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CHAPTER 1

Probably Not: Future Prediction Using Probability and Statistical Inference, 
by Lawrence N. Dworsky.
Copyright © 2008 John Wiley & Sons, Inc. 

 AN INTRODUCTION TO PROBABILITY        

  PREDICTING THE FUTURE 

 The term Predicting the Future conjures up images of veiled women staring 
into hazy crystal balls, or bearded men with darting eyes passing their hands 
over cups of tea leaves, or something else equally humorously mysterious. We 
call these people Fortune Tellers and relegate their  “ professions ”  to the 
regime of carnival side - show entertainment, along with snake charmers and 
the like. For party entertainment we bring out a Ouija board; everyone sits 
around the board in a circle and watches the board extract its mysterious 
 “ energy ”  from our hands while it answers questions about things to come. 

 On the other hand, we all seem to have fi rm ideas about the future based 
on consistent patterns of events that we have observed. We are pretty sure 
that there will be a tomorrow and that our clocks will all run at the same rate 
tomorrow as they did today. If we look in the newspaper (or these days, on 
the Internet), we can fi nd out what time the sun will rise and set tomorrow —
 and it would be very diffi cult to fi nd someone willing to place a bet that this 
information is not accurate. Then again, whether or not you will meet the love 
of your life tomorrow is not something you expect to see accurately predicted 
in the newspaper. 

 We seem willing to classify predictions of future events into categories 
of the  knowable  and the  unknowable . The latter category is left to carnival 
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2   AN INTRODUCTION TO PROBABILITY

fortune tellers to illuminate. The former category includes  “ predictions ”  of 
when you ’ ll next need a haircut, how much weight you ’ ll gain if you keep 
eating so much pizza, and so on. There does seem to be, however, an inter-
mediate area of knowledge of the future. Nobody knows for certain when 
you ’ re going to die. An insurance company, however, seems able to consult 
its mystical Actuarial Tables and decide how much to charge you for a life 
insurance policy. How can it do this if nobody knows when you ’ re going 
to die? The answer seems to lie in the fact that if you study thousands of 
people similar in age, health, life style, and so on, to you, you would be able 
to calculate an average life span — and that if the insurance company sells 
enough insurance policies with rates based upon this average, in a fi nancial 
sense this is  “ as good ”  as if the insurance company knows exactly when 
you are going to die. There is, therefore, a way to describe life expectancies 
in terms of the expected behavior of large groups of people in similar 
circumstances. 

 When predicting future events, you often fi nd yourself in situations such as 
this where you know something about future trends but you do not know 
exactly what is going to happen. If you fl ip a coin, you know you ’ ll get either 
heads or tails but you don ’ t know which. If you fl ip 100 coins, or equivalently 
fl ip one coin 100 times, however, you ’ d expect to get approximately 50 heads 
and 50 tails. 

 If you roll a pair of dice, you know that you ’ ll get some number between 
two and twelve, but you don ’ t know which number you ’ ll get. However, in the 
case of the roll of a pair of dice, you do know that, in some sense, it ’ s more 
likely that you ’ ll get six than that you ’ ll get two. 

 When you buy a new light bulb, you may see written on the package 
 “ estimated lifetime 1500 hours. ”  You know that this light bulb might last 
1346 hours, 1211 hours, 1587 hours, 2094 hours, or any other number of 
hours. If the bulb turns out to last 1434 hours, you won ’ t be surprised; but 
if it only lasts 100 hours, you ’ d probably switch to a different brand of light 
bulbs. 

 There is a hint that in each of these examples, even though you couldn ’ t 
accurately predict the future, you could fi nd some kind of pattern that teaches 
you something about the nature of the future. Finding these patterns, working 
with them, and learning what knowledge can and cannot be inferred from 
them is the subject matter of the study of probability and statistics. 

 I can separate our study into two classes of problems. The fi rst of these 
classes is understanding the likelihood that something  might  occur. We need 
a rigorous defi nition of likelihood so that we can be consistent in our evalua-
tions. With this defi nition in hand, I can look at problems such as  “ How likely 
is it that you can make money in a simple coin fl ipping game? ”  or  “ How likely 
is it that a certain medicine will do you more good than harm in alleviating 
some specifi c ailment? ”  I ’ ll have to defi ne and discuss  random events  and the 
patterns that these events fall into, called Probability Distribution Functions 
(PDFs). This study is the study of Probability. 



RULE MAKING   3

 The second class of problems involves understanding how well you really 
know something. I will only present quantifi able issues, not  “ Does she really 
love me? ”  and  “ Is this sculpture truly a work of art? ”  

 The uncertainties in how well we really know something can come from 
various sources. Let ’ s return to the example of light bulb. Suppose you ’ re the 
manufacturer of these light bulbs. Due to variations in materials and manu-
facturing processes, no two light bulb fi laments (the thin wires in these bulbs 
that get white hot and glow brightly) are identical. There are variations in the 
lifetime of your product that you need to understand. The easiest way to learn 
the variations in lifetime would be to run all your light bulbs until they burn 
out and then look at the numbers, but for obvious reasons this is not a good 
idea. If you could fi nd the pattern by just burning out some (hopefully a small 
percentage) of the light bulbs, then you have the information you need both 
to truthfully advertise your product and to work on improving your manufac-
turing process. 

 Learning how to do this is the study of Statistics. I will assume that we are 
dealing with a  stationary random process . In a stationary random process, if 
nothing causal changes, we can expect that the nature of the pattern of the 
data already in hand will be the same as the nature of the pattern of future 
events of this same situation, and we use  statistical inference  to predict the 
future. In the practical terms of our light bulb manufacturer example, I am 
saying that so long as we don ’ t change anything, the factory will turn out bulbs 
with the same distribution of lifetimes next week as it did last week. This 
assertion is one of the most important characteristics of animal intelligence, 
namely the ability to discern and predict based upon patterns. If you think 
that only people can establish a pattern from historical data and predict the 
future based upon it, just watch your dog run to the door the next time you 
pick up his leash. 

 This light bulb problem also exemplifi es another issue that I will have to 
deal with. We want to know how long the light bulb we ’ re about to buy will 
last. We know that no two light bulbs are identical. We also realize that our 
knowledge is limited by the fact that we haven ’ t measured every light bulb 
made. We must learn to quantify how much of our ignorance comes from each 
of these factors and develop ways to express both our knowledge and our lack 
of knowledge.  

  RULE MAKING 

 As the human species evolved, we took command of our environment because 
of our ability to learn. We learn from experience. Learning from experience is 
the art/science of recognizing patterns and then generalizing these patterns to 
a  rule . In other words, the pattern is the relevant raw data that we ’ ve collected. 
A rule is what we create from our analysis of the pattern that we use to predict 
the future. Part of the rule is either one or several preferred extrapolations and 
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responses. Successful pattern recognition is, for example, seeing that seeds 
from certain plants, when planted at the right time of the year and given the 
right amount of water, will yield food; and that the seed from a given plant will 
always yield that same food. Dark, ominous looking clouds usually precede a 
fi erce storm, and it ’ s prudent to take cover when such clouds are seen. Also, 
leaves turning color and falling off the trees means that winter is coming, and 
preparations must be made so as to survive until the following spring. 

 If we notice that every time it doesn ’ t rain for more than a week our vege-
table plants die, we would generate a rule that if there is no rain for a week, 
we need to irrigate or otherwise somehow water the vegetable garden. Implicit 
in this is that somewhere a  “ hypothesis ”  or  “ model ”  is created. In this case 
our model is that plants need regular watering. When the data are fi t to this 
model, we quantify the case that vegetable plants need water at least once a 
week, and then the appropriate watering rule may then be created. 

 An interesting conjecture is that much, if not all, of what we call  the arts  
came about because our brains are so interested in seeing patterns that we 
take delight and often fi nd beauty in well - designed original patterns. Our eyes 
look at paintings and sculptures, our ears listen to music, our brains process 
the language constructs of poetry and prose, and so on. In every case we are 
fi nding pleasure in studying patterns. Sometimes the patterns are clear, as in 
a Bach fugue. Sometimes the patterns are harder to recognize, as in a surre-
alistic Picasso painting. Sometimes we are playing a game looking for patterns 
that just might not be there — as in a Pollock painting. Perhaps this way of 
looking at things is sheer nonsense, but then how can you explain how a good 
book or a good symphony (or rap song if that ’ s your style) or a good painting 
can grab your attention and in some sense please you? The arts don ’ t seem 
to be necessary for the basic survival of our species, so why do we have them 
at all? 

 A subtle rustling in the brush near the water hole at dusk sometimes — but 
not always — means that a man - eating tiger is stalking you. It would be to your 
advantage to make a decision and take action. Even if you ’ re not certain that 
there ’ s really a tiger present, you should err on the cautious side and beat a 
hasty retreat; you won ’ t get a second chance. This survival skill is a good 
example of our evolutionary tendency to look for patterns and to react as if 
these patterns are there, even when we are not really sure that they indeed 
are there. In formal terms, you don ’ t have all the data, but you do have  anec-
dotal  information. 

 Our prehistoric ancestors lived a very provincial existence. Life spans were 
short; most people did not live more than about 30 years. They didn ’ t get to 
see more than about 10,000 sunrises. People outside their own tribe (and pos-
sibly some nearby tribes) were hardly ever encountered, so that the average 
person never saw more than a few hundred other people over the course of a 
lifetime. Also, very few people (other than members of nomadic tribes) ever 
traveled more than about 50 miles from where they were born. There are 
clearly many more items that could be added to this list, but the point has 



probably been adequately made: Peoples ’  brains never needed to cope with 
situations where there were hundreds of thousands or millions of data points 
to reconcile. 

 In today ’ s world, however, things are very different: A state lottery could 
sell a hundred million tickets every few months. There are about six billion 
(that ’ s six thousand million) people on the earth. Many of us (at least in North 
America and Western Europe) have traveled thousands of miles from the 
place of our birth many times; even more of us have seen movies and TV 
shows depicting places and peoples all over the world. Due to the ease with 
which people move around, a disease epidemic is no longer a local issue. Also, 
because we are aware of the lives of so many people in so many places, we 
know about diseases that attack only one person in a hundred thousand and 
tragedies that occur just about anywhere. If there ’ s a vicious murderer killing 
teenage girls in Boston, then parents in California, Saskatoon, and London 
hear about it on the evening news and worry about the safety of their 
daughters. 

 When dealing with unlikely events spread over large numbers of opportuni-
ties, your intuition can and does often lead you astray. Since you cannot easily 
comprehend millions of occurrences, or lack of occurrences, of some event, 
you tend to see patterns in a small numbers of examples — again the  anecdotal  
approach. Even when patterns don ’ t exist, you tend to invent them; you are 
using your  “ better safe than sorry ”  prehistoric evolved response. This could 
lead to the inability to correctly make many important decisions in your life: 
What medicines or treatments stand the best chance of curing your ailments? 
Which proffered medicines have been correctly shown to be useful, and which 
ones are simply quackery? Which environmental concerns are potentially real 
and which are simple coincidence? Which environmental concerns are no 
doubt real but probably so insignifi cant that it we can reasonably ignore them? 
Are  “ sure bets ”  on investments or gambling choices really worth anything? 
We need an organized methodology for examining a situation and coping with 
information, correctly extracting the pattern and the likelihood of an event 
happening or not happening to us, and also correctly  “ processing ”  a large set 
of data and concluding, when appropriate, that there really is or is not a 
pattern present. 

 In other words, we want to understand how to cope with a barrage of 
information. We need a way of measuring how sure we are of what we know, 
and when or if what we know is adequate to make some predictions about 
what ’ s to come.  

  RANDOM EVENTS AND PROBABILITY 

 This is a good place to introduce the concepts of random events, random 
variables, and probability. These concepts will be wrung out in detail in later 
chapters, so for now let ’ s just consider some casual defi nitions. 

RANDOM EVENTS AND PROBABILITY   5
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 For our purposes an  event  is a particular occurrence of some sort out of a 
larger set of possible occurrences. Some examples are: 

   •      Will it rain tomorrow? The full set of possible occurrences is the two 
events Yes — it will rain, and No — it won ’ t rain.  

   •      When you fl ip a coin, there are two possible events. The coin will either 
land head side up or tail side up (typically referred to as  “ heads ”  or 
 “ tails ” ).  

   •      When you roll one die, then there are six possible events, namely the six 
faces of the die that can land face up — that is, the numbers 1, 2, 3, 4, 5, 
and 6.  

   •      When you play a quiz game where you must blindly choose  “ door A, door 
B, or door C ”  and there is a prize hiding behind only one of these doors, 
then there are three possible events: The prize is behind door A, it ’ s 
behind door B, or it ’ s behind door C.    

  Variable  is a name for a number that can be assigned to an event. If the 
events themselves are numbers (e.g., the six faces of the die mentioned above), 
then the most reasonable thing to do is to simply assign the variable numbers 
to the event numbers. A variable representing the days of the year can take 
on values 1, 2, 3,   .  .  .   , all the way up to 365. Both of these examples are of 
variables that must be integers; that is, 4.56 is not an allowed value for either 
of them. There are, of course, cases where a variable can take on any value, 
including fractional values, over some range; for example, the possible amount 
of rain that fell in Chicago last week can be anything from 0 to 15 inches (I 
don ’ t know if this is true or not, I just made it up for the example). Note that 
in this case 4.56, 11.237, or 0.444 are legitimate values for the variable to 
assume. An important distinction between the variable in this last example 
and the variables in the fi rst two examples is that the former two variables 
only can take on a fi nite number of possibilities (6 in the fi rst case, 365 in the 
second), whereas by allowing fractional values (equivalently, real number 
values), there are an infi nite number of possibilities for the variable in the last 
example. 

 A random variable is a variable that can take on one of an allowed set of 
values (fi nite or infi nite in number). The actual value selected is determined 
by a happening or happenings that are not only outside our control but also 
are outside of any recognized, quantifi able, control — but often do seem to 
follow some sort of pattern. 

 A random variable cannot take on any number, but instead must be chosen 
out of the set of possible occurrences of the situation at hand. For example, 
tossing a die and looking at the number that lands facing up will give us one 
of the variables {1, 2, 3, 4, 5, 6}, but never 7, 0, or 3.2. 



 The most common example of a simple random variable is the outcome of 
the fl ip of our coin. Let ’ s assign the number  − 1 to a tail and +1 to a head. The 
fl ip of the coin must yield one of the two chosen values for the random vari-
able, but we seem to have no way of predicting which value it will yield for a 
specifi c fl ip. 

 Is the result of the fl ip of a coin truly unpredictable? Theoretically, no: If 
you carefully analyzed the weight and shape of the coin and then tracked the 
exact motion of the fl ipper ’ s wrist and fi ngers, along with the air currents 
present and the nature of the surface that the coin lands on, you would see 
that the fl ipping of a coin is a totally predictable event. However, since it is 
so diffi cult to track all these subtle factors carefully enough in normal circum-
stances and these factors are extremely diffi cult to duplicate from fl ip to fl ip, 
the outcome of a coin fl ip can reasonably be considered to be a random event. 
Furthermore, you can easily list all the possible values of the random variable 
assigned to the outcome of the coin fl ip ( − 1 or 1); and if you believe that the 
coin fl ip is fair, you conclude that either result is equally likely. This latter situ-
ation isn ’ t always the case. 

 If you roll two dice and defi ne the random variable as the sum of the 
numbers you get from each die, then this random variable can take on any 
value from 2 to 12. All of the possible results, however, are no longer equally 
likely. This assertion can be understood by looking at every possible result as 
shown in Table  1.1 .   

 As may be seen from the table, there is only one way that the random 
variable can take on the value 2: Both dice have to land with a 1 face up. 
However, there are three ways that the random variable can take on the value 
4: One way is for the fi rst die to land with a 1 face up while the second die 
lands with a three face up. To avoid writing this out over and over again, I ’ ll 
call this case {1, 3}. By searching through the table, we see that the random 
variable value of 4 can be obtained by the dice combinations {1, 3}, {2, 2}, and 
{3, 1}. 

 I ’ ll create a second table (Table  1.2 ) that tabulates the values of the random 
variable and the number of ways that each value can result from the rolling 
of a pair of dice:

 The numbers in the right - hand column add up to 36. This is just a restate-
ment of the fact that there are 36 possible outcomes possible when rolling a 
pair of dice.    

 Defi ne the  probability  of a random event as the number of ways that that 
event can occur, divided by the number of all possible events. Adding a third 
column to the table to show the probabilities, I get Table  1.3 .   

 For example, if you want to know the probability that the sum of the 
numbers on the two dice will be 5, the second column of this table tells us that 
there are four ways to get 5. Looking back at the fi rst table, you can see that 
this comes about from the possible combinations {1, 4}, {2, 3}, {3, 2} and {4, 1}. 
The probability of rolling two dice and getting a (total) of 5 is therefore 4/36, 
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 TABLE 1.2.     Results of Rolling a Pair of Dice 
Grouped by Results 

  Value of 
Random Variable  

  Number of Ways of 
Obtaining this Value  

  2    1  
  3    2  
  4    3  
  5    4  
  6    5  
  7    6  
  8    5  
  9    4  

  10    3  
  11    2  
  12    1  

 TABLE 1.1.     All the Possible Results of Rolling a Pair of Dice 

  First Die 
Result  

  Second Die 
Result  

  Random 
Variable 

Value   =   Sum 
of First  &  

Second 
Results  

  First Die 
Result  

  Second Die 
Result  

  Random 
Variable 

Value   =   Sum 
of First  &  

Second 
Results  

  1    1    2     4    1    5 
  1    2    3     4    2    6 
  1    3    4    4     3    7 
  1    4    5    4     4    8 
  1    5    6    4     5    9 
  1    6    7     4    6    10 
  2    1    3     5    1    6 
  2    2    4     5    2    7 
  2    3    5    5     3    8 
  2    4    6    5     4    9 
  2    5    7    5     5   10  
  2    6    8    5     6    11 
  3    1    4     6    1    7 
  3    2    5     6    2    8 
  3    3    6    6     3    9 
  3    4    7    6     4    10 
   3   5   8     6     5    11 
   3    6    9   6     6    12 



sometimes called  “ 4 chances out of 36. ”  4/36 is of course the same as 2/18 and 
1/9 and the decimal equivalent, 0.111. 1  

 If you add up all of the numbers in the new rightmost column, you ’ ll get 
exactly 1. This will always be the case, because it is the sum of the probabilities 
of all possible events. This is the  “ certain event ”  and it must happen; that 
is, it has a probability of 1 (or 100%). This certain event will be that, when 
you toss a pair of dice, the resulting number — the sum of the number of dots 
on the two faces that land face up — again must be some number between 2 
and 12. 

 Sometimes it will be easier to calculate the probability of something we ’ re 
interested in  not  happening than to calculate the probability of it happening. 
In this case since we know that the probability of our event either happening 
or not happening must be 1, then the probability of the event happening is 
simply 1 — the probability of the event not happening. 

 From Table  1.3  you can also calculate combinations of these probabilities. 
For example, the probability of getting a sum of  at least 10  is just the probabil-
ity of getting 10   +   the probability of getting 11   +   the probability of getting 12,   
=   0.083   +   0.056   +   0.028   =   0.167. Going forward, just for convenience, we ’ ll use 
the shorthand notation Prob(12) to mean  “ the probability of getting 12, ”  and 
we ’ ll leave some things to the context; that is, when rolling a pair of dice, we ’ ll 
assume that we ’ re always interested in the sum of the two numbers facing up, 
and we ’ ll just refer to the number. 

 Exactly what the probability of an event occurring really means is a very 
diffi cult and subtle issue. Let ’ s leave this for later on, and just work with the 

 1     Many fractions, such as 1/9, 1/3, and 1/6, do not have exact decimal representations that can 
be expressed in a fi nite number of digits. 1/19, for example, is 0.111111111   .  .  .   , with the 1 ’ s 
going on forever. Saying that the decimal equivalent of 1/9 is 0.111 is therefore an approxima-
tion. Knowing how many digits are necessary to achieve a satisfactory approximation is context - 
dependent — there is no easy rule. 

 TABLE 1.3.     Same as Table  1.2  but also Showing Probability of Results 

  Value of Random 
Variable  

  Number of Ways of 
Obtaining this Result  

  Probability of 
Getting this Result  

  2    1    1/36   =   0.028  
  3    2    2/36   =   0.056  
  4    3    3/36   =   0.083  
  5    4    4/36   =   0.111  
  6    5    5/36   =   0.139  
  7    6    6/36   =   0.167  
  8    5    5/36   =   0.139  
  9    4    4/36   =   0.111  

  10    3    3/36   =   0.083  
  11    2    2/36   =   0.056  
  12    1    1/36   =   0.028  

RANDOM EVENTS AND PROBABILITY   9
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intuitive  “ If you roll a pair of dice very many times, about 1/36 of the time the 
random variable will be 2, about 2/36 of the time it will be 3, and so on. ”  

 An alternative way of discussing probabilities that is popular at horse races, 
among other places, is called  the odds  of something happening. Odds is just 
another way of stating things. If the probability of an event is 1/36, then we 
say that the odds of the event happening is 1 to 35 (usually written as the ratio 
1   :   35). If the probability is 6/36, then the odds are 6   :   30 or 1   :   5, and so on. As 
you can see, while the  probability  is the number of ways that a given event 
can occur divided by the total number of possible events, the  odds  is just the 
ratio of the number of ways that a given event can occur to the number of 
ways that it can ’ t occur. It ’ s just another way of expressing the same calcula-
tion; neither system tells you any more or less than the other. 

 In the simple coin fl ip game, the probability of winning equals the probabil-
ity of losing,   =   0.5. The odds in this case is simply 1   :   1, often called  even odds . 
Another  term of art  is the case when your probability of winning is something 
like 1   :   1000. It ’ s very unlikely that you ’ ll win; these are called  long odds . 

 Something you ’ ve probably noticed by now is that I tend to jump back 
and forth between fractions (such as  1/4 ) and their decimal equivalents 
(1/4   =   0.25). Mathematically, it doesn ’ t matter which I use. I tend to make my 
choice based on context: When I want to emphasize the origins of the numera-
tor and denominator (such as 1 chance out of 4), I ’ ll usually use the fraction, 
but when I just need to show a number that ’ s either the result of a calculation 
or that ’ s needed for further calculations, I ’ ll usually use the decimal. I hope 
this style pleases you rather than irritates you; the important point is that 
insofar as the mathematics is concerned, both the fraction and the decimal are 
equivalent. 

 You now have the defi nitions required to look at a few examples. I ’ ll start 
with some very simple examples and work up to some fairly involved exam-
ples. Hopefully, each of these examples will illustrate an aspect of the issues 
involved in organizing some probabilistic data and drawing the correct conclu-
sion. Examples of statistical inference will be left for later chapters.  

  THE LOTTERY {VERY IMPROBABLE EVENTS AND VERY LARGE 
DATA SETS} 

 Suppose you were told that there is a probability of 1 in 200 million (that ’ s 
0.000000005 as a decimal) of you getting hit by a car and being seriously 
injured or even killed if you leave your house today. Should you worry about 
this and cancel your plans for the day? Unless you really don ’ t have a very 
fi rm grip on reality, the answer is clearly  no . There are probabilities that the 
next meal you eat will poison you, that the next time you take a walk it will 
start storming and you ’ ll be hit by lightening, that you ’ ll trip on your way to 
the bathroom and split your skull on something while falling, that an airplane 
will fall out of the sky and crash through your roof, and so on. Just knowing 



that you and your acquaintances typically do make it through the day is anec-
dotal evidence that the sum of these probabilities can ’ t be a very large number. 
Looking at your city ’ s accidental death rate as a fraction of the total popula-
tion gives you a pretty realistic estimate of the sum of these probabilities. If 
you let your plans for your life be compromised by every extremely small 
probability of something going wrong, then you will be totally paralyzed. 2  One 
in two hundred million, when it ’ s the probability of something bad happening 
to you, might as well be zero. 

 Now what about the same probability of something good happening to you? 
Let ’ s say you have a lottery ticket, along with 199,999,999 other people, and 
one of you is going to win the grand prize. Should you quit your job and order 
a new car based on your chance of winning? 

 The way to arrive at an answer to this question is to calculate a number 
called the expected value (of your winnings). I ’ ll defi ne expected value 
carefully in the next chapter, but for now let me just use the intuitive  “ What 
should I expect to win? ”  There are 4 numbers I need in order to perform the 
calculation. 

 First, I need the probability of winning. In this case it ’ s 1 in 200 million, or 
0.000000005. Next, I need the probability of losing. Since the probability of 
losing plus the probability of winning must equal 1, the probability of losing 
must be 1    −    0.000000005   =   .999999995. 

 I also need the amount of money you will make if you win. If you buy 
a lottery ticket for  $ 1 and you will get  $ 50,000,000 if you win, this is 
 $ 50,000,000    −     $ 1   =    $ 49,999,999. 

 Lastly, I need the amount of money you will lose if you don ’ t win. This is 
the dollar you spent to buy the lottery ticket. Let ’ s adopt the sign convention 
that winnings are a positive number but losses are a negative number. The 
amount you ’ ll lose is therefore  −  $ 1. 

 In order to calculate the expected value of your winnings, I add up the 
product of each of the possible money transfers (winning and losing) multi-
plied by the probability of this event. Gathering together the numbers from 
above, we obtain

    Expected value , ,= −( . )($ ) (. )($ )0 000000005 49 999 999 999999995 1
≈≈ − = − = −( . )($ ) ( )($ ) $ . $ . $ .0 000000005 50 000 000 1 1 0 25 1 00 0 75, ,   

 I have just introduced the symbol  “  ≈  ” , which means  “ not exactly, but a good 
enough approximation that the difference is irrelevant. ”   “ Irrelevant, ”  of 
course, depends on the context of the situation. In this example, I ’ m saying 

 2     In 1976, when the U.S. Skylab satellite fell from the sky, there were companies selling Skylab 
insurance — coverage in case you or your home got hit. If you consider the probability of this hap-
pening as approximately the size of the satellite divided by the surface area of the earth, you ’ ll 
see why many fortunes have been made based on the truism that  “ there ’ s a sucker born every 
minute. ”  

THE LOTTERY {VERY IMPROBABLE EVENTS AND VERY LARGE DATA SETS}   11
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that (0.000000005)( $ 49,999,999)   =    $ 0.249999995 is close enough to  $ 0.25 that 
when we compare it to  $ 1.00 we never notice the approximation. 

 The expected value of your winnings is a negative number — that is, you 
should expect to lose money. What the expected value is actually telling you 
is that if you had bought  all  of the lottery tickets, so that you had to be the 
winner, you would still lose 75 cents on every dollar you spent. It ’ s no wonder 
that people who routinely calculate the value of investments and gambling 
games often refer to lotteries as a  “ Tax on Stupidity. ”  

 What I seem to be saying so far is that events with extremely low probabili-
ties simply don ’ t happen. If we ’ re waiting for you to win the lottery, then this 
is a pretty reasonable conclusion. However, the day after the lottery drawing 
there will be an article in the newspaper about the lottery, along with a picture 
of a very happy person holding up a winning lottery ticket. This person just 
won 50 million dollars! 

 Am I drawing two different conclusions from the same set of data? Am I 
saying both that nobody wins the lottery and that somebody always wins the 
lottery? The answer is that there is no contradiction, we just have to be very 
careful how we say what we say. Let me construct an example. Suppose the 
state has a lottery with the probability of any one ticket winning   =   0.000000005 
and the state sells 200 million tickets, which include every possible choice of 
numbers. It ’ s an absolute certainty that  somebody  will win (we ’ ll ignore the 
possibility that the winning ticket got accidentally tossed into the garbage). 
This does not at all contradict the statement that it ’ s  “ pretty darned near ”  
certain that  you  won ’ t win. 

 What we are struggling with here is the headache of dealing with a very 
improbable event juxtaposed on a situation where there are a huge number 
of opportunities for the event to happen. It ’ s perfectly reasonable to be assured 
that something will never happen to you while you know that it will happen 
to somebody. Rare diseases are an example of this phenomenon. You shouldn ’ t 
spend much time worrying about a disease that randomly affl icts one person 
in, say, 10 million, every year. But in the United States alone there will be 
about 30 cases of this disease reported every year, and from a Public Health 
point of view, somebody should be paying attention to it. 

 A similar situation arises when looking at the probability of an electrical 
appliance left plugged in on your countertop starting a fi re. Let ’ s say that this 
probability is 1 in 30,000 per person. 3  Should you meticulously unplug all your 
countertop kitchen appliances when you ’ re not using them? Based on the 
above probability, the answer is  “ don ’ t bother. ”  However, what if you ’ re the 
senior fi re department safety offi cer for New York City, a city with about 8 
million residents? I ’ ll assume an average of about 4 people per residence. If 

 3     The U.S. Fire Administration ’ s number is about 23,000 appliance related electrical fi res per per-
son. I rounded this up to 30,000 to make a convenient comparison to a population of about 300 
million. 



nobody unplugs their appliances, then you ’ re looking at about 20 unnecessary 
fi res every year, possible loss of life, and certain destruction of property. You 
are certainly going to tell people to unplug their appliances. This is a situation 
where the mathematics might not lead to the right answer, assuming that there 
is a right answer. You ’ ll have to draw your own conclusion here. 

 One last note about state lotteries. In this example, the state took in  $ 200 
million and gave out  $ 50 million. In principle, this is why state lotteries are 
held. The state makes money that it uses for education or for health care 
programs for the needy, and so on. From this perspective, buying a lottery 
ticket is both a social donation and a bit of entertainment for you — that ’ s not 
a bad deal for a dollar or two. On the other hand, as an investment this not 
only has an absurdly low chance of paying off, but since the expected value 
of the payoff is negative, this is not what ’ s called a  Fair Game . From an invest-
ment point of view, this is a very poor place to put your money.  

  COIN FLIPPING {FAIR GAMES, LOOKING BACKWARDS 
FOR INSIGHT} 

 Let ’ s set up a really simple coin fl ipping game between you and a friend. One 
of you fl ips a coin. If the result is heads, you collect a dollar from your friend; 
if the result is tails, you pay a dollar to your friend. Assuming that the coin is 
fair (not weighted, etc.), there is an equal probability of getting either a head 
or a tail. Since the sum of all the probabilities must equal one, then the prob-
ability of getting a head and the probability of getting a tail must be equal to 
0.5 (one - half). 

 Letting + $ 1 be the result of winning (you get to be a dollar richer) and 
letting  −  $ 1 be the result of losing (you get to be a dollar poorer), then the 
expected value of your return is

    E = + + − =( . )( $) ( . )( $)0 5 1 0 5 1 0   

 This is what I ’ m calling a fair game. Since I am defi ning positive  $  values 
as winning (money coming to you) and defi ning negative  $  values as losing 
(money leaving you), then if your winnings and your losings exactly balance 
out, the algebraic sum is zero. Nobody involved (in this case there is just you 
and your friend) should  expect  to win, or lose, money. This last sentence seems 
at fi rst to be very simple. Examining the nuances of what is meant by  expect  
thoroughly, however, will take a signifi cant portion of this book. 

 While Expected Value is a mathematical term that is carefully defi ned, the 
defi nition is not quite the same as the common, conversational, use of the term 
 expected  or  expectation . Also, as a few examples will show, in most cases it is 
much less likely that you will come away from this game with the exact amount 
of money that you went into the game with than that you either win or lose 
some money. 
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14   AN INTRODUCTION TO PROBABILITY

 The simplest example of this last claim is a game where you fl ip the coin 
once and then stop playing. In this case you must either win or lose a dollar —
 there are no other choices. For that matter, if the game is set up so that there 
will be any odd number of coin fl ips, it is impossible for you to come away 
neither winning nor losing. In these cases it is impossible to win the  expected  
amount of winning — clearly a distinction between the mathematical defi nition 
of Expected Value and its common usage. 

 Now let ’ s look at some games where there are an even number of coin fl ips. 
In these cases it certainly is possible to end up with a zero sum. The simplest 
example is the two - fl ip game. If you fl ip fi rst a head and then a tail (or vice 
versa), you come away with a zero sum. 

 As a brief aside, let ’ s introduce some mathematical notation that will make 
things easier as we proceed. If we let the letter  n  refer to the number of coin 
fl ips, then our two - fl ip game can be referred to as an  n    =   2 game. The choice 
of the letter  n  was completely arbitrary. No new ideas or calculations have 
just been presented. This is simply a convenient way to talk about things. At 
this point there is very little to be gained by doing this, but the approach will 
prove to be very powerful and useful as things get more complicated. 

 Returning to the examination of coin fl ipping, let ’ s examine the  n    =   2 game 
in detail. This is easy to do because there are only four possible scenarios. I ’ ll 
show both the results of the fl ip (heads or tails) and the algebraic value of the 
random variable associated with these results, just for clarity in Table  1.4 .   

 As the table shows, there are two opportunities for a zero sum: one oppor-
tunity for a positive sum and one opportunity for a negative sum. The proba-
bility that you will win is therefore 0.25, the probability that you ’ ll lose is 0.25, 
and the probability that you ’ ll break even is 0.5. In other words, it ’ s equally 
likely that there will be a zero sum and that there will be a nonzero sum. 

 Now let ’ s look at a game with a larger value of  n . What about, say,  n    =   10? 
How many table entries must there be? For each fl ip of the coin, there are 
two possibilities. Therefore, for  n    =   2 there are 4 possibilities, for  n    =   3 there 
are (2)(2)(2)   =   8 possibilities, for  n    =   4 there are (2)(2)(2)(2)   =   16 possibilities, 
and so on. Adding to our mathematical notation toolbox, the expression 2  n   
means 2 multiplied by itself  n  times. In other words, 2 3    =   8, 2 4    =   16, and so on. 
We can therefore say that  “ There are 2  n   possibilities for an  n  - fl ip coin fl ip 
game. ”  

 A 10 - fl ip game would have 2 10  possible outcomes. Working this out, we 
obtain

 TABLE 1.4.     All the Possible Results of an  n    =   2 Coin Flip Game 

  First Flip    First Flip Variable    Second Flip    Second Flip Variable    Sum  

  Head    +1    Tail     − 1    0  
  Head    +1    Head    +1    2  
  Tail     − 1    Tail     − 1     − 2  
  Tail     − 1    Head    +1    0  



    2 102410 =   

 While there is no reason why I couldn ’ t create the list and examine every 
possible outcome, it certainly does not look like doing this would be fun. Let ’ s 
set our goals a little more humbly, I ’ ll look at  n    =   3 and  n    =   4 games. Adding 
to our notational soup mix, let the letter  k  refer to a particular fl ip; that is, 
 k    =   2 refers to the second fl ip,  k    =   3 refers to the third fl ip, and so on. Clearly, 
in an  n th - order game,  k  can take on all of the (integer) values from 1 to  n . In 
algebraic notation, this is written as

    1 ≤ ≤k n   

 The symbol    ≤    means  “ less than or equal to, ”  so the above expression is read 
as  “ 1 is equal to or less than  k , and also  k  is equal to or less than  n . ”  It may 
not seem that way now, but this is actually a very convenient way to express 
things. 

 Using our new notational ability, Table  1.5  shows the  n    =   3 game.   
 As expected, there is absolutely no way to play an  n    =   3 game and come out 

even; you have to either win or lose some amount. However, since each of the 
outcomes (rows) in the above table is equally likely, and there are 8 of them, 
the probability of each outcome is exactly 1/8, so that the expected value of 
the your return is

    
− + − + − + + + − + + + + + + = =3
8

2
8

1
8

1
8

1
8

1
8

2
8

3
8

0
8

0   

 The expected value is zero, so this is indeed a fair game. Worth noting again 
in this case is the fact that the expected value might be a value that you can 
never realize. You can play  n    =   3 games all night, and you will never come 
away with a 0 (no loss or no gain) result from one of these games. What you 

 TABLE 1.5.     All the Possible Results of an  n    =   3 Coin 
Flip Game 

   K    =   1     k    =   2     k    =   3    Sum  

   − 1     − 1     − 1     − 3  
   − 1     − 1    +1     − 2  
   − 1    +1     − 1     − 1  
   − 1    +1    +1    +1  
  +1     − 1     − 1     − 1  
  +1     − 1    +1    +1  
  +1    +1     − 1    +2  
  +1    +1    +1    +3  
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might expect, however, is that after a night of  n    =   3 games, the average of your 
results would be close to zero. 

 In this simple coin fl ip situation, a hundred  n    =   3 games is exactly the same 
as an  n    =   300 game. We can therefore extend our logic: For any number of 
 n    =   anything games, if the total number of coin fl ips is odd, you can still never 
walk away with a zero sum. You might, however, come close. 

 Let ’ s look at an  n    =   4 game and see what happens (Table  1.6 ):   
 In an  n    =   4 game, there are 2 4    =   16 possible outcomes, all listed in Table  1.6 . 

Looking through the column of sums, we see that there are 6 possible ways 
to get 0. In other words, the probability of neither winning nor losing is 
6/16   =   .375. This is lower than the probability of neither winning nor losing was 
for an  n    =   2 game. Is this a pattern? 

 Table  1.7  shows that the probability of getting a zero sum out of even order 
games for 2    ≤     n     ≤    20.   

 There is indeed a trend: As  n  gets larger, the probability of getting a zero 
sum gets lower. In other words, the more times you fl ip the coin, the less likely 
it is that you will get exactly the same number of heads and tails. 

 TABLE 1.7.     Probabilities of 0 Sum for  n    =   2 to  n    =   20 
Coin Flip Games 

   n     Probability of 0 Sum  

  2    0.500  
  4    0.375  
  6    0.313  
  8    0.273  

  10    0.246  
  12    0.226  
  14    0.209  
  16    0.196  
  18    0.185  
  20    0.176  

 TABLE 1.6.     All the Possible Results of an  n    =   4 Coin Flip Game 

   k    =   1     k    =   2     k    =   3     k    =   4    Sum     k    =   1     k    =   2     k    =   3     k    =   4    Sum  

   − 1     − 1     − 1     − 1     − 4    1     − 1     − 1     − 1     − 2  
   − 1     − 1     − 1    1     − 2    1     − 1     − 1    1    0  
   − 1     − 1    1     − 1     − 2    1     − 1    1     − 1    0  
   − 1     − 1    1    1    0    1     − 1    1    1    2  
   − 1    1     − 1     − 1     − 2    1    1     − 1     − 1    0  
   − 1    1     − 1    1    0    1    1     − 1    1    2  
   − 1    1    1     − 1    0    1    1    1     − 1    2  
   − 1    1    1    1    2    1    1    1    1    4  



 This leads to some very thought - provoking discussions of just what a prob-
ability means, what you can expect, and how sure you can be of what you 
expect. This, in turn, leads to a very basic question of just what it means to be 
sure about something, or in other words, just how confi dent you are about 
something happening. In the Chapter  3  I ’ ll defi ne a  “ confi dence factor ”  by 
which we can gauge just how sure we are about something. 

 Returning to the simple coin fl ip, what if I want the probability of getting 
5 heads in a row? This is identically the probability of fl ipping 5 coins and 
getting 5 heads, because the results of coin fl ips, be they with multiple coins 
or with the same coin over and over again, are independent of each other. 
You could get the answer by writing a list such as the tables I ’ ve been present-
ing for the  n    =   5 case or you could just note that for independent events, all 
you have to do is to multiply the individual probabilities together. In other 
words, the probability of getting 5 heads in a row is just (1/2) 5    =   1/32  ≈  0.033. 

 1/32 is a low probability, but not so low as to astound you if it happens. 
What if it indeed just did happen? You fl ipped a coin and got 5 heads in a 
row. What ’ s the probability of getting a head if you now fl ip the coin again? 
Assuming, of course, that the coin isn ’ t weighted or corrupted in any other 
manner (i.e., that the fl ips are indeed fair), the probability of a head on this 
fl ip (and for any subsequent fl ip) is still just 1/2. Putting it simply, a coin has 
no memory. 

 Reiterating the point above, fl ipping one coin 6 times is statistically identi-
cal to fl ipping six different coins once each and then examining the results. It 
doesn ’ t matter whether you fl ip the six coins one at a time or if you toss them 
all up into the air and let them fall onto the table. The six coins are indepen-
dent of each other: They do not  “ know ”  or  “ remember ”  anything about either 
their own past performance or the performance of any other coin. When you 
look at it this way, it ’ s pretty clear that the fl ip of the sixth coin has nothing 
to do with the fl ips of the fi rst fi ve coins. For that matter, if you tossed all six 
coins into the air at once, you couldn ’ t even say which coin is the  “ sixth 
coin. ”  

 The above arguments are a simple case of another interesting discussion: 
When does knowledge of past results tell you something about future results? 
In the above example, it doesn ’ t tell you anything at all. Later in this chapter 
I will show an example where this isn ’ t the case. 4  

 Returning to the coin fl ipping game, remember that the expected value of 
return of an  n    =   anything coin fl ip is always zero, as has been illustrated in 
several examples. If you were to fl ip a coin 10 times, the most likely single 
result would be an equal number of heads and tails, even though it ’ s not a 
very likely event (remember, in this case we ’ re counting the number of ways 

 4     People who don ’ t understand this point will tell you that if you fl ipped a coin 100 times and got 
100 heads, you should bet on a tail for the 101st fl ip because  “ it ’ s due. ”  I ’ d be more inclined to bet 
on a 101st head, because after the fi rst 100 heads I ’ d be pretty sure that I wasn ’ t dealing with a fair 
coin. 
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of getting 5 heads and 5 tails out of 2 10    =   1024 possible confi gurations). The 
distinction between  most  likely and yet  not very  likely (or the equivalent, very 
unlikely) eludes many people, so let ’ s consider another example. 

 Suppose I have a giant roulette wheel with 1000 slots for the ball to land 
in. I ’ ll number the slots 1 to 999 consecutively, and then number the thou-
sandth slot 500. This means I have exactly one slot for each number between 
1 and 999, except for the number 500, for which I have two slots. When I spin 
this roulette wheel and watch for the ball to settle in a slot, I see that there 
are two opportunities for the ball to settle in a slot numbered 500, but only 
one opportunity for the ball to settle at any other number. In other words, the 
probability of the ball landing at 500 is twice the probability of the ball landing 
at any other number. 500 is clearly the most likely result. The probability of 
the ball landing in a 500 slot is 2 out of 1000, or 0.002. The probability of the 
ball  not  landing in a 500 slot — that is, the probability of landing  anywhere but  
in a 500 slot — is 998 out of 1000, or 0.998. It is, therefore, very unlikely that 
the ball will land in a 500 slot. Now let ’ s combine both of the above observa-
tions into the same sentence: The most likely slot the ball will land in will be 
numbered 500, but it is very unlikely that the ball will land in a slot numbered 
500 as compared to some other number. 

 Returning to the coin fl ipping example, no matter how many (even number 
of) times you fl ip a coin, the most likely result is that you ’ ll get an equal 
number of heads and tails. The more times you fl ip the coin, however, the less 
likely this result will be. This same idea will be presented in the chapter on 
random walks. 

 A variation on the above example is the picking of a number for a lottery. 
If you were to pick, say, 12345, or 22222, you would be criticized by the 
 “ experts ” :  “ You never see a winning number with a regular pattern — it ’ s 
always something like 13557 or 25738 or.   .  .  .    ”  This last statement is correct. 
It is correct because of all the nearly one million fi ve - digit numbers that can 
be picked, very few of them have simple, recognizable digit patterns. It is 
therefore most likely that the winning number will  not  have a recognizable 
pattern. However, the fi ve lottery balls have no memory or awareness of each 
other. They would not  “ know ”  if they presented a recognizable pattern. Any 
fi ve - digit number is equally likely. The difference between the recognizable 
patterns and other patterns is only in the eyes of the beholder, I can ’ t even 
imagine how I ’ d defi ne a  “ recognizable ”  pattern except maybe by the majority 
vote of a room full of people. 

 A corollary to this is of course that there ’ s no reason not to pick the very 
number that won last week. It ’ s highly unlikely that this number will win again 
just because there are so many numbers to choose from, but it is just as likely 
that this number will win as it is that any other number will win. 

 Moving on, what if you have just fl ipped a coin fi ve times, got fi ve heads, 
and now want to fl ip the coin ten times more? The expectation value looking 
forward is still zero. But, having just won the game fi ve times, you have fi ve 
dollars more in your pocket than you started with. Therefore, the most likely 



scenario is that you will end up with fi ve dollars in your pocket! This property 
will be covered in more detail in the chapter on gambling games (Chapter  8 ). 
Generalizing this conclusion, I can say that if you are going to spend the 
evening fl ipping coins, your most likely status at the fi nish is just your status 
at the time you think about it. If you start off lucky (i.e., have net winnings 
early on), then you ’ ll probably end up winning a bit, and vice versa. There 
really is such a thing as  “ being on a winning streak. ”  However, this observa-
tion can only be correctly made after the fact. If you were lucky and got more 
heads than tails (or vice versa, if that ’ s the side you ’ re on), then you were 
indeed on a winning streak. The perception that being on a winning streak so 
far will infl uence the coin ’ s future results is of course total nonsense. You 
might win a few times in a row, you might even win most of the time over the 
course of the evening, but each fl ip is still independent of all the others. 

 There is an argument for saying that if you have been on a winning streak, 
it ’ s more likely that you ’ ll end the evening ahead (i.e., with net winnings rather 
than losses) than if you haven ’ t been on a winning streak. That argument is 
that if you have been on a winning streak, you have a lot more money in your 
pocket than you would have if you had been on a losing streak. You are 
therefore in a better position to withstand a few (more) losses without being 
wiped out and having to quit playing, and therefore your odds of winning for 
the evening have been increased. This argument has nothing to do with the 
probabilities of an individual win (coin fl ip, roulette wheel, poker hand, what-
ever). If you are just playing for a score on a piece of paper and cannot be 
 “ wiped out, ”  this argument is worthless.  

  THE COIN FLIP STRATEGY THAT CAN ’ T LOSE 

 Assume that you want to earn  $ 1 a day (scale this to  $ 10, or  $ 100, or anything 
you wish — the discussion is clearest when working with a starting value of  $ 1). 
Let ’ s build a strategy for playing a clever coin fl ipping game: 

  1.     Bet  $ 1 on the results of a coin fl ip.  
  2.     If you win the fi rst coin fl ip, you ’ ve earned your  $ 1 for the day. Go 

home.  
  3.     If you lose the fi rst coin fl ip, you ’ ve lost  $ 1. Bet  $ 2 and try again.  
  4.     If you win the second coin fl ip, then you ’ ve recovered your lost  $ 1 and 

won  $ 1. Go home.  
  5.     If you lose the second coin fl ip, then you ’ ve now lost  $ 3. Bet  $ 4 and try 

again.  
  6.     If you win the third coin fl ip, then you ’ ve recovered your lost  $ 7 and won 

 $ 1. Go home.  
  7.     If you lose the third coin fl ip, then you ’ ve now lost  $ 7. Bet  $ 8 and try 

again.  
  8.     And so on, until you win.    
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20   AN INTRODUCTION TO PROBABILITY

 This scheme seems unbeatable. If you keep fl ipping a coin, sooner or later 
you have to get a head, and you ’ ve won for the day. What could possibly go 
wrong? 

 The scheme could be analyzed in detail from a number of different perspec-
tives. The Achilles ’  heel is that you need a very big wallet. For example, to 
cover three losses and still have the money to place your fourth bet, you need 
to start with  $ 1   +    $ 2   +    $ 4   +    $ 8   =    $ 15. In general, to be able to place  n  bets you 
need to start out with 2  n      −    1 dollars. 

 If you start the evening with 1 million dollars, it ’ s pretty certain that you 
will be able to go home with  $ 1 million   +    $ 1. You have enough money to cover 
a lot of tails until you get your head. On the other hand, if you show up with 
only  $ 1, then the probability of you going home with your starting  $ 1 plus 
your winnings of  $ 1 is only 50%. Putting this last case slightly differently, the 
probability of you doubling your money before getting wiped out is 50%. 
Without showing the details now, let me just say that it turns out that no 
matter now much money you start with, the probability of you doubling your 
money before you get wiped out is at best 50%, less if you have to fl ip the 
coin many times. If you ’ re  “ earning ”  only a dollar a day, then you need to 
come back the number of days equal to the number of dollars you ’ re starting 
with. You can save yourself a lot of time, however, by just betting all of your 
money on the fi rst coin fl ip — a very simple game with a 50% probability of 
doubling your money and a 50% probability of being wiped out. Here again, 
we have been reconciling an unlikely event (not getting a head after many 
fl ips of a coin) with a large number of opportunities for the event to happen 
(many fl ips of a coin). We should note here that it ’ s not possible to  “ fool 
Mother Nature. ”  If you start out with a million dollars and plan to visit 10,000 
gambling houses each night, hoping to win only  $ 1 at each house, then the 
probabilities start catching up with you and you no longer have a sure thing 
going.  

  THE PRIZE BEHIND THE DOOR {LOOKING BACKWARDS FOR 
INSIGHT, AGAIN} 

 This example is subtle, and the answer is often incorrectly guessed by people 
who should know better. There are still ongoing debates about this puzzle on 
various Probability - Puzzle websites because the correct answer seems to be 
so counterintuitive to some people that they just won ’ t accept the analysis. It 
is known by many names, perhaps most commonly the  “ Monty Hall ”  problem, 
named after the host of a TV game show. 

 You are a participant in a TV game show. There are three doors (let ’ s call 
them doors A, B, and C). Behind one of these doors is a substantial prize, 
behind the other two doors is nothing. You have to take a guess. So far this 
is very straightforward: Your probability of guessing correctly and winning the 
prize is exactly 1/3. 



 You take (and announce) your guess. Before the three doors are opened 
to reveal the location of the prize, the game show host goes to one of the two 
doors that you  didn ’ t  choose, opens it, and shows you that the prize is  not  
behind this door. The prize, therefore, must either be behind the unopened 
door that you chose or behind the unopened door that you did not choose. 
You are now given the option of staying with your original choice or switching 
to the unopened door that you did not choose. What should you do? 

 Almost everybody ’ s fi rst response to this puzzle is to shrug — after all, there 
are now two unopened doors and the prize is behind one of them. Shouldn ’ t 
there simply be a 0.5 (50%) probability of the prize being behind either of 
these doors, and therefore it doesn ’ t matter whether you stay with your origi-
nal choice or switch? 

 Let ’ s look at all the possible scenarios. Assume that that your fi rst guess is 
door B. (It doesn ’ t matter which door you guess fi rst, the answer always comes 
out the same.) 

  1.     If the prize is behind door A, then the host must tell you that the prize 
is not behind door C.  

  2.     If the prize is behind door B, then the host can tell you either that the 
prize is not behind door A or that the prize is not behind door C.  

  3.     If the prize is behind door C, then the host must tell you that the prize 
is not behind door A.    

 Since each of the above three situations is equally likely, they each have a 
probability of 1/3. 

 In situation 1, if you stay with your fi rst choice (door B), you lose. You 
have the option of switching to door A. If you switch to door A, you win. 

 In situation 2, if you stay with your fi rst choice (door B), you win. If the 
host tells you that the prize is not behind door A and you switch to door C, 
you lose. Also, if the host tells you that the prize is not behind door C and 
you switch to door A, you lose. 

 In situation 3, if you stay with your fi rst choice (door B), you lose. You 
have the option of switching to door C. If you switch to door C, you win. 

 At this point, Table  1.8  is in order. Remember, your fi rst choice was 
door B.   

 TABLE 1.8.     Monty Hall Game, Door B Being the First Choice 

  Prize 
Location  

  Remaining 
Doors    Defi nite Losers  

  Stay With 
Choice B    Switch  

  A    A, C    C    Lose    Win  
  B    A, C    A  &  C    Win    Lose  
  C    A, C    A    Lose    Win  
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 It appears that if you stay with your fi rst choice, you only win in one of 
three equally likely situations, and therefore your probability of winning is 
exactly 1/3. This shouldn ’ t really surprise you. The probability of correctly 
guessing one door out of three is 1/3, and there ’ s not much more that you can 
say about it. 

 On the other hand, if your only options are to stay with your fi rst choice 
or to switch to the other unopened door, then your probability of winning if 
you switch must be 1    −    1/3   =   2/3. There ’ s no getting around this: Either you win 
or you lose and the probability of winning plus the probability of losing must 
add up to the certain event — that is, to a probability of 1. 

 What just happened? What has happened that ’ s different from having just 
fl ipped a coin fi ve times, having gotten fi ve heads, and wondering about the 
sixth fl ip? 

 In the coin fl ipping example, neither the probabilities of the different pos-
sibilities or your knowledge of these probabilities changed after fi ve coin fl ips. 
In other words, you neither changed the situation nor learned more about the 
situation. (Obviously, if someone took away the original coin and replaced it 
with a two headed coin, then expectation values for future fl ips would change.) 
In this game - show example, only your knowledge of the probabilities changed; 
you learned that the probability of the prize being behind one specifi c door 
was zero. This is enough, however, to make it possible that the expected results 
of different actions on your part will also change. 

 In a later chapter we ’ ll look at another very unintuitive situation: a 
combination of games, known as  “ Parrondo ’ s Paradox, ”  where jumping 
randomly between two losing games creates a winning game because one of 
the losing games involves looking back at how much you ’ ve already won or 
lost.  

  THE CHECKERBOARD {DEALING WITH ONLY PART 
OF THE DATA SET} 

 Imagine an enormous checkerboard: The board is 2000 squares wide by 2000 
squares long. There are 2000  ×  2000   =   4,000,000 (four million) squares on 
the board. Assume that each square has an indentation that can capture a 
marble. 

 I ’ ll treat the board as an imaginary map and divide it up into regions, each 
region containing 1000 indentations. The regions themselves need not be 
square or even rectangular, so long as each region contains exactly 1000 inden-
tations. There are 4,000,000/1000   =   4000 of these regions on the board. There 
is nothing magic in the choice of any of these numbers. For the purposes of 
the example, I simply need a large total area (in this case 4 million squares) 
divided into a lot of small regions (in this case 4000 regions). Also, the regions 
do not all have to be the same size, it just makes the example easier to 
present. 



 Now, I ’ ll lay this checkerboard fl at on the ground and then climb up to the 
roof of a nearby building. The building must be tall enough so that the check-
erboard looks like a small dot when I look down. This is important because 
it assures that if I were to toss a marble off the roof, it would land randomly 
somewhere on or near the checkerboard, but that I can ’ t control where. I then 
start tossing marbles off the roof until 40,000 marbles have landed on the 
checkerboard and are trapped in 40,000 indentations. This is, admittedly, a 
very impractical experiment. I won ’ t worry about that, however, because I ’ m 
not really planning to perform the experiment. I just want to describe a way 
of picturing the random scattering of 40,000 objects into 4,000,000 possible 
locations. The choice of 40,000 objects isn ’ t even a critical choice, it was just 
important to choose a number that is a small fraction of 4,000,000 but is still 
a fairly large number of objects. In any case, when I am done we see that the 
fraction of the number of indentations that I have fi lled is exactly

    
40 000

4 000 000
1

100
0 01 1

,
, ,

%= = =.   

 Now let ’ s take a close look at a few of the 4000 regions, each of which has 
1000 indentations. Since 1% of the indentations are fi lled with marbles, we 
would expect to see 1% of 1000, or

    0 01 1000 10. × =  

marbles in each region. On the average, over the 4000 regions, this is exactly 
what we must see — otherwise the total number of marbles would not be 
40,000. However, when we start looking closely, we see something very inter-
esting 5 : Only about 500 of the regions have 10 marbles. 6  About 200 of the 
regions have 14 marbles, and about 7 of the regions have 20 marbles. Also, 
about 9 of the regions have only 2 marbles. Table  1.9  tabulates these results.   

 What Table  1.9  is showing us is that while the most likely situation, in this 
case 10 marbles per region, will happen more often than any other situation, 
the most likely situation is not the only thing that will happen (just like in the 
coin fl ip game). The results are distributed over many different situations, with 
less likely situations happening less often. In order to predict what we see from 
this experiment, therefore, we not only need to know the most likely result, 
but also need to know something about how a group of results will be distrib-
uted among all possible results. These  probability distributions  will be a subject 
of the next chapter. 

 5     At this point I am not attempting to explain how the observations of  “ what we actually see ”  come 
about. This will be the subject of the chapter on binomial distributions (Chapter  6 ). 
 6     I say  “ about ”  because it is very unlikely that these numbers will repeat exactly if I were to clear 
the board and repeat the experiment. How the results should be expected to vary over repeated 
experiments will also be the subject of a later chapter. 
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 Before leaving this example, let ’ s play with the numbers a little bit and see 
what we might learn. Since the most likely result (10 marbles per region) 
occurs only about 500 times out of 4000 opportunities, some other results must 
be occurring about 3500 times out of these 4000 opportunities. Again, we have 
to be very careful what we mean by the term  “ most likely result. ”  We mean 
the result that will probably occur  more times than any other result  when we 
look at the whole checkerboard. The probability that the most likely result 
will not occur in any given region is about

    
3500
4000

7
8

0 875 87 5= = =. . %   

 Putting this in gambling terms, there are 7 to 1 odds against the most likely 
result occurring in a given region. 

 Now, suppose someone is interested in the regions that have at least 20 
marbles. From the table we see that there are 13 of these regions. It wouldn ’ t 
be surprising if a few of them are near an edge of the board. Let ’ s imagine 
that this person locates these regions and takes a picture of each of them. If 
these pictures were shown to you and you are not able to look over the rest 
of the board yourself, you might tend to believe the argument that since there 
are some regions near the edge of the board that have at least twice the 
average number of marbles, then there must be something about being near 
the edge of the board that  “ attracts marbles. ”  There are, of course, many 
regions that have less than 1/2 the average number of marbles, and some of 
these are probably near the edge of the board too, but this information is 
rarely mentioned (it just doesn ’ t make for good headlines). Instead, we see 
 “ Cancer Cluster Near Power Lines ”  and similar statements in the newspapers. 

 TABLE 1.9.     Expected Number of Marbles in Regions on Giant Checkerboard 

  Number of 
Regions  

  Number of 
Marbles  

  Number of 
Regions  

  Number of 
Marbles  

  2    1    292    13  
  9    2    208    14  

  30    3    138    15  
  74    4    86    16  

  150    5    50    17  
  251    6    28    18  
  360    7    14    19  
  451    8    7    20  
  502    9    3    21  
  503    10    2    22  
  457    11    1    23  
  381    12          



It ’ s hard to generalize as to whether the reporters who wrote the story inten-
tionally ignored some data, unintentionally overlooked some data, didn ’ t 
understand what they were doing by not looking at all the data, or were just 
looking to write a good story at the cost of total, complete truthfulness. 

 In all fairness, I am now leaving the realm of mathematics and meddling in 
the realms of ecology, public health, and so on. There are indeed unfortunate 
histories of true disease clusters near waste dumps, and so on. The point that 
must be made, over and over again, however, is that you cannot correctly spot 
a pattern by  “ cherry picking ”  subsets of a large data set. In the case of power 
lines near towns, when you look at the entire checkerboard (i.e., the entire 
country), you fi nd high disease clusters offset by low disease clusters and when 
you add everything up, you get the average. If there were high disease clusters 
which were truly nonrandom, then these clusters would not be offset by low 
disease clusters, and you would get a higher - than - average disease rate when 
you add everything up. Also, you must be prepared to predict the variability 
in what you see; for example, a slightly higher - than - average total might just 
be a random fl uctuation, sort of like fl ipping a coin and getting 5 heads in a 
row. The World Health Organization maintains a database on their website 
in the section on Electromagnetic Fields, where you can get a balanced per-
spective of the power - line and related studies. 

 This same issue shows up over and over again in our daily lives. We are 
bombarded with everything from health food store claims to astrological pre-
dictions. We are never shown the results of a large study (i.e., the entire 
checkerboard). The diffi cult part here is of course that some claim might be 
absolutely correct. The point, however, is that we are not being shown the 
information necessary to see the entire picture, so we have no way of correctly 
concluding whether or not a claim is correct based upon looking at the entire 
picture or just anecdotal without further investigation. And, of course in the 
area of better health or longer life or   .  .  .   , we are genetically programmed to 
bet on the pattern we are shown, just in case there are man - eating tigers 
lurking in the brush. 

 It is not uncommon to be confronted with a situation where it is either 
impossible or very highly impractical to study the entire data set. For example, 
if we are light bulb manufacturers and we want to learn how long our light 
bulbs last, we could ask every customer to track the lifetime of every bulb and 
report back to us, but we know that this is not going to happen. We could run 
all of our light bulbs ourselves until they burn out, but this is not a very good 
business plan. Instead, we take a representative sample of the bulbs we manu-
facture, run them ourselves until they burn out, and then study our data. In a 
later chapter I will discuss what it takes for a sample to be representative of 
the entire population. We need to know what fraction of the manufactured 
bulbs we must choose as samples, what rules we need to follow in selecting 
these samples, and just how well the results of studying the sample population 
predict the results for the entire population. 
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26   AN INTRODUCTION TO PROBABILITY

 I hope that these examples and the explanations have created enough inter-
est that you ’ d like to continue reading. The next two chapters will present 
most of the basic mathematics and defi nitions needed to continue. Then start-
ing in Chapter  4  I will concentrate on examples of how random variables and 
probability affect many of the things we do and also how they are at the basis 
of many of the characteristics of the world we live in.  
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