILE

done < $RECORDFILELIST

Listing 1-19 Code for a merge process for variable-length record files

Listing 1-19 is a merge script for variable-length record files. The only difference
between this script and Listing 1-18 is that we added the field delimiter variable, FD.
We define the field delimiter and then add the field delimiter between the end of the
record and the record filename.

Working with Strings
A useful thing to know when working with fixed-length record files is the string length.
The length of a string assigned to a variable can be found using the following syntax:

echo ${#VAR}

For example, if I assign the VAR variable the string 1234567890, the string length
should be 10:

VAR=1234567890

echo ${#VAR}

10

We sometimes need the string length for fixed-length records to pad the extra space
in a data field that the data does not fill up. As an example, the TOTAL field is defined
as characters 46–70, which is 25 characters long. It is unlikely that anyone would ever
owe that kind of cash, but that is the data field we have to work with. This field is
right-justified and filled with leading zeros, as shown here:

0000000000000000000009825

Michael c01.tex V4 - 11/21/2008 6:25pm Page 47

Chapter 1 ■ Scripting Quick Start and Review 47

If we change a record field and the data is not as long as the data field, we need
to pad the rest of the data field with something — in this case, zeros. The hard way
to pad the data with leading zeros is to check the original data for the string length,
and then get the string length of the new data and start looping to add the correct
number of leading zeros followed by the new data. It is so much easier to do this task
with the typeset command. The -Z switch specifies right justification with leading
zeros. Well, that’s just what we need here. Our TOTAL variable is 25 characters long.
The following typeset command makes this definition for us:

typeset -Z25 TOTAL

Now we can change the TOTAL data field to a different value and not worry about
how many leading zeros to add. As an example, let’s change the total to 0 — we paid
this bill off!

TOTAL=0

echo $TOTAL

0000000000000000000000000

The typeset command can do a lot of the work for us. Table 1-11 shows more
typeset options you might find handy.

Table 1-11 Options for the typeset Command

SWITCH RESULTING TYPESET

-L Left-justify and remove blank spaces.

-R Right-justify and fill with leading blanks.

-Zn Right-justify to n length and fill with leading zeros if the first
non-blank character is a digit.

-i Variable is an integer.

-l Convert uppercase characters to lowercase characters.

-u Convert lowercase characters to uppercase characters.

-x Automatically export this variable.

N O T E Using + instead of - turns off the typeset definition.

Creating a Pseudo-Random Number

There is a built-in shell variable that will create a pseudo-random number called
RANDOM. The following code segment creates a pseudo-random number between 1 and
an upper limit defined by the user:

Michael c01.tex V4 - 11/21/2008 6:25pm Page 48

48 Part I ■ The Basics of Shell Scripting

RANDOM=$$ # Initialize the seed to the PID of the script

UPPER_LIMIT=$1

RANDOM_NUMBER=$(($RANDOM % $UPPER_LIMIT + 1))

echo "$RANDOM_NUMBER"

If the user specified theUPPER_LIMIT to be 100, the result would be a pseudo-random
number between 1 and 100.

Using /dev/random and /dev/urandom
We can also use the /dev/random and /dev/urandom character special files to pro-
duce pseudo-random numbers. Trying to read the /dev/random and /dev/urandom

character special files directly with dd returns non-printable binary data. To get some
usable random numbers, we need to pipe the dd command output to the od, octal
dump, command. Specifically, we use od to dump the data to an unsigned integer. The
code shown in Listing 1-20 assigns an unsigned random integer to the RN variable.

RN=$(dd if=/dev/random count=1 2>/dev/null \
| od -t u4 | awk ’{print $2}’| head -n 1)

Listing 1-20 Using /dev/random to return a random number

Notice in Listing 1-20 that the dd command uses /dev/random as the input file.
We set the count equal to 1 to return one byte of data. Then, and this is important, we
send all the standard error output, specified by file descriptor 2, to the bit bucket. If we
omit the 2 > /dev/null redirection, we get unwanted data. The remaining standard
output is piped to the od command to convert the binary data to an unsigned integer,
specified by the -t u4 command switch. By changing the value assigned to u, we
change the length of the random number returned. To create a 64-bit, not 64-character,
random number, we just change the -t u4 to -t u8. More examples are in Chapter
11, ‘‘Pseudo-Random Number and Data Generation.’’

Checking for Stale Disk Partitions in AIX

Ideally, we want the stale disk partition value to be zero, 0. If the value is greater than
zero we have a problem. Specifically, the mirrored disks in this Logical Volume are not
in sync, which translates to a worthless mirror. Take a look at the following command
statement:

LV=apps_lv

NUM_STALE_PP=$(lslv -L $LV | grep "STALE PP" | awk ’{print $3}’

Michael c01.tex V4 - 11/21/2008 6:25pm Page 49

Chapter 1 ■ Scripting Quick Start and Review 49

This statement saves the number of stale PPs into the NUM_STALE_PP variable.
We accomplish this feat by command substitution, specified by the VARIABLE=$(

commands) notation.

Automated Host Pinging

Depending on the operating system that you are running, the ping command varies if
you want to send three pings to each host to see if the machines are up. The ping_host
function shown in Listing 1-21 can ping from AIX, HP-UX, Linux, OpenBSD, and
SunOS machines.

function ping_host

{

HOST=$1 # Grab the host to ping from ARG1.

PING_COUNT=3

PACKET_SIZE=54

This next case statement executes the correct ping

command based on the Unix flavor

case $(uname) in

AIX|OpenBSD|Linux)

ping -c${PING_COUNT} $HOST 2>/dev/null

;;

HP-UX)

ping $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

;;

SunOS)

ping -s $HOST $PACKET_SIZE $PING_COUNT 2>/dev/null

;;

*)

echo "\nERROR: Unsupported Operating System - $(uname)"

echo "\n\t. . .EXITING. . .\n"
exit 1

esac

}

Listing 1-21 ping_host function

The main body of the shell script must supply the hostname to ping. This is usually
done with a while loop.

Highlighting Specific Text in a File

The technique shown here highlights specific text in a file with reverse video while
displaying the entire file. To add in the reverse video piece, we have to do some

Michael c01.tex V4 - 11/21/2008 6:25pm Page 50

50 Part I ■ The Basics of Shell Scripting

command substitution within the sed statement using the tput commands. Where we
specify the new_string, we will add in the control for reverse video using command
substitution, one to turn highlighting on and one to turn it back off. When the command
substitution is added, our sed statement will look like the following:

sed s/string/$(tput smso)string$(tput rmso)/g

We also want the string to be assigned to a variable, as in the next command:

sed s/"$STRING"/$(tput smso)"$STRING"$(tput rmso)/g

Notice the double quotes around the string variable, "$STRING". Do not forget to
add the double quotes around variables!

As an experiment using command substitution, try this next command statement to
highlight the machine’s hostname in the /etc/hosts file on any UNIX machine:

cat /etc/hosts | sed s/‘hostname‘/$(tput smso)‘hostname‘$(tput rmso)/g

Keeping the Printers Printing

Keeping the printers enabled in a large shop can sometimes be overwhelming. There
are two techniques to keep the printers printing. One technique is for the AIX ‘‘classic’’
printer subsystem, and the other is for System V and CUPS printing.

AIX ‘‘Classic’’ Printer Subsystem
To keep AIX ‘‘classic’’ printer subsystem print queues running, use either of the
following commands:

enable $(enq -AW | tail +3 | grep DOWN | awk ’{print $1}’) 2>/dev/null

or

enable $(lpstat -W | tail +3 | grep DOWN | awk ’{print $1}’) 2>/dev/null

System V and CUPS Printing
To keep System V and CUPS printers printing any of the following commands:

lpc enable $(lpstat -a | grep ’not accepting’ | awk ’{print $1}’)

lpc start $(lpstat -p | grep disabled | awk ’{print $2}’)

lpc up all # Enable all printing and queuing

It is a good idea to use the root cron table to execute the appropriate command
every 15 minutes or so.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 51

Chapter 1 ■ Scripting Quick Start and Review 51

Automated FTP File Transfer

You can use a here document to script an FTP file transfer. The basic idea is shown
here:

ftp -i -v -n wilma <<END_FTP

user randy mypassword

binary

lcd /scripts/download

cd /scripts

get auto_ftp_xfer.ksh

bye

END_FTP

Using rsync to Replicate Data

We use rsync much the same way that we use rcp and scp. All three methods require
a source and destination file or directory, and there are command-line switches that
allow us to save file permissions, links, ownership, and so on, as well as to copy
directory structures recursively. A few examples are the best way to learn how to use
rsync. Let’s start with this simple rsync statement:

rsync myscript.bash yogi:/scripts/

This would transfer the file myscript.bash from the current directory on the local
machine to the /scripts directory on the yogi server. Now, if the myscript.bash

file already exists on the server yogi, in the /scripts directory, then the rsync
remote-update protocol is used to update the file by sending only the differences between
the source and destination files:

rsync -avz yogi:/scripts/data /scripts/tmp

This rsync statement will recursively transfer all the files and directories in the
/scripts/data directory on the yogi machine to the /scripts/tmp directory on
the local machine. The -a rsync switch specifies archive mode, which preserves the
permissions, ownerships, symbolic links, attributes, and so on, and specifies a recursive
copy in the transfer. The -z rsync switch specifies compression is to be used in the
transfer to reduce the amount of data in the transfer. Note that this example will create
a new directory on the local machine /scripts/tmp/data. The -v rsync switch
specifies verbose mode.

rsync -avz yogi:/scripts/data/ /scripts/tmp

Notice the trailing slash on the source: yogi:/scripts/data/

Michael c01.tex V4 - 11/21/2008 6:25pm Page 52

52 Part I ■ The Basics of Shell Scripting

This trailing slash changes the behavior of rsync to eliminate creating the additional
directory on the destination, as the previous example produced: /scripts/tmp/data.
The trailing slash on the source side tells rsync to copy the directory contents, as opposed
to copy the directory name and all of its contents.

rsync -avz /scripts/data /scripts/tmp

rsync -avz /scripts/data/ /scripts/tmp

As you can see by these two examples, we can copy files locally as well as remotely.
Notice that local file copying does not have a hostname specified by the hostname:
notation.

Simple Generic rsync Shell Script
A simple generic shell script for rsync consists only of defining some variables to
point to the file/directory we want to copy, and a one-line rsync statement. Check
out Listing 1-22 and we will cover the details at the end.

#!/bin/bash

#

SCRIPT: generic_rsync.bash

AUTHOR: Randy Michael

DATE: 11/18/2007

REV: 1.0

PURPOSE: This is a generic shell script to copy files

using rsync.

#

set -n # Uncomment to check script syntax without execution

set -x # Uncomment to debug this script

#

REV LIST:

#

#

##

DEFINE FILES AND VARIABLES HERE

##

Define the source and destination files/directories

SOURCE_FL="/scripts/"

DESTIN_FL="booboo:/scripts"

##

BEGINNING OF MAIN

##

Start the rsync copy

Listing 1-22 generic_rsync.bash script

Michael c01.tex V4 - 11/21/2008 6:25pm Page 53

Chapter 1 ■ Scripting Quick Start and Review 53

rsync -avz "$SOURCE_FL" "$DESTIN_FL"

End of generic_rsync.bash

Listing 1-22 (continued)

As you can see, there is not much to this shell script. We define the source and
destination files/directories to the SOURCE_FL and DESTIN_FL variables, respectively.
Next we use these variables in our rsync statement:

rsync -avz "$SOURCE_FL" "$DESTIN_FL"

This rsync command will recursively transfer all the files and subdirectories in the
local /scripts/ directory (notice the trailing slash on the source) to the /scripts

directory on the booboo server using compression to reduce the amount of data
transferred. Notice that the trailing slash avoided creating a second scripts directory
on the destination: /scripts/scripts/.

Capturing a List of Files Larger than $MEG

Who filled up that filesystem? If you want to look quickly for large files, use the
following syntax:

Search for files > $MEG_BYTES starting at the $SEARCH_PATH

#

HOLD_FILE=/tmp/largefiles.list

MEG_BYTES=$1

SEARCH_PATH=$(pwd) # Use the current directory

find $SEARCH_PATH -type f -size +${MEG_BYTES}000000c -print > $HOLDFILE

Note that in the find command after the -size parameter there is a plus sign (+)
preceding the file size, and there is a c added as a suffix. This combination specifies
files larger than $MEG_BYTES measured in bytes, as opposed to blocks.

Capturing a User’s Keystrokes

In most large shops there is a need, at least occasionally, to monitor a user’s actions.
You may even want to audit the keystrokes of anyone with root access to the system
or other administration-type accounts, such as oracle. Contractors onsite can pose a
particular security risk. Typically when a new application comes into the environment,
one or two contractors are onsite for a period of time for installation, troubleshooting,
and training personnel on the product.

The code shown in Listing 1-23 uses the script command to capture all the
keystrokes.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 54

54 Part I ■ The Basics of Shell Scripting

TS=$(date +%m%d%y%H%M%S) # File time stamp

THISHOST=$(hostname|cut -f1-2 -d.) # Host name of this machine

LOGDIR=/usr/local/logs/script # Directory to hold the logs

LOGFILE=${THISHOST}.${LOGNAME}.$TS # Creates the name of the log file

touch $LOGDIR/$LOGFILE # Creates the actual file

Set the command prompt

export PS1="[$LOGNAME:$THISHOST]@"’$PWD> ’

#################### RUN IT HERE ##########################

chown $LOGNAME ${LOGDIR}/${LOGFILE} # Let the user own the log file

while the script executes

chmod 600 ${LOGDIR}/${LOGFILE} # Change permission to RW for the owner

script ${LOGDIR}/${LOGFILE} # Start the script monitoring session

chown root ${LOGDIR}/${LOGFILE} # Change the ownership to root

chmod 400 ${LOGDIR}/${LOGFILE} # Set permission to read-only by root

Listing 1-23 Capturing a user’s keystrokes

Using the bc Utility for Floating-Point Math

On UNIX machines there is a utility called bc that is an interpreter for arbitrary-
precision arithmetic language. Thebc command is an interactive program that provides
arbitrary-precision arithmetic. You can start an interactive bc session by typing bc

on the command line. Once in the session you can enter most complex arithmetic
expressions as you would in a calculator.

The code segment shown in Listing 1-24 creates the mathematical expression for the
bc utility and then uses a here document to load the expression into bc.

Loop through each number and build a math statement that

will add all of the numbers together.

for X in $NUM_LIST

do

ADD="$ADD $PLUS $X"

PLUS="+"

done

##

Do the math here by using a here document to supply

Listing 1-24 Example of using bc in a shell script

Michael c01.tex V4 - 11/21/2008 6:25pm Page 55

Chapter 1 ■ Scripting Quick Start and Review 55

input to the bc command. The sum of the numbers is

assigned to the SUM variable.

SUM=$(bc <<EOF

scale=$SCALE

(${ADD})

EOF)

Listing 1-24 (continued)

This is about as simple as bc gets. This is just a taste. Look for more later in the book.

Number Base Conversions

There are a lot of occasions when we need to convert numbers between bases. The
code that follows shows some examples of how to change the base.

Using the typeset Command
Using the typeset command is valid up to base 36.

Convert a base 10 number to base 16

typeset -i16 BASE_16_NUM

BASE_16_NUM=47295

echo $BASE_16_NUM

16#b8bf

Convert a base 8 number to base 16

[root@yogi:/scripts]> typeset -i16 BASE_16_NUM

[root@yogi:/scripts]> BASE_16_NUM=8#472521

[root@yogi:/scripts]> echo $BASE_16_NUM

16#735c9

Using the printf Command
We can use the printf command to convert base-10 numbers to octal and hexadecimal
notation, as shown here:

Convert a base 10 number to base 8

printf %o 20398

47656

Michael c01.tex V4 - 11/21/2008 6:25pm Page 56

56 Part I ■ The Basics of Shell Scripting

Convert a base 10 number to base 16

printf %x 20398

4fae

We can display a number in exponential notation with the printf command with
the following syntax:

printf %e 20398

2.039800e+04

Create a Menu with the select Command

There are many times when you just need to provide a menu for the end user to select
from, and this is where a select statement comes in. The menu prompt is assigned
to the PS3 system variable, and the select statement is used a lot like a for loop. A
case statement is used to specify the action to take on each selection.

#!/bin/bash

#

SCRIPT: select_system_info_menu.bash

AUTHOR: Randy Michael

DATE: 1/17/2008

REV: 1.0

#

PURPOSE: This shell script uses the shell’s select

command to create a menu to show system information

Clear the screen

clear

Display the menu title header

echo -e "\n\tSYSTEM INFORMATION MENU\n"

Define the menu prompt

PS3="Select an option and press Enter: "

The select command defines what the menu

will look like

select i in OS Host Filesystems Date Users Quit

do

case $i in

Michael c01.tex V4 - 11/21/2008 6:25pm Page 57

Chapter 1 ■ Scripting Quick Start and Review 57

OS) echo

uname

;;

Host) echo

hostname

;;

Filesystems)

echo

df -k | more

;;

Date) echo

date

;;

Users) echo

who

;;

Quit) break

;;

esac

Setting the select command’s REPLY variable

to NULL causes the menu to be redisplayed

REPLY=

Pause before redisplaying the menu

echo -e "\nPress Enter to Continue. . .\c"
read

Ready to redisplay the menu again

clear the screen

clear

Display the menu title header

echo -e "\n\tSYSTEM INFORMATION MENU\n"

done

Clear the screen before exiting

clear

Notice in this code segment the use of the select statement. This looks just like
a for loop with a list of possible values. Next is an embedded case statement that
allows us to specify the action to take when each selection is made.

Michael c01.tex V4 - 11/21/2008 6:25pm Page 58

58 Part I ■ The Basics of Shell Scripting

The output of this simple menu is shown here:

SYSTEM INFORMATION MENU

1) OS 3) Filesystems 5) Users

2) Host 4) Date 6) Quit

Select an option and press Enter: 1

Linux

Press Enter to Continue. . .

Removing Repeated Lines in a File

The uniq command is used to report and remove repeated lines in a file. This is a
valuable tool for a lot of scripting and testing.

If you have a file that has repeated lines named my_list and you want to save the
list without the repeated lines in a file called my_list_no_repeats, use the following
command:

uniq my_list my_list_no_repeats

If you want to see a file’s output without repeated lines, use the following command:

cat repeat_file | uniq

Removing Blank Lines from a File

The easiest way to remove blank lines from a file is to use a sed statement. The
following syntax removes the blank lines:

cat my_file | sed /^$/d

or

sed /^$/d my_file

Testing for a Null Variable

Variables that have nothing assigned to them are sometimes hard to deal with. The
following test will ensure that a variable is either Null or has a value assigned to it.
The double quotes are very important and must be used!

Michael c01.tex V4 - 11/21/2008 6:25pm Page 59

Chapter 1 ■ Scripting Quick Start and Review 59

VAL= # Creates a NULL variable

if [[-z "$VAL" && "$VAL" = ’’]]

then

echo "The VAL variable is NULL"

fi

or

VAL=25

if [[! -z "$VAL" && "$VAL" != ’’]]

then

echo "The VAL variable is NOT NULL"

fi

Directly Access the Value of the Last Positional
Parameter, $#

To access the value of the $# positional parameter directly, use the following regular
expression:

eval ’$’$#

or

eval \$$#

There are a lot of uses for this technique, as you will see later in this book.

Remove the Column Headings in a Command
Output

There are many instances when we want to get rid of the column headings in a
command’s output. A lot of people try to use grep -v to pattern-match on something
unique in the heading. A much easier and more reliable method is to use the tail

command. An example is shown here with the df command output:

[root:yogi]@/scripts# df -k

Filesystem 1024-blocks Free %Used Iused %Iused Mounted on

/dev/hd4 32768 15796 52% 1927 12% /

/dev/hd2 1466368 62568 96% 44801 13% /usr

/dev/hd9var 53248 8112 85% 1027 8% /var

/dev/hd3 106496 68996 36% 245 1% /tmp

/dev/hd1 4096 3892 5% 55 6% /home

Michael c01.tex V4 - 11/21/2008 6:25pm Page 60

60 Part I ■ The Basics of Shell Scripting

/proc - - - - - /proc

/dev/hd10opt 655360 16420 98% 16261 10% /opt

/dev/scripts_lv 102400 24012 77% 1137 5% /scripts

/dev/lv_temp 409600 147452 65% 29 1% /tmpfs

Now look at the same output with the column headings removed:

[root:yogi]@/scripts# df -k | tail +2

/dev/hd4 32768 15796 52% 1927 12% /

/dev/hd2 1466368 62568 96% 44801 13% /usr

/dev/hd9var 53248 8112 85% 1027 8% /var

/dev/hd3 106496 68996 36% 245 1% /tmp

/dev/hd1 4096 3892 5% 55 6% /home

/proc - - - - - /proc

/dev/hd10opt 655360 16420 98% 16261 10% /opt

/dev/scripts_lv 102400 24012 77% 1137 5% /scripts

/dev/lv_temp 409600 147452 65% 29 1% /tmpfs

Just remember to add one to the total number of lines that you want to remove.

Arrays

The shell supports one-dimensional arrays. The maximum number of array elements
is 1,024. When an array is defined, it is automatically dimensioned to 1,024 elements. A
one-dimensional array contains a sequence of array elements, which are like the boxcars
connected together on a train track. An array element can be just about anything,
except for another array. I know; you’re thinking that you can use an array to access an
array to create two- and three-dimensional arrays. This can be done, but it is beyond
the scope of this book.

Loading an Array
An array can be loaded in two ways. You can define and load the array in one step with
the set -A command, or you can load the array one element at a time. Both techniques
are shown here:

set -A MY_ARRAY alpha beta gamma

or

X=0 # Initialize counter to zero.

Load the array with the strings alpha, beta, and gamma

for ELEMENT in alpha gamma beta

do

MY_ARRAY[$X]=$ELEMENT

((X = X + 1))

done

Michael c01.tex V4 - 11/21/2008 6:25pm Page 61

Chapter 1 ■ Scripting Quick Start and Review 61

The first array element is referenced by 0, not 1. To access array elements use the
following syntax:

echo ${MY_ARRAY[2] # Show the third array element

gamma

echo ${MY_ARRAY[*] # Show all array elements

alpha beta gamma

echo ${MY_ARRAY[@] # Show all array elements

alpha beta gamma

echo ${#MY_ARRAY[*]} # Show the total number of array elements

3

echo ${#MY_ARRAY[@]} # Show the total number of array elements

3

echo ${MY_ARRAY} # Show array element 0 (the first element)

alpha

We will use arrays in shell scripts in several chapters in this book.

Testing a String

One of the hardest things to do in a shell script is to test the user’s input from the
command line. The shell script shown in Listing 1-25 will do the trick using regular
expressions to define the string composition.

#!/bin/ksh

#

SCRIPT: test_string.ksh

AUTHOR: Randy Michael

REV: 1.0.D - Used for developement

DATE: 10/15/2007

PLATFORM: Not Platform Dependent

#

PURPOSE: This script is used to test a character

string, or variable, for its composition.

Examples include numeric, lowercase or uppercase

characters, alpha-numeric characters, and IP address.

#

REV LIST:

#

#

set -x # Uncomment to debug this script

Listing 1-25 test_string.ksh shell script

Michael c01.tex V4 - 11/21/2008 6:25pm Page 62

62 Part I ■ The Basics of Shell Scripting

set -n # Uncomment to verify syntax without any execution.

REMEMBER: Put the comment back or the script will

NOT EXECUTE!

#

##

############## DEFINE FUNCTIONS HERE ###############

##

test_string ()

{

This function tests a character string

Must have one argument ($1)

if (($# != 1))

then

This error would be a programming error

print "ERROR: $(basename $0) requires one argument"

return 1

fi

Assign arg1 to the variable --> STRING

STRING=$1

This is where the string test begins

case $STRING in

+([0-9]).+([0-9]).+([0-9]).+([0-9]))

Testing for an IP address - valid and invalid

INVALID=FALSE

Separate the integer portions of the "IP" address

and test to ensure that nothing is greater than 255

or it is an invalid IP address.

for i in $(echo $STRING | awk -F . ’{print $1, $2, $3, $4}’)

do

if ((i > 255))

then

INVALID=TRUE

fi

done

case $INVALID in

TRUE) print ’INVALID_IP_ADDRESS’

;;

Listing 1-25 (continued)

Michael c01.tex V4 - 11/21/2008 6:25pm Page 63

Chapter 1 ■ Scripting Quick Start and Review 63

FALSE) print ’VALID_IP_ADDRESS’

;;

esac

;;

+([0-1])) # Testing for 0-1 only

print ’BINARY_OR_POSITIVE_INTEGER’

;;

+([0-7])) # Testing for 0-7 only

print ’OCTAL_OR_POSITIVE_INTEGER’

;;

+([0-9])) # Check for an integer

print ’INTEGER’

;;

+([-0-9])) # Check for a negative whole number

print ’NEGATIVE_WHOLE_NUMBER’

;;

+([0-9]|[.][0-9]))

Check for a positive floating point number

print ’POSITIVE_FLOATING_POINT’

;;

+(+[0-9][.][0-9]))

Check for a positive floating point number

with a + prefix

print ’POSITIVE_FLOATING_POINT’

;;

+(-[0-9][.][0-9]))

Check for a negative floating point number

print ’NEGATIVE_FLOATING_POINT’

;;

+([-.0-9]))

Check for a negative floating point number

print ’NEGATIVE_FLOATING_POINT’

;;

+([+.0-9]))

Check for a positive floating point number

print ’POSITIVE_FLOATING_POINT’

;;

+([a-f])) # Test for hexidecimal or all lowercase characters

print ’HEXIDECIMAL_OR_ALL_LOWERCASE’

;;

+([a-f]|[0-9])) # Test for hexidecimal or all lowercase characters

print ’HEXIDECIMAL_OR_ALL_LOWERCASE_ALPHANUMERIC’

;;

+([A-F])) # Test for hexidecimal or all uppercase characters

print ’HEXIDECIMAL_OR_ALL_UPPERCASE’

;;

+([A-F]|[0-9])) # Test for hexidecimal or all uppercase characters

print ’HEXIDECIMAL_OR_ALL_UPPERCASE_ALPHANUMERIC’

Listing 1-25 (continued)

Michael c01.tex V4 - 11/21/2008 6:25pm Page 64

64 Part I ■ The Basics of Shell Scripting

;;

+([a-f]|[A-F]))

Testing for hexidecimal or mixed-case characters

print ’HEXIDECIMAL_OR_MIXED_CASE’

;;

+([a-f]|[A-F]|[0-9]))

Testing for hexidecimal/alpha-numeric strings only

print ’HEXIDECIMAL_OR_MIXED_CASE_ALPHANUMERIC’

;;

+([a-z]|[A-Z]|[0-9]))

Testing for any alpha-numeric string only

print ’ALPHA-NUMERIC’

;;

+([a-z])) # Testing for all lowercase characters only

print ’ALL_LOWERCASE’

;;

+([A-Z])) # Testing for all uppercase numbers only

print ’ALL_UPPERCASE’

;;

+([a-z]|[A-Z]))

Testing for mixed case alpha strings only

print ’MIXED_CASE’

;;

*) # None of the tests matched the string composition

print ’INVALID_STRING_COMPOSITION’

;;

esac

}

##

usage ()

{

echo "\nERROR: Please supply one character string or variable\n"
echo "USAGE: $THIS_SCRIPT {character string or variable}\n"
}

##

############# BEGINNING OF MAIN ####################

##

Query the system for the name of this shell script.

This is used for the "usage" function.

THIS_SCRIPT=$(basename $0)

Check for exactly one command-line argument

Listing 1-25 (continued)

Michael c01.tex V4 - 11/21/2008 6:25pm Page 65

Chapter 1 ■ Scripting Quick Start and Review 65

if (($# != 1))

then

usage

exit 1

fi

Everything looks okay if we got here. Assign the

single command-line argument to the variable "STRING"

STRING=$1

Call the "test_string" function to test the composition

of the character string stored in the $STRING variable.

test_string $STRING

End of script

Listing 1-25 (continued)

This is a good start, but this shell script does not cover everything. Play around with
it to see if you can make some improvements.

N O T E Bash shell does not support the +([0-9])-type regular expressions.

Summary

This chapter is just a primer to get you started with a quick review and some little
tricks and tips. In the next 27 chapters, we are going to write a lot of shell scripts to
solve some real-world problems. Sit back and get ready to take on the UNIX world!

The first thing that we are going to study is 24 ways to process a file line-by-line. I
have seen a lot of good and bad techniques for processing a file line-by-line over the
past 15 years, and some have been rather inventive. The next chapter presents the 24
techniques that I have seen the most; at the end of the chapter there is a shell script
that times each technique to find the fastest. Read on, and find out which one wins the
race. See you in the next chapter!

Michael c01.tex V4 - 11/21/2008 6:25pm Page 66

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

