
1
 EQUATIONS REPRESENTING 
PHYSICAL QUANTITIES     

  Some equations model systems or processes that occur in the real, physical 
world. Most of the variables that appear in these equations have dimensions, 
and they carry certain physical units. For example, a variable  d  describing 
distance has the dimension of length and carries a specifi c unit such as meters, 
microns, or miles. The numerical value of the variable  d  is given as a multiple 
of the unit we choose, and the specifi c unit is usually chosen so that the numeri-
cal values are convenient to work with. 

 Without a unit, the physical meaning of the numerical value associated with 
a dimensioned variable contains no useful information. For example, to say 
the distance between points  A  and  B  is  “  d    =   8 ”  is not useful for scientifi c and 
engineering purposes. We also have to specify a unit of length, such as  d    =   8   in, 
 d    =   8   m, or  d    =   8 light - years, each of which describes very different quantities 
in the physical world. 

 A number that does not carry any physical units, e.g., 1,  − 2.23, or   π  , is said 
to be  dimensionless . There are some dimensionless quantities that nonetheless 
can carry units. One well - known example is an angle   θ  . Angles are dimension-
less because they represent the ratio of two lengths, namely the subtended arc 
length on a circle divided by the radius  r  of that circle. The natural unit for   θ   
is the radian. The value of the angle for one complete circular revolution is 2  π   
radians, which follows from the fact that the corresponding arc length is the 
circumference of the circle, or 2  π r . Alternatively, the degree is a commonly 
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2 EQUATIONS REPRESENTING PHYSICAL QUANTITIES

used unit to measure angles. There are 360    °  in one complete circular revolu-
tion, so the conversion factor between radians and degrees is

 
   1 360 2rad = ° ≈ 57.3°π .   

  (1.1)   

 We have a choice of which of these units to use. 
 At fi rst, it might seem like keeping track of the units associated with each 

variable in an equation is an inconvenience, akin to carrying extra baggage. 
As explored in this chapter, however, the use of units in fact can help us to 
better understand equations that contain variables representing physical 
quantities. Keeping track of dimensions and units can also uncover errors 
and can simplify work. This theme recurs elsewhere in this book, especially in 
Chapter  6 , where the topics of dimensional analysis and scaling are 
discussed. 

 Some units have long and interesting histories, which illustrate their impor-
tance in science, engineering, and commerce. In ancient times, balance scales 
were commonly used to measure weight. The unknown weight of an object 
was measured by counting the number of unit weights required to counterbal-
ance it. The carob tree is grown in the Mediterranean region, and its fruit is a 
pod that contains multiple seeds. It was found that the weight of the carob 
seeds varied little from one to the next. Also, it was relatively easy to get a 
uniform set of seeds. The heavier or lighter seeds could be eliminated from 
the collection because their weight correlated well with their size. 

 So it became convenient to use a group of carob seeds of uniform size to 
counterbalance the unknown quantity on the other side of the scale. The 
weight of the carob seeds was also of a convenient magnitude for weighing 
small objects like gemstones. The relative weight of the unknown object was 
quite accurately expressed in terms of the equivalent number of carob seeds, 
and this practice became a standard for commerce. Measured in modern units, 
a typical carob seed has a mass of approximately 0.20   g. Today, the unit  carat  
is used to measure the mass (or the equivalent weight) of gemstones. A carat 
is defi ned to be exactly 0.20   g, and its name is derived from the name of the 
carob tree and its seeds. 

  1.1   SYSTEMS OF UNITS 

 Many different systems of units have been devised. For most scientifi c and 
engineering work today, the preferred units are in the  “ SI ”  system. This des-
ignation comes from the French  “ Syst è me International d ’ Unit é s ”  (Interna-
tional System of Units). SI units are based on quantities with the seven 
fundamental dimensions listed in Table  1.1 . Note that three of these funda-
mental units, the meter, kilogram, and second, were carried over from the older 
MKS   system of units for the quantities of length, mass, and time when the SI 
system was developed in 1960.   
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 SI units have gained popularity for several reasons. First, they use prefi xes 
(e.g., nano, milli, kilo, mega) based on powers of 10. Prefi xes allow the intro-
duction of related units that are appropriate over a wide range of scales. For 
example, the unit of 1   nm is equal to 10  − 9    m. The powers of 10 also make con-
version relatively simple, for example, converting units of area:

    1 1 10 102 9 2 18m nm nm2= ×( ) = .
  
  (1.2)   

 In contrast, the imperial (sometimes called  “ British ” ) system of units contains 
conversion factors that are usually not integer powers of 10. For example, to 
express 1   yd 2    in terms of square inches, we have to calculate 36    ×    36:

    1 36 12962 2 2yd in in= ( ) = .   
  (1.3)   

 Another advantage of the SI system is that it contains many named, derived 
units such as the watt to measure power. The addition of these derived units 
is one of the major changes between the MKS and SI systems. The derived 
units in the SI system are  coherent , that is, each one can be expressed in terms 
of a product of the fundamental units (or other derived units) and a numerical 
multiplier that is equal to 1. For example, the SI unit of electrical charge is the 
coulomb, and

    

1 1 1
1 1
 coulomb  ampere 1 second  A s
 coulomb  farad 1 volt

= × = ⋅
= × = 11

1 1 1 1
 F V

 coulomb  volt 1 second 1 ohm  V s
⋅

= × ÷ = ⋅ ⋅ −Ω .     

(1.4)

   

 The derived SI unit for power is the watt, which is equal to 1 joule per 
second. On the other hand, a unit of power in the imperial system, 1 horse-
power, equals to 550   ft · lb/s. The simple conversion factors in the SI system also 
make it easy to decompose all of the derived units back into integer powers 
of the fundamental units. For example,

 TABLE 1.1.     The Seven Fundamental  SI  Units. 

   Dimension     SI Unit  

  Length    meter or metre (m)  

  Mass    kilogram (kg)  

  Time    second (s)  

  Electric current    ampere (A)  

  Thermodynamic temperature    kelvin (K)  

  Amount of substance    mole (mol)  

   Luminous intensity     candela (cd)  
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1

1 1

1

2

3

 newton =  1m kg s force

 watt m kg s power

 ohm

2

⋅ ⋅ ( )
= ⋅ ⋅ ( )
=

−

−
,

,

11 3 2m kg s A electrical resistance2 ⋅ ⋅ ⋅ ( )− − .     

(1.5)

   

 As discussed in Chapter  6 , the decomposition illustrated in Equation  1.5  is 
particularly useful for dimensional analysis.  

  1.2   CONVERSION OF UNITS 

 Scientists and engineers are trained to work with SI units. Inevitably, however, 
we encounter units from other dimensional systems that require conversion 
back and forth to the SI system. For example, the speed of a car is commonly 
expressed in miles per hour or kilometers per hour, but rarely in the SI unit 
of meter per second. Similarly, household electrical energy usage is billed in 
kilowatt - hours rather than the SI unit of joules. Sometimes, the scale of the SI 
unit is not very convenient. For example, a kilogram is a very large unit in 
which to express the mass of an individual molecule, and a meter is a very 
short unit for interstellar distances. Rather than relying solely on the power -
 of - 10 prefi xes mentioned previously, more convenient, non - SI units like the 
atomic mass unit (amu or u) or light - year are sometimes used. Fortunately, the 
conversion of units is straightforward, as illustrated in the following example. 

 EXAMPLE 1.1 

    Convert 1   mi/h to the SI unit for speed, meter per second. There are 5280   ft 
per mile, 12   in per foot, and 2.54   cm per inch.  

  ANSWER 

 Unit conversion is readily accomplished with multiplication by a string of 
conversions factors, each of which is dimensionless and equals to 1, such as 
1   =   (2.54   cm)/(1.00   in)   =   2.54   cm/in. We multiply together powers (or inverse 
powers) of the conversion factors so that all of the units  “ cancel, ”  except 
for the desired result:

   
1 1

5280 12 2 54 1
100

1
60

1
60

mi
h

mi
h

ft
mi

in
ft

cm
in

m
cm

h
min s

= × × × × × ×
. min

..
     

(1.6)
   

 Gathering the numerical terms,

    
1

12 5280 2 54
100 60 60

0 44704mi h m s m s=
× ×

× ×
=

.
. .

    
(1.7)
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 As elementary as Example  1.1  seems, errors in unit conversion are not 
uncommon and can have disastrous consequences. A well - known example 
occurred on September 23, 1999, when an unmanned orbiting satellite 
approached Mars at too low an altitude and crashed into the red planet. A 
subsequent investigation by NASA   revealed that engineers failed to properly 
convert the imperial system unit of force used to measure rocket thrust (the 
pound - force) into the SI unit force, the newton.   

 Another example of confusion caused by the improper conversion of units 
occurred over 300 years earlier in connection with Sir Isaac Newton ’ s work 
on the theory of gravitation. In 1679, Newton consulted a sailor ’ s manual to 
obtain numerical values that he used to check the predictions of his theory for 
the speed of the Moon as it orbits the Earth. That speed was known in New-
ton ’ s time from the Moon ’ s observed orbital period and its estimated distance 
from the Earth, which was deduced from the observation of eclipses. Newton, 
however, did not know that the term  “ mile ”  in the sailor ’ s manual referred to 
a nautical mile, which is approximately 15% longer than the statute mile 
(5280   ft) with which he was familiar. This confusion led to a 15% discrepancy 
between his prediction for the speed of the Moon and the accepted value. 
Discouraged by this, Newton abandoned his correct approach and searched 
for an alternative theory. This detour delayed Newton ’ s work on gravity by 
approximately 5 years. Eventually, of course, Newton discovered the error 
concerning units, and his theory of gravitation has become the basis for much 
of modern space fl ight.  

  1.3   DIMENSIONAL CHECKS AND THE USE OF 
SYMBOLIC PARAMETERS 

 Anytime we equate one term to another, they both must have the same 
dimensions for the expression to make physical sense. We cannot equate a 
term with the dimension of length to a term with the dimension of mass. Using 
the basic rules of algebra, we can extend this principle to say that whenever 
we add or subtract terms, they must also have the same dimensions. We say 
that such an expression is dimensionally consistent or dimensionally  homoge-
neous . We can always add zero to or subtract zero from any equation. 
Whenever we do so, we will assume that the zero carries the appropriate 
dimensions. 

 If an equation is dimensionally inconsistent, we can recognize immediately 
that it must be fl awed. The inconsistency might have arisen because the 
equation ’ s construction was based on faulty principles, or because its deriva-
tion contained an algebraic error. The converse is not necessarily true. If an 
equation is dimensionally consistent, it does not mean that it is necessarily 
correct, only that it  could be  correct. 

 Consider the following alternative expressions both intended to describe 
the height  y  of a ball thrown in the air, as a function of time  t ,
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    y t t t( ) = + −3 2 4 9 2.   
  (1.8)  

and

    
y t y v t gt y v gy y( ) = + − = = =0 0

2
0 0

21
2

3 2 9 8, , , . ,m m s and m s
    

(1.9)
   

 where  t  is measured in seconds. These two expressions might appear equiva-
lent at fi rst glance, and Equation  1.8  is more compact. Retaining symbols as 
in Equation  1.9 , however, has several important advantages. First, a quick, 
visual check confi rms that we are adding and subtracting terms that all have 
the same units, in this case meters. Equation  1.8  is not dimensionally homoge-
neous unless we assume that the units are implied, i.e., in the fi rst term,  “ 3 ”  
really means  “ 3   m, ”  and similarly for the other numerical coeffi cients. It is easy 
to apply this assumption inconsistently, leading to errors. On the other hand, 
retaining symbols and checking units can bring our attention to a typographic 
or careless error. For example, the incorrect exponent can be spotted easily

    
y t y v t gty( ) = + − [ ]0 0

31
2

incorrect ,
    

(1.10)
   

 because the last term has the incorrect units of m · sec   instead of meters. 
Common errors like these can be quite diffi cult to uncover when the numerical 
format of Equation  1.8  is used, where the dimensions of the numerical factors 
are implied, rather than given explicitly. The use of the symbolic format as in 
Equation  1.9  avoids many of these problems. 

 The symbolic format of Equation  1.9  also allows the acceleration and initial 
height and initial velocity for the trajectory of the ball to be easily extracted. 
The initial height is  y ( t ) �   t =0    =    y  0 , and differentiating  y ( t ) with respect to time 
yields the initial velocity and the acceleration:

    

dy
dt

v

d y
dt

g

t
y

=
=

= −

0
0

2

2

.

    

(1.11)

   

 Equation  1.8  can also be differentiated with respect to time. With a proper 
choice of notation, however, symbols such as  v  0 y   generally do a better job 
evoking the physical meaning of the parameters than the numerical values 
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appearing in Equation  1.8 . Usually, the more complicated the analytic expres-
sion, the greater the advantage of retaining the symbolic notation becomes. 

 If we assign numerical values to quantities appearing in equations, we also 
have to be careful about their units. For example, the expression (1   m   +   1   cm) 
combines two quantities that have the dimension of length but are measured 
in different units. To reduce the expression correctly to 1.01   m or 101   cm 
(instead of  “ 2 ” ) naturally requires proper unit conversion. 

 Finally, the basic expression for  y ( t ) in Equation  1.9  remains valid regardless 
of which system of units is chosen, which is not true for Equation  1.8 . To 
convert the expression for  y ( t ) in Equation  1.9  into units of feet, we only 
need to convert the given parameters to a new set with the desired units. 
This is easy to do using the method illustrated in Example  1.1 . Using Equation 
 1.9 , the values of the coeffi cients become  y  0    =   9.84   ft,  v  0 y     =   6.56   ft/s, and 
 g    =   32.2   ft/s 2 . 

 To summarize, the symbolic format of Equation  1.9  is preferred over the 
numerical format of Equation  1.8  because it facilitates dimensional checks, 
makes no assumptions about the dimensions of the parameters, and is easier 
to translate between systems of units. For computational work, the symbolic 
format of Equation  1.9  is also preferable to the  “ hard - coded ”  format of Equa-
tion  1.8 , because it provides an easier and less error - prone way to pass the 
values of the coeffi cients between program modules such as subroutines.  

  1.4   ARGUMENTS OF TRANSCENDENTAL FUNCTIONS 

 Because added or subtracted terms must have the same dimensions, the fol-
lowing section will show that we can infer that the arguments of many tran-
scendental functions are dimensionless. The trigonometric functions like sine, 
cosine, tangent, and secant are transcendental, as are the exponential functions, 
which also include hyperbolic sine and hyperbolic cosine. They are distin-
guished from algebraic functions, which include polynomials, square roots, and 
other simpler functions. 

 These functions are often expressed in terms of an infi nite series expansion. 
Consider the well - known series expansion for the sine function:

    
sin .u u

u u u( ) = − + − +
3 5 7

6 120 5040
…

    
(1.12)

   

 Because the coeffi cients of 1/6, 1/120, etc., are dimensionless numbers,  u  
cannot carry any physical units either. Suppose, for example, that  u  had the 
dimensions of power, measured in units of  “ watts. ”  Because we cannot subtract 
a term with units of watts 3  from a term with units of watts, Equation  1.12  would 
not make physical sense. Therefore, the argument of the transcendental func-
tion sin( u ) must always be dimensionless. 
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 Typically, the arguments of trigonometric functions are angles. As men-
tioned earlier, angles are dimensionless, and their SI unit is the radian. It is 
important to remember that many common mathematical formulas involving 
trigonometric functions such as the series expansion

    
cosθ θ θ θ= − + − +1

2 24 720

2 4 6

…
    

(1.13)  

or the derivative

    

d
dθ

θ θsin cos=
    

(1.14)
   

 are not valid unless the angle   θ   is measured in radians. For example, Equation 
 1.12  implies that the sine of a small angle ( << 1   rad) is approximately equal 
to the angle itself, sin  θ      ≈      θ  . With the use of a scientifi c calculator, the reader 
can easily verify that, to fi ve signifi cant fi gures, sin(0.01   rad)   =   0.01000. On 
the other hand, sin(0.01    ° )   =   0.00017453, which refl ects the conversion factor 
(2  π  /360    ≈    0.01745) stated in Equation  1.1 . 

 Next, consider an exponential function and its series expansion:

    f t e t tt( ) = = + +3 21 3 4 5. …   
  (1.15)   

 Equation  1.15  is dimensionally consistent provided that  t  is a dimensionless 
variable. If, however, the variable  t  represents time measured in seconds, then 
Equation  1.15  does not make sense unless we assume that the units are 
implied, i.e.,  “ 3 ”  really means  “ 3   s  − 1  ”  and  “ 4.5 ”  really means  “ 4.5   s  − 2 . ”  The dis-
cussion following Equation  1.8  showed how this type of assumption can lead 
to problems. Instead, it is better to write

    
f t e t

tt( ) = = + +
( )

+λ λ λ
1

2

2

…
   

 (1.16)
   

 with   λ    =    3s  − 1 . The argument of the transcendental function in Equation  1.16  is 
now the product   λ t , which is dimensionless, as is the third term in the expan-
sion, ½(  λ t ) 2 . 

 Among the transcendental functions, the logarithm provides an interesting 
special case. Consider log( x / a ), where the ratio ( x / a ) is dimensionless. For 
example, both  x  and  a  might have the dimension of length, measured in units 
of meters. Suppose that  x    =   3   m and  a    =   2   m. Logarithms reduce the operation 
of division to subtraction, i.e.,

    
log log log log log .

x
a

⎛
⎝

⎞
⎠ = ⎛

⎝⎜
⎞
⎠⎟

= ⎛
⎝

⎞
⎠ = ( ) − ( )3

2
3
2

3 2
m
m     

(1.17)
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 All of the operations in Equation  1.17  are valid, and note that Equation  1.17  
holds regardless of the logarithm ’ s base, e.g., 10, 2, or  e . 

 We might encounter a symbolic expression containing a term log( x ), where 
 x  is not dimensionless. We cannot immediately conclude that the  entire  expres-
sion is incorrect. The expression might also include another term of the form 
 − log( a ), or equivalently +log(1/ a ), where  a  has the same units as  x . Then, even 
though the variable  x  appearing in log( x ) is dimensioned, the entire expression 
can be correct.  

  1.5   DIMENSIONAL CHECKS TO GENERALIZE EQUATIONS 

 The use of dimensional checks allows us to generalize equations and even 
generate new ones. Suppose we use integration by parts or a table of integrals 
and fi nd

    F x xe dx e x Cx x( ) = = −( ) +∫ 1 ,
  
  (1.18)   

 where  C  is a constant. We know that the variable  x  in Equation  1.18  must be 
dimensionless, because it is the argument of the exponential function. Using 
dimensional checks, we can generalize Equation  1.18  to evaluate

 
   
G x a xe dxax,( ) = ∫   

  (1.19)   

 without the need for additional integration. The product ( ax ) must be dimen-
sionless because it appears as the argument of the exponential Equation 
 1.19 . We are free to assume that the variable  x  has dimensions of length, 
measured in the unit of meters, and we will do so. In that case,  a  must 
have units of m  − 1 . So the task is to use dimensional checks to place the appro-
priate power of  a  into each term of the right - hand side of Equation  1.18 . 
Recognizing that each of the terms of  G ( x,a ) must have units of meters 
squared (because the differential  dx  carries the same units as  x , see exercise 
1.12), we can infer that

    
G x a xe dx

e
a

x
a

Cax
ax

, .( ) = = −( ) + ′∫ 1

    
(1.20)

   

 Along with the dimensional check, we also used the fact that  G ( x, a ) reduces 
to  F ( x ) when  a    =   1   m  − 1 . Naturally, for a further check, we can differentiate the 
right - hand side of Equation  1.20 . Although we do not know the values of the 
integration constants  C  and  C  ′ , we do know their units.  C  is dimensionless, and 
 C  ′  carries the same units as  x / a , namely meters squared. 

 Equation  1.20 , which was generated with the aid of a dimensional check, 
can be extended to evaluate related integrals, up to the additive constant (see 
exercises 1.2 and 1.13). The partial derivative of  G ( x, a ) with respect to  a  yields
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∂ ( )
∂

= ∂
∂

⎛
⎝⎜

⎞
⎠⎟

=

= ∂
∂

−( ) + ′⎡
⎣⎢

⎤
⎦⎥

∫ ∫G x a
a

x
e
a

dx x e dx

a
e
a

x
a

C

ax
ax

ax

, 2

1 == − +( )e
a

x
x

a a

ax
2

2

2 2

    (1.21)   

 Equation  1.21  implies that

    
x e dx

e
a

x
x

a a
Cax

ax
2 2

2

2 2= − +( ) +∫ ".
    

(1.22)
   

 Starting with Equation  1.18 , the use of dimensional checks followed by 
partial differentiation yielded a new expression given in Equation  1.22 . This 
sequence of operations can be quite useful for evaluating a variety of indefi nite 
and defi nite integrals, but we always have to be very careful to follow the rules 
of calculus. In the example of Equation  1.21 , it would  not  be valid to differenti-
ate with respect to  x , because  x  is the integration variable.  

  1.6   OTHER TYPES OF UNITS 

 Up to this point, Chapter  1  has focused on variables that carry physical units 
that describe length, mass, electrical charge, etc. This allowed us to draw 
useful inferences about equations composed of these variables. There are 
many other types of units, however, that are not associated with the physical 
sciences. One example is a monetary unit, like a dollar or a euro. Another 
example is a unit like the number of soldiers per battalion, which might be 
used in a logistical calculation to fi nd the required amount of rations for a 
month. 

 Although units like  $  or battalion  − 1  are not part of the SI system, they are 
often very convenient (for example, see exercise 1.14). Equations containing 
variables that carry these types of units still must be dimensionally homoge-
neous, provided that the system of units is applied in a consistent manner. Thus, 
the dimensional checks and unit conversion methods introduced previously in 
this chapter apply. 

 Some equations seem to model the physical world quite well but appear 
to be dimensionally inconsistent. For example, we might fi nd that the time  t  
it takes to fi nish a task in the offi ce is well described by the equation 
 “  t    =   20   min   +   three times the number of phone call interruptions received. ”  
This equation seems to be dimensionally inconsistent, because an apparently 
dimensionless quantity (three times the number of phone calls) is added to a 
dimensioned quantity (20   min). Whenever this type of expression accurately 
models the physical world, however, there is an implied conversion factor. In 
this case, the implied conversion factor is 3   min/phone call.  
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  1.7   SIMPLIFYING INTERMEDIATE CALCULATIONS 

 Calculations often require many intermediate steps to obtain the desired 
result. Sometimes when performing calculations with symbolic variables, it is 
convenient to  temporarily  choose a dimensional system (i.e., a set of units) so 
that the numerical values of some of the physical constants are equal to 1. This 
trick can simplify algebraic manipulation, whether it is performed with paper 
and a pencil or with symbolic manipulation software. Symbolic coeffi cients, 
such as those appearing in Equation  1.9 , can also temporarily be set equal to 
1. After the calculation is completed, the symbols are replaced to make the 
result dimensionally consistent, as was done to derive Equation  1.20 . The 
entire procedure is illustrated in Example  1.2 .   

 Setting quantities equal to 1, even temporarily, seems like it could lead to 
incorrect or confusing results. Trouble can be avoided, however, by following 
these two rules: 

  Rule 1: Never set a dimensionless quantity equal to 1.    

 Violating this rule clearly can lead to logical inconsistencies. For example, 
if we set the dimensionless number 2 equal to 1, we can immediately write an 
incorrect equation such as  “ 1   +   1   =   4. ”  To perform rough  estimates  (as opposed 
to exact calculations), we sometimes neglect factors of 2, 4,   π  , and so on. Esti-
mation is discussed in Chapter  5  and is not our focus here. 

  Rule 2: When setting a collection of dimensioned quantities equal to 1, 
never choose this group to be suffi ciently large so that a dimensionless 
product can be formed from them. To do so would result in a dimensionless 
quantity, i.e., that product, being set equal to 1 in violation of rule 1.    

 The meaning of rule 2 is illustrated by the following case. Suppose we tem-
porarily set each of three dimensioned quantities  q  1 ,  q  2 , and  q  3  equal to 1 and 
then we fi nd any exponents  a, b , and  c  such that the product   q q qa b c

1 2 3× ×  is 
dimensionless. Then, rule 2 says that we have gone too far. We need to restore 
at least one of the  q  ’ s back to its original value. Rule 2 also implies that we 
should never simultaneously set two different quantities of the same dimen-
sion equal to 1, for example, the height and width of a rectangle. Rule 2 ensures 
that there is only a single way to return the dimensioned variables back into 
the fi nal expression when making it (explicitly) dimensionally consistent. This 
uniqueness property is further explored in exercise 1.9. 
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 EXAMPLE 1.2 

    To illustrate why it is convenient to temporarily set constants equal to 
1, consider the example of Compton scattering, named in honor of the 
American physicist Arthur H. Compton who published a paper on this 
effect in 1923. Compton scattering describes the scattering of an X - ray 
photon from a free electron, which is assumed to initially be at rest. The 
X - ray photon loses some of its energy to the electron, which results in a 
reduction of the frequency of the scattered X - ray. The amount of energy 
the X - ray photon loses (and therefore the frequency of the scattered radia-
tion) depends on the angle through which it is scattered. If it is scattered 
straight back in the direction from which it came (i.e.,   φ     =   180    ° ), then it 
loses the maximum possible amount of energy. Compton scattering is 
important for many applications, including medical imaging methods that 
use X - rays. One such method is computed tomography. The concepts from 
modern physics that are applied to set up the equations are described in 
detail in many physics books, and we only give a brief outline here. 

 In this example, we will solve the equations for Compton scattering 
with two procedures: (a) using standard units and (b) using a dimensional 
system where Planck ’ s constant and the speed of light each equal to 1. 
Part (b) of this example illustrates the algebraic simplifi cation that can 
result.  

  ANSWER 

    (a)     When the X - ray photon scatters from the electron, conservation of 
energy yields the relation

    hf Mc hf E0
2+ = + ,   

  (1.23)  

where  h  is Planck ’ s constant,  f  0  is the frequency of the incident X - ray,  M  is 
the rest mass of the electron,  c  is the speed of light,  f  is the frequency of 
the scattered X - ray, and  E  is the fi nal, total energy of the electron. There is 
also an identity from the special theory of relativity that relates the fi nal 
energy, mass, and momentum  P  of the electron:

    E Mc Pc2 2 2 2= ( ) + ( ) .
  
  (1.24)   

 Equations 1.23 and 1.24 are both dimensionally consistent. The magni-
tudes of the initial and fi nal values of the momentum of the X - ray are 
given by ( hf  0 / c ) and ( hf / c ), respectively. The X - ray is scattered through 
an angle   φ  , so that the conservation of momentum and the law of cosines 
imply  
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P

hf
c

hf
c

h f f
c

2 0
2 2 2

0
22= ( ) + ( ) − ⎛

⎝⎜
⎞
⎠⎟

cos .φ
    

(1.25)
   

 The fi nal energy  E  and momentum  P  of the electron can be eliminated 
from Equations 1.23 – 1.25. After some algebra (see exercise 1.10), the 
desired result for the fi nal frequency of the X - ray is obtained:

    

f
f

hf
Mc

=
+ −( )

0

0
21 1 cos

.
φ

    

(1.26)

    

  (b)     The appearance of Equations 1.23 – 1.25 is simplifi ed if we temporarily 
set Planck ’ s constant  h  and the speed of light  c  both equal to 1. (This is 
clearly not true in SI units, in which  h    =   6.626068    ×    10  − 34    J · s and 
 c    =   2.9979    ×    10 8    m/s.) The simplifi ed versions of Equations 1.23 – 1.25 become

    

f M f E

E M P

P f f f f

0
2 2 2

2
0
2 2

02

+ = +
= +
= + −

,

,

cos .φ     

(1.27)

   

 The algebraic manipulation is now considerably simpler, because we do 
not have to carry the factors of  h  and  c  through each step. After the simpli-
fi ed algebra, we fi nd that

    

" "
cos

f
f

f
M

=
+ −( )

0

01 1 φ
    

(1.28)

   

 We know that Equation  1.28  cannot be the fi nal, correct result for  f , 
because it is not dimensionally consistent; the dimensioned term ( f  0 / M )    ×    
(1    −    cos  φ  ) is added to the dimensionless quantity 1 in the denominator. We 
must properly reinsert the dimensioned quantities into the fi nal expression 
to get the correct answer. 

 To replace the correct factors of  h  and  c  to Equation  1.28 , it is convenient 
to decompose each of the dimensions of each of the variables into funda-
mental SI units. It is conventional to denote the units of a variable by 
placing square brackets around it. For the variables in this example,

    

f f

M

c

h

0
1

1

2 1

[ ] = [ ] =
[ ] =
[ ] =
[ ] = ⋅
[ ] = ⋅ = ⋅ ⋅

−

−

−

s

kg

rad

m s

J s m kg s

,

,

,

,

.

φ

    

(1.29)
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 Naturally, [ f  0 / M ]   =   [ f  0 ]/[ M ], so that the ratio ( f  0 / M ) has units kg  − 1  ·  s  − 1 . We now 
reintroduce the powers of  h  and  c  needed for Equation  1.28  to be dimension-
ally consistent. The result is Equation  1.26 . This can be seen by inspection, but 
we can also reach the same conclusion more methodically, as described next. 

 Because  f  0  and  f  both have the same dimensions, all that is required to 
make Equation  1.28  dimensionally consistent is to replace the powers of  h  
and  c  so that the term ( f  0 / M ) in the denominator becomes dimensionless. 
We seek values of the exponents  a  and  b  such that

 
   

h c f Ma b
0

1 0 0 01 1 1 1−[ ] = = × ×m s kg ,
  
  (1.30)  

where we omitted the other four fundamental units (like amperes and 
candelas) because they do not enter into this particular equation. From 
Equations 1.29 and 1.30, we obtain

 
   

h c f Ma b a b a b a b
0

1 2 1 1 1 1 2 1− − − − − + − − −[ ] = ⋅ ⋅( ) ⋅( ) ( )( ) =m kg s m s s kg m s kgaa−1.
  
  (1.31)   

 Equating the exponents of each factor in Equations 1.30 and 1.31 yields 
a set of linear equations:

    

2 0

1 0

1 0

a b

a b

a

+ =
− − − =

− =

,

,

.     

(1.32)

   

 These can be readily solved to give  a    =   1 and  b    =    – 2, which agree with 
Equation  1.26 .     

 In Example  1.2 , temporarily choosing a dimensional system so that  c    =   1 
and  h    =   1 has allowed us to get the correct answer while simplifying the 
algebra. Note that from Equation  1.29 , simultaneously setting both  c    =   1 and 
 h    =   1 did not violate rule 2, because no power of  c  can cancel the basic SI unit 
kilogram appearing in  h  to form a dimensionless quantity. 

 Although the procedure illustrated in Example  1.2 b can simplify algebraic 
calculation, it is not to everyone ’ s liking. Even if the two stated rules are followed 
carefully, the ability to perform dimensional checks on each intermediate step 
of the calculation is lost. Instead, many prefer to solve the problem using stan-
dard units as in Example  1.2 a but with variable substitutions such as

    

u Mc

v hf

w hf

=
=
=

2

0

,

,

.     

(1.33)

   

 This method allows for algebraic simplifi cation and still permits dimen-
sional checks at each step. One drawback of the substitutions of Equation 
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 1.33  is that the constants can reappear in the expression when we calculate 
derivatives or integrals. For example, the constant  c  reappears if we need to 
differentiate some function  y  with respect to  M :

    

dy
dM

c
dy
du

= 2 .
    

(1.34)
   

 The choice of which, if any, of these simplifi cation methods to use depends 
on the complexity of the specifi c problem and is mainly a matter of personal 
preference.  

  EXERCISES    

    (1.1)    Convert 1 light - year into meters. Use the speed of light  c    =   2.9979    ×    10 8    m/s.   

    (1.2)    Suppose that

   x xdx x x x x x C3 2 33 6 6sin sin cos .∫ = −( ) + −( ) +
 

   (a)     Without further integration, use dimensional checks to evaluate 
 �  x  3 sin( ax ) dx . Assume that  x  has the dimensions of length.  

  (b)     Use the resulting expression to evaluate  �  x  4 cos( ax ) dx  by partial 
differentiation.      

    (1.3)    A dimensionless variable  u  is raised to the power  b . Show that the 
exponent  b  must also be dimensionless. Hint: use  u b     =   exp(ln  u b  )   
=   exp( b  ln  u ).   

    (1.4)    Suppose that  g    =   9.8   m/s 2 ,  v    =   50   m/s,  h    =   12   m,   ω     =   30   rad/s,   θ     =   2.5   rad, 
and  t  is time measured in seconds. Identify which of the following equa-
tions cannot be valid based on a dimensional check: 

  (a)      v    =    ht ;  
  (b)       v gh= 2 ;  

  
(c)

       
θ ω= +sin t

h
vt

;
  

  (d)      h    =    vt    +   exp ( −  gt ).      

    (1.5)    Each of the following mathematical expressions has one term that is 
dimensionally inconsistent with the other two. Find the inconsistent term, 
and correct it by inserting the appropriate power of  a . Assume  x  is a length: 

  
(a)

       
a e

ax
x

axax2
2

59
3+

( )
− ( )sin

;
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(b)

       

ax

ax

ax
x

ax
2

4 1
22

2

+ ( )
+ + − ( )⎡

⎣⎢
⎤
⎦⎥

sin
exp ;

  

  
(c)

       
x a x x axarccos sin.0 25 2 3( ) − ( ) + .

      

    (1.6)    Look up the defi nitions of each of these derived SI units: (a) henry, (b) 
gray, and (c) lux. For each unit, describe what physical quantity it mea-
sures and then express the unit as a monomial containing powers of 
the seven fundamental units (i.e., see Equation  1.5 ). (A  “ monomial ”  is 
a polynomial with only one term.)   

    (1.7)    Consider the quadratic equation  ax  2    +    bx    +    c    =   0. Assume that  x  has 
the dimensions of length and that  a  is dimensionless. What are the 
dimensions of  b  and  c ? Verify that the solution

   
x

b b ac
a

= − ± −2 4
2  

is dimensionally consistent. If instead  b  is dimensionless, then what are 
the dimensions of  a  and  c ? In that case, is the solution for  x  still dimen-
sionally consistent?   

    (1.8)    Suppose a particle of mass  m  and kinetic energy  E  collides with another 
particle of mass  m , which is initially at rest. We analyze the problem 
using the special theory of relativity, and to simplify the resulting equa-
tions  , we temporarily set  m    =   1 and  c    =   1, where  c  is the speed of light. 
After some algebra, we fi nd that the kinetic energy in the center - of -
 mass reference frame is given by

   
E

E
cm = + −⎛

⎝⎜
⎞
⎠⎟

2 1
2

1 .
  

 Reintroduce factors of  m  and  c  so that the expression is (explicitly) 
dimensionally consistent.   

    (1.9)    To reduce the algebraic complexity of a problem, we set three dimensioned 
physical constants  q  1 ,  q  2 , and  q  3  each equal to 1, similar to Example  1.2 . 
After completing the algebra, we then go on to replace powers of  q  1 ,  q  2 , and 
 q  3  so that the fi nal expression is dimensionally consistent. We fi nd that for 
one of the terms in our expression, we can replace the physical constants in 
two distinct ways:   q q q1 2 3

2× ×  and   q q q1
3 2

2 3× ×  both make the expres-
sion dimensionally consistent. What went wrong? Hint: show that rule 2 was 
violated. (By this same method, show that, in general, whenever the replace-
ment of the physical constants is not unique, rule 2 must be violated. This 
implies that if rule 2 is satisfi ed, then the replacement is unique.)   

    (1.10)    Derive Equation  1.26  from Equations  1.23 – 1.25 . Start by isolating  E  
in Equation  1.23  and then squaring the result. Then derive Equation 
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 1.28  from Equation  1.27 . Do you fi nd that the simplifi cation justifi es 
the potential pitfalls of setting the physical constants equal to 1?   

    (1.11)    Interpret each of the following equations from a dimensional perspec-
tive. For example, the Pythagorean theorem  c  2    =    a  2    +    b  2  is dimensionally 
consistent only if  a, b , and  c  all have the same units, such as length: 

  
(a)     formula for an ellipse:

   

x x
a

y y
b

−( ) + −( ) =0
2

0
2

1 ;
  

  
(b)     derivative of a function raised to a power:

   

d
dx

u nu
du
dx

n n( ) = −1 .
      

    (1.12)    Show that the differential  dx  must have the same units as the variable 
 x . Hint: consider the integral  ∫  dx .   

    
(1.13) 

   
Suppose we know that

   
exp .−( ) =

−∞

∞

∫ x dx2 π

   
(a)     Use a dimensional check to evaluate

   
exp −( )

−∞

∞

∫ ax dx2 .
  

  
(b)     Use partial differentiation to evaluate

   
x x dx4 2exp −( )

−∞

∞

∫ .
      

    (1.14)    Suppose that four painters can paint two houses in 2 days. How many 
days does it take for three painters to paint fi ve houses? Hint: form an 
expression for the house - painting rate  r p  , measured in non - SI units  :

   
rp =

×
= ⋅ − −2

4 2
0 25 1 1 houses

 painters  days
 house painter day. .

      

  FURTHER READING 

   http://physics.nist.gov/cuu/Units/index.html   
  The web pages located in this URL from the National Institute of Standards and 

Technology contain many helpful links and much useful information about systems of 
units.  

    Szirtes   T.    1997 .  Applied Dimensional Analysis and Scaling .  New York :  McGraw - Hill   .  
  This book gives a very thorough discussion about dimensional consistency and systems 

of units. Among many other topics, Szirtes provides an interesting discussion regard-
ing the dimensions of  “ dimensionless ”  quantities, which the reader might fi nd useful 
for interpreting Equation  1.30 .     
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