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Preliminaries

1.1 RANDOM FUNCTIONS

G. de Marsily started the defense of his hydrogeology thesis by showing the
audience a jar filled with fine sand and announced “here is a porous medium.”
Then he shook the jar and announced “and here is another,” shook it again and
said “and yet another.” Indeed, at the microscopic scale the geometry is defined
by the arrangement of thousands of individual grains with different shapes and
dimensions, and it changes as the grains settle differently each time. Yet at the
macroscopic scale we tend to regard it as the same porous medium because its
physical properties do not change. This is an ingenious illustration of the
notion of a random function in three-dimensional space.

Random functions are useful models for regionalized variables.

1.1.1 Definitions

Notations

Throughout this book the condensed notation x is used to denote a point in the
n-dimensional space considered. For example, in 3D x stands for the coordi-
nates (x1, x2, x3) (usually called x, y, z). The notation f(x) represents a function
of x as well as its value at x. The notation f is used for short, and sometimes the
notation f(�) is employed to emphasize that we consider the function taken as a
whole and not its value at a single point. Since x is a point in Rn, dx stands for
an element of length (n¼ 1), of surface (n¼ 2), or volume (n¼ 3) and

R
V
f ðxÞdx

represents the integral of f(x) over a domain V�Rn. For example, if n¼ 2 and
V is the rectangle [a1, b1]� [a2, b2], we obtain

Z
V

f ðxÞdx ¼
Z b1

a1

dx1

Z b2

a2

f ðx1; x2Þdx2
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We will seldom need an explicit notation for the coordinates of a point; thus
from now on, except when stated otherwise, x1, x2, . . . , will represent distinct
points in Rn rather than the coordinates of a single point.

Coming back to the sand jar, we can describe the porous medium by the
indicator function of the grains, namely the function I(x)¼ 1 if the point x (in
3D space) is in a grain and I(x)¼ 0 if x is in a void (the pores). Each exper-
iment (shaking the jar) determines at once a whole function {I(x) : x2V} as
opposed to, say, throwing a die that only determines a single value (random
variable). In probability theory it is customary to denote the outcome of an
experiment by the letter ω and the set of all elementary outcomes, or events, by
Ω. To make the dependence on the experiment explicit, a random variable is
denoted by X(ω), and likewise our random indicator function is I(x,ω). For a
fixed ω¼ω0, I(x, ω0) is an ordinary function of x, called a realization (or
sample function); any particular outcome of the jar-shaking experiment is a
realization of the random function I(x, ω). On the other hand, for a fixed point
x¼ x0 the function I(x0, ω) is an ordinary random variable. Thus mathemat-
ically a random function can be regarded as an infinite family of random
variables indexed by x.

We can now give a formal definition of a random function [from Neveu
(1970), some details omitted; see also Appendix, Section A.1]:

Random Function

Given a domain D�Rn (with a positive volume) and a probability space (Ω, A,
P), a random function (abbreviation: RF) is a function of two variables Z(x, ω)
such that for each x2D the section Z(x, �) is a random variable on (Ω, A, P).
Each of the functions Z(�,ω) defined on D as the section of the RF at ω2Ω is
a realization of the RF. For short the RF is simply denoted by Z(x), and a
realization is represented by the lowercase z(x).

In the literature a random function is also called a stochastic process when x
varies in a 1D space, and can be interpreted as time, and it is called a random
field when x varies in a space of more than one dimension.

In geostatistics we act as though the regionalized variable under study z(x) is a
realization of a parent random function Z(x). Most of the time we will not be
able tomaintain the notational distinction betweenZ(x) and z(x), andwewill get
away with it by saying that the context should tell what is meant. The same is
true for the distinction between an estimator (random) and an estimate (fixed).

Spatial Distribution

A random function is described by its finite-dimensional distributions, namely
the set of all multidimensional distributions of k-tuples (Z(x1),Z(x2), . . . ,
Z(xk)) for all finite values of k and all configurations of the points x1, x2, . . . , xk.
For short we will call this the spatial distribution.

In theory, the spatial distribution is not sufficient to calculate the probability
of events involving an infinite noncountable number of points, such as the
following important probabilities:
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Prfsup½ZðxÞ : x 2 V�, z0g the maximum value inV is less than z0
Prf9x 2 V : ZðxÞ ¼ 0g a zero crossing occurs in domain V
Prfevery realization of Zð�Þ is continuous over Vg

This difficulty is overcome by adding the assumption of separability of the
random function. A random function is separable if all probabilities involving a
noncountable number of points can be uniquely determined from probabilities
on countable sets of points (e.g., all points in Rn with rational coordinates), and
hence from the spatial distribution. A fundamental result established by Doob
(1953, Section 2.2) states that for any random function there always exists a
separable random function with the same spatial distribution. In other words,
among random functions that are indistinguishable from the point of view of
their spatial distribution, we pick and work with the smoothest possible version
(see footnote 3 in Section 2.3.1). For completeness let us also mention that tools
more powerful than the spatial distribution are required to represent random
sets [e.g., Matheron (1975a)] but will not be needed in this book.

Moments

The mean of the RF is the expected value m(x)¼E [Z(x)] of the random var-
iable Z(x) at the point x. It is also called the drift of Z, especially when m(x)
varies with location. The (centered) covariance σ(x, y) is the covariance of the
random variables Z(x) and Z(y):

σðx; yÞ ¼ E½ZðxÞ �mðxÞ�½ZðyÞ �mðyÞ�
In general, this function depends on both x and y. When x¼ y, σ(x, x)¼
Var Z(x) is the variance ofZ(x). Higher-ordermoments can be defined similarly.

Naturally, in theory, these moments may not exist. As usual in probability
theory, the mean is defined only if E |Z(x)|,N. If E [Z(x)]2 is finite at every
point, Z(x) is said to be a second-order random function: It has a finite vari-
ance, and the covariance exists everywhere.

Convergence in the Mean Square

A sequence of random variables Xn is said to converge in the mean square (m.s.)
sense to a random variable X if

lim
n-N

EjXn � X j2 ¼ 0

Taking Xn¼Z(xn) and X¼Z(x), we say that an RF Z(x) on Rn is m.s. con-
tinuous if xn- x in Rn implies that Z(xn)-Z(x) in the mean square. This
definition generalizes the continuity of ordinary functions.

1.1.2 Hilbert Space of Random Variables

It is interesting to cast the study of random functions in the geometric frame-
work of Hilbert spaces. To this end, consider for maximum generality a family
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of complex-valued random variables X defined on a probability space (Ω, A, P)
and having finite second-order moments

EjX j2 ¼
Z

jXðωÞj2PðdωÞ,N

These random variables constitute a vector space denoted L2(Ω, A, P) which
can be equipped with the scalar product hX ;Yi ¼ E½XY � defining a norm1 (or
distance) kXk ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
EjX j2

p
(the upper bar denotes complex conjugation). In this

sense we can say that two random variables are orthogonal when they are
uncorrelated. Then L2(Ω, A, P) is a Hilbert space (every Cauchy sequence
converges for the norm). An example is the infinite-dimensional Hilbert space
of random variables {Z(x) : x2D} defined by the RF Z.

A fundamental property of a Hilbert space is the possibility of defining the
orthogonal projection of X onto a closed linear subspace K as the unique point
X0 in the subspace nearest to X. This is expressed by the so-called projection
theorem [e.g., Halmos (1951)]:

X0 ¼ arg min
Y2K

:X � Y: 3 hX � X0;Yi ¼ 0 for all Y 2 K ð1:1Þ

Since X02K, it satisfies hX�X0, X0i¼ 0 so that

:X � X0:
2 ¼ :X:2 � :X0:

2 ð1:2Þ

This approximation property is the mathematical basis of kriging theory.

1.1.3 Conditional Expectation

Consider a pair of random variables (X, Y), and let f (y | x) be the density of the
conditional distribution of Y given that X¼ x. The conditional expectation of Y
given X¼ x is the mean of that conditional distribution

EðY jX ¼ xÞ ¼
Z þN

�N
y f ðy j xÞ dy

E (Y |X¼ x)¼φ(x) is a function of x only, even though Y appears in the
expression. It is also known as the regression function of Y on X. When (X, Y)
are jointly Gaussian,2 this function is a straight line. If the argument of φ(�) is
the random variable X, φ(X) is itself a random variable denoted by E (Y |X).
This definition carries over to the case where there are several conditioning
variables X1, . . . ,XN.

1 Strictly speaking, :X:¼ 0 implies that X¼ 0 only up to a set of probability zero, but as usual,

equivalence classes of random variables are considered.
2 “Gaussian” and “normal” will be used as synonyms.
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It is possible to develop a theory of conditional expectations without ref-
erence to conditional distributions, and this is mathematically better and
provides more insight. The idea is to find the best approximation of Y by a
function of X. Specifically, we assume X and Y to have finite means and var-
iances and pose the following problem: Find a function φ(X) such that
E[Y�φ(X)]2 is a minimum. The solution is the conditional expectation E(Y|X).

This solution is unique (up to an equivalence between random variables) and
is characterized by the following property:

Ef½Y � EðY j XÞ�HðXÞg ¼ 0 for all measurable Hð�Þ ð1:3Þ

In words, the error Y�E (Y |X) is uncorrelated3 with any finite-variance ran-
dom variable of the form H(X). Notice that this is a particular application of
the projection formula (1.1).

In particular, when H(X) � 1, we get

E½EðY jXÞ� ¼ EðYÞ ð1:4Þ

The conditional variance is defined by

VarðY jXÞ ¼ EðY2 jXÞ � ½EðY jXÞ�2

from which we deduce the well-known total variance formula

VarðYÞ ¼ Var½EðY jXÞ� þ E½VarðY jXÞ� ð1:5Þ

The variance about the mean equals the variance due to regression plus the
mean variance about regression.

For H(X)¼E(Y |X) we have

Ef½Y � EðY jXÞ�EðY jXÞg ¼ 0

so that

CovðY ;EðY jXÞÞ ¼ VarðEðY jXÞÞ

which shows that Y and E (Y |X) are always positively correlated with

ρ2 ¼ VarðEðY jXÞÞ
VarðYÞ ð1:6Þ

From (1.5) the residual variance takes the familiar form

3This does not imply independence between the error and X; if X¼Y2, Y symmetric about 0,

E(Y |X)¼ 0, but Y is not independent of X.
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E½VarðY jXÞ� ¼ ð1� ρ2ÞVarðYÞ ð1:7Þ

(note that here ρ is not the correlation between Y and X but between Y and its
regression on X ).

In addition to the unbiasedness property, let us mention the property of
conditional unbiasedness, which we will often invoke in this book in relation to
kriging:

φðXÞ ¼ EðY jXÞ . EðY j φðXÞÞ ¼ φðXÞ

The proof follows immediately from the characteristic property (1.3), since

Ef½Y � φðXÞ�HðXÞg ¼ 0 for all measurable Hð�Þ

entails that φ(X) also satisfies

Ef½Y � φðXÞ�HðφðXÞÞg ¼ 0 for all measurable Hð�Þ

Some Properties of Conditional Expectation

The following results can be derived directly from the characteristic formula
and are valid almost surely (a.s.):

Linearity E (aY1þ bY2 |X )¼ aE (Y1 |X )þ bE (Y2 |X )

Positivity Y$ 0 a.s. . E (Y |X )$ 0 a.s.

Independence X and Y are independent.E (Y |X )¼E(Y )

Invariance E(Y f (X ) |X )¼ f (X ) E(Y |X )

Successive projections E (Y |X1)¼E[E (Y |X1, X2) |X1]

1.1.4 Stationary Random Functions

Strict Stationarity

A particular case of great practical importance is when the finite-dimensional
distributions are invariant under an arbitrary translation of the points by a
vector h:

PrfZðx1Þ, z1; : : : ;ZðxkÞ, zkg ¼ PrfZðx1 þ hÞ, z1; : : : ;Zðxk þ hÞ, zkg

Such RF is called stationary. Physically, this means that the phenomenon is
homogeneous in space and, so to speak, repeats itself in the whole space. The
sand in the jar is a good image of a stationary random function in three
dimensions, at least if the sand is well sorted (otherwise, if the jar vibrates,
the finer grains will eventually seep to the bottom, creating nonstationarity
in the vertical dimension).
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Second-Order Stationarity

When the random function is stationary, its moments, if they exist, are obvi-
ously invariant under translations. If we consider the first two moments only,
we have for points x and xþ h of Rn

E½ZðxÞ� ¼ m;

E½ZðxÞ �m�½Zðxþ hÞ �m� ¼ CðhÞ

The mean is constant and the covariance function only depends on the sepa-
ration h. We will see in Section 2.3.2 that a covariance must be a positive definite
function.

By definition, a random function satisfying the above conditions is second-
order stationary (or weakly stationary, or wide-sense stationary). In this book,
unless specified otherwise, stationarity will always be considered at order 2, and
the abbreviation SRFwill designate a second-order stationary random function.

An SRF is isotropic if its covariance function only depends on the length | h |
of the vector h and not on its orientation.

Intrinsic Hypothesis

A milder hypothesis is to assume that for every vector h the increment Yh(x)¼
Z(xþ h)�Z(x) is an SRF in x. Then Z(x) is called an intrinsic random function
(abbreviation: IRF) and is characterized by the following relationships:

E½Zðxþ hÞ � ZðxÞ� ¼ ha; hi;
Var½Zðxþ hÞ � ZðxÞ� ¼ 2γðhÞ

ha, hi is the linear drift of the IRF (drift of the increment) and γ(h) is its
variogram function, studied at length in Chapter 2.

If the linear drift is zero—that is, if the mean is constant—we have the usual
form of the intrinsic model:

E½Zðxþ hÞ � ZðxÞ� ¼ 0;

E½Zðxþ hÞ � ZðxÞ�2 ¼ 2γðhÞ

Gaussian Random Functions

A random function is Gaussian if all its finite-dimensional distributions are
multivariate Gaussian. Since a Gaussian distribution is completely defined by
its first two moments, knowledge of the mean and the covariance function
suffices to determine the spatial distribution of a Gaussian RF. In particular,
second-order stationarity is equivalent to full stationarity.

A Gaussian IRF is an IRF whose increments are multivariate Gaussian.
A weaker form of Gaussian behavior is when all bivariate distributions of the

RFareGaussian; theRF is then sometimes called bi-Gaussian. A yetweaker form
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is whenonly themarginal distribution ofZ(x) isGaussian.This bynoway implies
that Z(x) is a Gaussian RF, but this leap of faith is sometimes made.

1.1.5 Spectral Representation

The spectral representation of SRFs plays a key role in the analysis of time signals. It states
that a stationary signal is a mixture of statistically independent sinusoidal components at
different frequencies. These basic harmonic constituents can be identified physically by means
of filters that pass oscillations in a given frequency interval and stop others. This can also be
done digitally using the discrete Fourier transform.

In the case of spatial processes the physical meaning of frequency components is generally
less clear, but the spectral representation remains a useful theoretical tool, especially for
simulations. For generality and in view of future reference we will state the main results in Rn,
which entails some unavoidable mathematical complication.

Theorem. A real, continuous, zero-mean RF defined on Rn is stationary (of order 2) if and
only if it has the spectral representation

ZðxÞ ¼
Z

e2πihu;xiYðduÞ ð1:8Þ

for some unique orthogonal random spectral measure Y(du) (see Appendix, Section A.1). Here
i is the unit pure imaginary number, u¼ (u1, . . . , un) denotes an n-dimensional frequency
vector, du is an element of volume in Rn, x¼(x1, . . . ,xn) is a point of Rn, and hu, xi¼
u1x1þ � � � þ un xn is the scalar product of x and u.

For any Borel sets B and B 0 of Rn, the measure Y satisfies

E½YðBÞ� ¼ 0

E½YðBÞYðB 0Þ� ¼ 0 if B-B 0 ¼ [

YðB,B 0Þ ¼ YðBÞ þ YðB 0Þ if B-B 0 ¼ [

Z(x) being real, we have in addition the symmetry relation Yð�BÞ ¼ YðBÞ, where�B denotes
the symmetric of B with respect to the origin. Note that the random variables associated with
disjoint sets B and B 0 are uncorrelated, hence the name orthogonal measure.

Now define F(B)¼E|Y(B)|2. F is a positive bounded symmetric measure called the spectral
measure. We have in particular

FðB,B 0Þ ¼ FðBÞ þ FðB 0Þ if B-B 0 ¼ [

E½YðBÞYðB 0Þ� ¼ FðB-B 0Þ

It follows readily from (1.8) and the symmetry of F that the covariance of Z(x) has the
spectral representation

CðhÞ ¼ E½ZðxÞZðxþ hÞ� ¼
Z

e2πihu;hiFðduÞ

For time signals, the power of the RF Z(x), which is the energy dissipated per unit time, is
generally proportional toZ(x)2. If the SRFhas zeromean,C(0) is equal toE [Z(x)2] and plays the
role of an average power, and the measure F represents the decomposition of this power into
the different frequencies. Note that the integral

R
FðduÞ of the spectral measure is equal to the

total power C(0).
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Real Spectral Representation

It is interesting to separate the real and imaginary parts of the random spectral measure Y
in the form

YðBÞ ¼ UðBÞ � i VðBÞ
where U and V are two real random measures (notice the �i in the definition of V ). From the
properties of Y, we can deduce the following properties that will be useful for simulations:

Uð�BÞ ¼ UðBÞ Vð�BÞ ¼ �VðBÞ
E½UðBÞUðB 0Þ� ¼ E½VðBÞVðB 0Þ� ¼ 0 if B-B 0 ¼ B-ð�B 0Þ ¼ [

E½UðBÞVðB 0Þ� ¼ 0 ’B;B 0

E
�
UðBÞ2� ¼ E

�
VðBÞ2� ¼ FðBÞ=2 if f0g =2 B

E
�jUðf0gÞj2� ¼ Fðf0gÞ Vðf0gÞ ¼ 0

ð1:9Þ

Also, Z(x) has the representation

ZðxÞ ¼
Z

cosð2πhu;xiÞUðduÞ þ
Z

sinð2πhu;xiÞVðduÞ

1.1.6 Ergodicity

Ergodicity is an intimidating concept. The practitioner has heard that the RF
should be ergodic, since “this is what makes statistical inference possible,” but
he or she is not sure how to check this fact and proceeds anyway, feeling
vaguely guilty of having perhaps overlooked something very important. We
will attempt here to clarify the issues. In practice, ergodicity is never a problem.
When no replication is possible, as with purely spatial phenomena, we can
safely choose an ergodic model. If the phenomenon is repeatable, typically
time-dependent fields or simulations, averages are computed over the different
realizations, and the only issue (more a physical than a mathematical one) is to
make sure that we are not mixing essentially different functions.

A detailed discussion of ergodicity can be found in Yaglom (1987, Vol. I,
Chapter 3), and an analysis of its meaning in the context of unique phenomena
in Matheron (1978). We have summarized the most important results so that
practitioners can pay their respects to ergodicity once for all and move on.

Ergodic Property

In order to carefully distinguish a random function from its realizations, we will
revert, in this section only, to the full notation Z(x, ω), where ω is the random
event indexing the realization. By definition, a stationary random function
Z(x, ω) is ergodic (in the mean) if the spatial average of Z(x, ω) over a domain
V�Rn converges to the expected value m¼E [Z(x, ω)] when V tends to infinity:

lim
V-N

1

jV j
Z
V

Zðx;ωÞdx ¼ m ð1:10Þ
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In this expression the norming factor |V| denotes the volume of the domain V,
and the limit is understood, as we will always do, in the mean square sense. In
Rn it is important to specify how V tends to infinity, since we may imagine that
V becomes infinitely long in some directions only, but we exclude this and
assume that V grows in all directions. For example, V may be the cube [0, t]n,
where t-N. Of course the limit does not depend on the particular shape of V.

To gain insight into the meaning of this property, it is interesting to revisit
the sand jar a last time and do a little thought experiment. We consider a point
x at a fixed location relative to the jar and shake the jar repeatedly, recording
each time a 1 if x falls in a grain and a 0 otherwise. From this we can evaluate the
mean of I(x, ω), namely the probability that x is in a grain, which should not
depend on x. It is intuitively obvious that wewill get the same result if we keep the
jar fixed and select the point x at randomwithin the jar, the probability of landing
in a grain being equal to the proportion of the space occupied by the grains.

The ergodic property can be extremely important for applications, since it
allows the determination of the mean from a single realization of the stationary
random function, and precisely most of the time we only have one realization to
work with. Not all stationary random functions are ergodic. The classic
counterexample is the RF Z(x, ω) � A(ω) whose realizations are constants
drawn from the random variable A. Clearly for each realization the space
integral (1.10) is equal to the constant level A(ω) but not to the mean of A.
Another, more realistic example of nonergodic RF is to consider a family of
different stationary and ergodic RFs and select one of them according to
the outcome of some random variable A, thus defining the composite RF
Z(x, ω; A). On each realization the space integral converges to the mean m(a)¼
E(Z(x, ω; A) |A¼ a) of the particular RF Z(x, ω; a), but this is different from
the overall mean E [m(A)]. Here we have the most common source of stationary
but nonergodic random functions arising in practice. As has been pointed out
in the literature, nonergodicity usually means that the random function com-
prises an artificial union of a number of distinct ergodic stationary functions.

Ergodic Theorem

This theorem states that if Z(x, ω) is a stationary random function (of order 2),
the space integral (1.10) always converges to some value m(ω), but this value in
general depends on the realization ω: it is a random variable, not a constant:

lim
V-N

1

jV j
Z
V

Zðx;ωÞdx ¼ mðωÞ ð1:11Þ

This result is a direct consequence of the stationarity of Z(x, ω) and again
requires V to grow in all directions. The random variable m(ω) has mean m and
a fluctuation equal to the atom at the origin of the random spectral measure
associated with the RF Z(x, ω):

mðωÞ ¼ mþ Yðf0g;ωÞ
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Since E|Y({0},ω)|2¼F({0}), it appears that Z(x, ω) possesses the ergodic
property if and only if its spectral measure F has no atom at the origin.

An equivalent condition, known as Slutsky’s ergodic theorem, is

lim
V-N

1

jV j
Z
V

CðhÞdh ¼ 0 ð1:12Þ

This is always satisfied if C(h) - 0 as h -N, as is usually the case, but the
condition is not necessary. Moreover, if the integral of the covariance in Rn is
finite, when V is very large the left-hand side of (1.12) is an approximation to
the variance of the space integral (1.11), and we will revisit this in Section 2.3.5
with the notion of integral range.

Ergodicity in the Covariance

In the above we have only considered first-order ergodicity, or ergodicity in the
mean. It is also important to be able to determine the covariance from a single
realization. This implies second-order ergodicity, or ergodicity in the covariance.
To establish the ergodicity of the covariance, the same theory can be applied to
the product variable Qh(x)¼Z(x) Z(xþ h) considered as a second-order sta-
tionary random function of x with h fixed. This involves the stationarity of
fourth-order moments. For Gaussian RFs the fourth-order moments depend on
the second-order moments, and simple results can be obtained. The analogue of
Slutsky’s condition for the convergence of covariance estimates is then

lim
V-N

1

jV j
Z
V

½CðhÞ�2dh ¼ 0 ð1:13Þ

This condition is more restrictive than (1.12). Its equivalent spectral formula-
tion is that the spectral measure F has no atom anywhere. In other words, the
covariance has no sinusoidal component. Again the convergence C(h)- 0 as
h-N suffices to fulfill (1.13), but the proof is only valid for Gaussian RFs.

Now What?

In the case of a unique phenomenon, there is no way of knowing if the space
integral would have converged to a different value on another realization, since
there is, and can be, only one. As will be seen in a moment, ergodicity is not an
objective property in the sense that it cannot be falsified. Therefore we choose to
model Z(x, ω) as an ergodic random function whose mean is the limit of the
space integral (1.10). Likewise, we take the limit of the regional covariance
(a space integral) as the definition of the covariance of the parent RF. Any other
choice would have no relevance to the situation considered.

Strictly speaking, there still is a problem. Recall that in practice, we work in
a bounded domain and cannot let it tend to infinity. This is a matter of scale. If
the domain is large enough for the integral (1.12) to be small, the mean can be
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estimated reliably. But if the variance is still large, due to a slow fall-off of the
covariance, the estimation of the mean is difficult, and it is preferable to avoid
using it at all and only consider increments. This is the justification for using the
variogram instead of the covariance. The possibility of statistical inference of
the variogram is discussed in Section 2.9.

When dealing with space�time phenomena observed at a fixed set of moni-
toring stations, we typically consider spatially nonstationarymodels and compute
time-averaged estimates of spatial means and covariances. We are thus treating
the data as a collection of (correlated) stationary and ergodic random functions
of time (multiple time series). These assumptions have to be checked carefully.

Micro-Ergodicity

As we have noted earlier, it is impossible to extend the domain to infinity.
Matheron (1978) introduced the notion of micro-ergodicity, also called infill
asymptotics (Cressie, 1991), concerned with the convergence of space integrals
when the domainD remains fixed but the sampling density becomes infinite. This
concept is distinct from standard ergodicity. For example, neither the mean nor
the variance of a stationary and ergodic RF is micro-ergodic, but the slope of the
variogram at the origin is micro-ergodic if the variable is not too smooth (Section
2.9.2). Micro-ergodic parameters represent physically meaningful properties.

1.2 ON THE OBJECTIVITY OF PROBABILISTIC STATEMENTS

What sense does it make to speak of the probability of a unique event? When
we are told that “there is a 60% chance of rain tomorrow,” we know the next
day if it rains or not, but how can we check that the probability of rain was
indeed 60% on that day at a specific place? We can’t. The only probabilistic
statement that can be disproved is “there is a zero chance of rain tomorrow“: If
it does rain the next day, then clearly the forecast was wrong. The same
problem essentially arises for spatial “prediction.” What is the physical
meaning of a statement such as “there is a 0.95 probability that the average
porosity of this block is between 20% and 25%” ? Potentially we could measure
the porosity and check if it lies in the interval, but we will never know if the 0.95
was correct. Yet despite their unclear meaning, we tend to find probabilistic
statements useful in giving us an appreciation of uncertainty.

In reality we establish the credibility of weather forecasts not from a single
prediction but over time. Someone with enough motivation could check if out
of 100 days associated with a forecast of a 60% chance of rain about 60 days
were indeed rainy, and do this for all % chance classes. A successful track
record, without proving the correctness of the forecast on any given day, proves
at least that it is correct on the average. It validates the forecasting methodology.

One may object that since we introduced repetitions we are no longer really
dealing with a unique phenomenon. But the distinction between unique and
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repeatable situations is not as clear-cut as it seems. Strictly speaking, it is
impossible to repeat the “same” experiment: They always differ in some
aspects; we simply judge those unimportant. On the other hand, even though
every petroleum reservoir, every mine, and every forest is unique, they all
belong to classes of situations, shaly sand reservoirs, copper deposits, or
tropical woods that are similar enough to give rise to specific methodologies
that over time can be validated objectively. This is “external” objectivity.

The practitioner who is interested in the evaluation of this specific deposit or
that specific forest would rather have criteria for “internal” objectivity that are
based on those unique situations. If we cannot pin down the meaning of a
probabilistic statement on a singular event, then the question becomes, Which
concepts, statements, and parameters have an objective, observable, measur-
able counterpart in reality? Matheron (1978) devotes a fascinating essay enti-
tled “Estimating and Choosing” to this quest for objectivity. The central idea
is this: The only objective quantities are those that may be calculated from the
values of a single realization over a bounded domain D. Indeed, in the absence of
repetitions, the maximum information we can ever get is the complete set
of values {z(x) : x2D}. Objective quantities are essentially space integrals of
functions of z(x), referred to as regionals: all the values of z(x) itself, block
averages, mean values above thresholds, and so on, along with the regional
mean, variogram, or histogram. On the contrary, the expected value m, the
(true) variogram γ, or the marginal distribution of Z(x) are conventional
parameters. To emphasize the difference, Matheron says that we estimate a
regional whose exact value is unknown but nevertheless exists independently of
us, namely is potentially observable, but we choose the value of a conventional
parameter.4

These considerations lead to a striking reversal of point of view where
regionals cease to be mere estimates of “true” parameters to become the
physical reality itself, while their theoretical counterparts turn into conven-
tional parameters. For example, the regional variogram γR should not be
regarded as the regional version of γ but rather γ as being the theoretical
version of γR. Likewise, the fluctuation variance (in the probabilistic model) of
a regional is not indicative of the difficulty of the statistical inference of its
expected value but rather of the lack of objective meaning of this parameter.

The objectivity of statements can be defined by two criteria. The stronger
one is to regard a statement as objective if it is decidable, which means that it
can be declared true or false once we know z(x) for all x2D. The weaker form
of objectivity is K. Popper’s demarcation criterion for scientific hypotheses: It
must be possible to design experiments whose outcomes are liable to falsify
predictions derived from these hypotheses, that is, events with probabilities
(nearly) equal to 0 or 1 (in the model). If such attempts are successful, the

4 In the statistical literature, to predictmeans to estimate in Matheron’s sense and to estimate means

to choose. In this book we will estimate observables in Matheron’s sense but fit model parameters

rather than choose them.
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hypothesis is falsified. If it withstands testing, we may not conclude that it is
true but only that it is corroborated (not refuted).

The statement “z(x) is a realization of a random function Z(x)” or even “of a
stationary random function” has no objective meaning. Indeed, since D is
bounded, it is always possible by periodic repetitions and randomization of the
origin to construct a stationary random function having a realization that
coincides over D with the observed z(x). Therefore no statistical test can dis-
prove stationarity in general. We choose to consider z(x) as a realization of Z(x)
over D. It does not mean that this decision is arbitrary—in practice, it is sug-
gested by the spatial homogeneity of the data—but simply that it cannot be
refuted. As stated earlier, ergodicity is also not an objective property.

If repetitions are the objective foundation of probabilities and if only
regionals are physically meaningful, then in the case of a unique phenomenon
the objectivity of our measures of uncertainty must be based on spatial repe-
titions. These are obtained by moving the configuration involved—for example,
a block and its estimating data points—throughout a domain D0. Denoting by
Zv the block value and by Z* its estimator, the estimation variance of such
block is interpreted as the spatial average of the squared error (Z*�Zv)

2 over
D0. By construction, this variance is not localized (i.e., is constant) within D0,
but neither is the kriging variance calculated in the stationary model (since it
only depends on the geometry and on the variogram). Of course the domain D0

can itself be local and correspond to a homogeneous subzone of the total
domain D. However, D0 should not be too small; otherwise, we will lack
repetitions. We are tempted to say that there is a trade-off between objectivity
and spatial resolution.5

1.3 TRANSITIVE THEORY

To avoid the epistemological problems associated with the uniqueness of
phenomena, Matheron (1965) first developed an estimation theory in purely
spatial terms which he named transitive theory. In this approach the regional-
ized variable z(x) is deterministic and only assumed to be identically zero
outside a bounded domain D; it represents a so-called transition phenomenon,
a spatial equivalent of a transient phenomenon in time. We will focus here on
the global estimation problem, namely the evaluation of the integral of z(x)
which typically represents the total amount of some resource. Initially applied
to mineral resources, the transitive approach has received a renewed interest in
the last two decades for the estimation of fish abundance when the areas of fish
presence have diffuse limits (Petitgas, 1993; Bez, 2002).

5 The image of “dithering” comes to mind. This is a binarization technique to transform a halftone

image into a black-and-white image. A gray level is obtained by judiciously distributing black and

white dots in the cells of a matrix: A 4� 4 matrix allows 16 gray levels, and a 16� 16 matrix is

required to render 256 gray levels. Thus there is a trade-off between the representation of gray level

amplitude and the spatial resolution.
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In this model, randomness is introduced through sampling. The easiest
would be to use the classic Monte Carlo method and select N samples randomly
and independently, leading to an unbiased estimator with a variance equal to
σ2/N, where σ2 is the spatial variance of z(x). However, systematic sampling is
usually more efficient. We will present the theory in this case, mainly for
background, but also to justify a neat formula for surface estimation. The
transitive theory can also be developed for local estimation, but it has no
advantage over the more elegant random function approach. Transitive theory
will not be used elsewhere in the book.

1.3.1 Global Estimation by Systematic Sampling

Consider the estimation of the integral

Q ¼
Z

zðxÞdx

which is finite since z(x) is zero outside the domain D. If z(x) is a mineral grade (in g/ton) and
if the ore density d is a constant, Qd is the quantity of metal in the deposit; if z(x) is an
indicator function, Q is the volume of D. We assume that the domain D is sampled on a
rectangular grid that extends as far as needed beyond the boundaries of D.

As usual, we reason in Rn and denote by a the elementary grid spacing (a1, a2, . . . , an) and
by |a| its volume (i.e., the product a1 a2 . . . an). The origin of the grid, which is one of its
points, is denoted by x0, and k denotes the set of positive or negative integers k¼ (k1, k2, . . . ,
kn). The simplest estimate of Q is

Q�ðx0Þ ¼ jaj
X
k2Zn

zðx0 þ kaÞ

where Z is the set of relative integers. If we select the origin x0 at random and uniformly
within the parallelepiped Π¼ [0, a1]� [0, a2]� � � �� [0, an], then Q* becomes a random
variable whose expected value is

E Q�� � ¼ 1

jaj
Z
Π
Q�ðx0Þdx0 ¼ 1

jaj
Z
Π
dx0jaj

X
k

zðx0 þ kaÞ ¼
Z

zðxÞdx ¼ Q

It is unbiased. When we define the transitive covariogram g(h) by

gðhÞ ¼
Z

zðxÞzðxþ hÞ dx
similar calculations show that

EðQ�Þ2 ¼ jaj
X
k

gðkaÞ and Q2 ¼
Z

gðhÞ dh

so that the variance of the error Q* � Q, or estimation variance, is given by the formula

EðQ� �QÞ2 ¼ jaj
X
k

gðkaÞ �
Z

gðhÞ dh ð1:14Þ

This estimation variance, denoted σ2(a), appears as the error incurred by approximating the
integral

R
gðhÞ dh by a discrete sum over the grid. It decreases as the grid becomes finer and as

the function z(�) becomes smoother.

c01 28 January 2012; 12:44:45

1.3 TRANSITIVE THEORY 25



This variance is always nonnegative provided that the covariogram g(h) is modeled as a
positive definite function (g(h) is the convolution of z(x) by z(�x)). The transitive covariogram
plays the role of the covariance in an RF model, and in fact they are related, since the regional
noncentered covariance overD is given by

CRðhÞ ¼ 1

KðhÞ
Z
D-D�h

zðxÞzðxþ hÞdx; where KðhÞ ¼ jD-D�hj

so that g(h)¼K(h) CR(h).
An expansion of formula (1.14) as a Euler�MacLaurin series leads, for small a, to a

decomposition of the variance σ2(a) into two terms:

σ2ðaÞ ¼ T1ðaÞ þ T2ðaÞ
The first term, T1(a), is related to the behavior of g(h) near the origin; the second one, T2(a),
depends on its behavior near the range (the distance b beyond which g(h) becomes identically
zero). T2(a) is the fluctuating term, also called Zitterbewegung (the German for jittery motion).
It is a periodic function of the remainder ε of the integer division b/a and cannot be evaluated
from the grid data; since it has a zero mean, it is simply ignored.

The regular termT1(a) can be approximated from the expansion of g(h). For example, in 2D
and for an isotropic covariogram with a linear behavior near the origin, the explicit result is

σ2ðaÞ ¼ σ2ða1; a2Þ � �g0ðþ0Þ 1

6
a21a2 þ 0:0609a32

� �
; a1 # a2 ð1:15Þ

where g0(þ0) is the slope of g(h) at the origin and is, 0.

1.3.2 Estimation of a Surface Area

If z(x) is the indicator function of a geometric object, its covariogram is necessarily linear at
the origin. More precisely, for a vector h in a direction α, we have g(h)¼ g(0)�Dα|h |þ � � �,
where Dα is the “total diameter” in the direction α. If the object is convex, Dα is simply the so-
called tangent diameter (or caliper diameter); otherwise, 2Dα is the total length of the contour
of the object projected orthogonally along the direction α (see Section 2.3.4). Here we con-
sider an object with surface area A and a total diameter D that is approximately the same in
all directions. Replacing A by its estimate A*¼N a1 a2, where N is the number of positive
samples, we can express the variance (1.15) in the dimensionless form σ2

A=A
2:

σ2
A

A2
� Dffiffiffiffi

A
p 1

N3=2

1

6

ffiffiffi
λ

p
þ 0:0609λ�3=2

� �
; λ ¼ a1=a2 # 1 ð1:16Þ

Note that the variance decreases like 1/N 3/2 rather than 1/N. We can evaluate D from the
contour of the object by counting the number of boundary segments 2N1 and 2N2 respec-
tively, parallel to a1 and a2, including possible holes in the contour (the total perimeter
comprises 2 (N1þN2) segments):

D ¼ N1a1 ¼ N2a2

and upon replacement in (1.16), we get

σ2
A

A2
� 1

N2

1

6
N2 þ 0:0609

N1
2

N2

� �
; N2 #N1 ð1:17Þ

This formula remains valid if the object is not isotropic but has a main direction of elongation
parallel to one of the grid axes, which is the natural orientation for the grid. Indeed we can
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then restore isotropy, at least approximately, by an affine transformation parallel to one of
the grid axes; this changes a1 or a2 as well as A and D1 or D2 but not N, N1, N2, or σ2

A=A
2,

which are dimensionless. Thus (1.17) is a simple, self-contained (no calculation and modeling
of g(h) needed), and yet theoretically founded formula for evaluating the error in the esti-
mation of a surface area.

To illustrate its use, consider the example shown in Figure 1.1. We read from the figure:

N ¼ 10
2N1 ¼ 12
2N2 ¼ 8

so that
σ2
A

A2
¼ 1

100

4

6
þ 0:0609

36

4

� �
¼ 1:21

100

The relative error standard deviation on the surface area is therefore 11%.
An interesting indication can be derived concerning the optimal grid mesh. In case of an

isotropic object the variance in (1.16) is minimized for λ¼ 1, that is, a1¼ a2. If the object is
not isotropic an affine transformation is applied to restore isotropy, for example multiplying
lengths along D2 by D1/D2. The new grid spacings become a01¼ a1 and a02¼ (D1/D2 )a2, and in
this isotropic case the optimal grid mesh satisfies a01¼ a02 . Therefore optimum sampling is
achieved when D1/a1¼D2/a2, or equivalently N1¼N2, that is, when the grid mesh is adapted
to the anisotropy of the object. Formula (1.17) also shows that for the optimal grid mesh
(N1¼N2) the estimation variance increases with the perimeter of the object.

FIGURE 1.1 Estimation of a surface area by systematic sampling.
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