
1
First Principles

This first chapter presents an overview of some basic ideas. Later chapters
will expand on these ideas and clarify the subtleties that are frequently
encountered. Practical examples will be emphasized. The data to be pro-
cessed is presented in a sampled-time or sampled-frequency format, using
a number of samples that is usually not more than 211 = 2048. The fol-
lowing “shopping list” of operations is summarized as follows:

1. The user inputs, from a tabulated or calculated sequence, a set of
numerical values, or possibly two sets, each with N = 2M(M = 3, 4,
5, . . . ,11) values. The sets can be real or complex in the “time”
or “frequency” domains, which are related by the Discrete Fourier
Transform (DFT) and its companion, the Inverse Discrete Fourier
Transform (IDFT). This book will emphasize time and frequency
domains as used in electronic engineering, especially communica-
tions. The reader will become more comfortable and proficient in
both domains and learn to think simultaneously in both.

2. The sequences selected are assumed to span one period of an eternal
steady-state repetitive sequence and to be highly separated from
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10 DISCRETE-SIGNAL ANALYSIS AND DESIGN

adjacent sequences. The DFT (discrete Fourier transform), and DFS
(discrete Fourier series) are interchangeable in these situations.

3. The following topics are emphasized:
a. Forward transformation and inverse transformation to convert

between “frequency” and “time”.

b. Spectral leakage and aliasing.

c. Smoothing and windowing operations in time and frequency.

d. Time and frequency scaling operations.

e. Power spectrum and cross-spectrum.

f. Multiplication and convolution using the DFT and IDFT.

g. Relationship between convolution and multiplication.

h. Autocorrelation and cross-correlation.

i. Relations between correlation and power spectrum using the
Wiener-Khintchine theorem.

j. Filtering or other signal-processing operations in the time domain
or frequency domain.

k. Hilbert transform and its applications in communications.

l. Gaussian (normal) random noise.

m. The discrete differential (difference) equation.

The sequences to be analyzed can be created by internal algorithms
or imported from data files that are generated by the user. A library of
such files, and also their computed results, can be named and stored in a
special hard disk folder.

The DFT and IDFT, and especially the FFT and IFFT, are not only very
fast but also very easy to learn and use. Discrete Signal Processing using
the computer, especially the personal computer, is advancing steadily into
the mainstream of modern electrical engineering, and that is the main
focus of this book.

SEQUENCE STRUCTURE IN THE TIME
AND FREQUENCY DOMAINS

A time-domain sequence x (n) of infinite duration −∞ ≤ n ≤ + ∞ that
repeats at multiples of N is shown in Fig. 1-1a, where each x (n) is uniquely
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Figure 1-1 Infinite sequence operations for wave analysis. (a) The
segment of infinite periodic sequence from 0 to N − 1. The next sequence
starts at N . (b) The Segment of infinite sequence from 0 to N − 1 is not
periodic with respect to the rest of the infinite sequence. (c) The two-sided
sequence starts at− 4 or 0. (d) The sequence starts at 0.
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identified in both time and amplitude. If the sequence is nonrepeating
(random), or if it is infinite in length, or if it is periodic but the sequence
is not chosen to be exactly one period, then this segment is not one
period of a truly periodic process, as shown in Fig. 1-1b. However, the
wave analysis math assumes that the part of the wave that is selected is
actually periodic within an infinite sequence, similar to Fig. 1-1a. The
selected sequence can then perhaps be referred to as “pseudo-periodic”,
and the analysis results are correct for that sequence. For example, the
entire sequence of Fig. 1-1b, or any segment of it, can be analyzed exactly
as though the selected segment is one period of an infinite periodic wave.
The results of the analysis are usually different for each different segment
that is chosen. If the 0 to N − 1 sequence in Fig. 1-1b is chosen, the
analysis results are identical to the results for 0 to N − 1 in Fig. 1-1a.

When selecting a segment of the data, for instance experimentally
acquired values, it is important to be sure that the selected data contains
the amount of information that is needed to get a sufficiently accurate
analysis. If amplitude values change significantly between samples, we
must use samples that are more closely spaced. There is more about this
later in this chapter.

It is important to point out a fact about the time sequences x (n) in
Fig. 1-1. Although the samples are shown as thin lines that have very
little area, each line does represent a definite amount of energy. The sum
of these energies, within a unit time interval, and if there are enough of
them so that the waveform is adequately represented (the Nyquist and
Shannon requirements) [Stanley, 1984, p. 49], contains very nearly the
same energy per unit time interval; in other words very nearly the same
average power (theoretically, exactly the same), as the continuous line
that is drawn through the tips of the samples [Carlson, 1986, pp. 351 and
624]. Another way to look at it is to consider a single sample at time (n)
and the distance from that sample to the next sample, at time (n + 1). The
area of that rectangle (or trapezoid) represents a certain value of energy.
The value of this energy is proportional to the length (amplitude) of the
sample. We can also think of each line as a Dirac “impulse” that has zero
width but a definite area and an amplitude x (n) that is a measure of its
energy. Its Laplace transform is equal to 1.0 times x (n).

If the signal has some randomness (nearly all real-world signals do),
the conclusion of adequate sampling has to be qualified. We will see in
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later chapters, especially Chapter 6, that one record length (N ) of such a
signal may not be adequate, and we must do an averaging operation, or
other more elaborate operations, on many such records.

Discrete sequences can also represent samples in the frequency domain,
and the same rules apply. The power in the adequate set of individual
frequencies over some specified bandwidth is almost (or exactly) the same
as the power in the continuous spectrum within the same bandwidth, again
assuming adequate samples.

In some cases it will be more desirable, from a visual standpoint, to
work with the continuous curves, with this background information in
mind. Figure 1-6 is an example, and the discrete methods just mentioned
are assumed to be still valid.

TWO-SIDED TIME AND FREQUENCY

An important aspect of a periodic time sequence concerns the relative
time of occurrence. In Fig. 1-1a and b, the “present” item is located
at n = 0. This is the reference point for the sequence. Items to the left
are “previous” and items to the right are “future”. Figure 1-1c shows an
8-point sequence that occurs between−4 and +3. The “present” symbol
is at n = 0, previous symbols are from −4 to −1, and future symbols are
from + 1 to + 3. In Fig. 1-1d the same sequence is shown labeled from 0
to + 7. But the + 4 to + 7 values are observed to have the same amplitudes
as the −4 to −1 values in Fig. 1-1c. Therefore, the + 4 to + 7 values of
Fig. 1-1d should be thought of as “previous” and they may be relabeled as
shown in Fig. 1-1d. We will use this convention consistently throughout
the book. Note that one location, N /2, is labeled both as+ 4 and −4. This
location is special and will be important in later work. In computerized
waveform analysis and design, it is a good practice to use n = 0 as a
starting point for the sequence(s) to be processed, as in Fig. 1-1d, because
a possible source of confusion is eliminated.

A similar but slightly different idea occurs in the frequency-domain
sequence, which is usually a two-sided spectrum consisting of positive-
and negative-frequency harmonics, to be discussed in detail later. For
example, if Fig. 1-1c and d are frequency values X (k ), then − 4 to − 1 in
Fig. 1-1c and + 4 to + 7 in Fig. 1-1d are negative frequencies. The value at
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k = 0 is the dc component, k = ± 1 is the ± fundamental frequency, and
other ± k values are ± harmonics of the k = ± 1 value. The frequency
k = ± N /2 is special, as discussed later. Because of the assumed steady-
state periodicity of the sequences, the Discrete Fourier Transform, often
correctly referred to in this book as the Discrete Fourier Series, and its
inverse transform are used to travel very easily between the time and
frequency domains.

An important thing to keep in mind is that in all cases, in this chapter or
any other where we perform a summation (�) from 0 to N − 1, we assume
that all of the significant signal and noise energy that we are concerned
with lies within those boundaries. We are thus relieved of the integrations
from −∞ to +∞ that we find in many textbooks, and life becomes sim-
pler in the discrete 0 to N − 1 world. It also validates our assumptions
about the steady-state repetition of sequences. In Chapters 3 and 4 we look
at aliasing, spectral leakage, smoothing, and windowing, and these help to
assure our reliance on 0 to N − 1. We can also increase N by 2M(M = 2,
3, 4, . . .) as needed to encompass more time or more spectrum.

DISCRETE FOURIER TRANSFORM (SERIES)

A typical example of discrete-time x (n) values is shown in Fig. 1-2a. It
consists of 64 equally spaced real-valued samples 0 ≤ n ≤ 63 of a sine
wave, peak amplitude A = 1.0 V, to which a dc bias of Vdc = + 1.0 V
has been added. Point n = N = 64 is the beginning of the next sine wave
plus dc bias. The sequence x (n), including the dc component, is

x(n) = A sin

(
2π

n

N
Kx

)
+ Vdc volts (1-1)

where K x is the number of cycles per sequence length: in this example,
1.0. To find the frequency spectrum X (k ) for this x (n) sequence (Fig.
1-2b), we use the DFT of Eq. (1-2) [Oppenheim et al., 1983, p. 321]:

X(k) = 1

N

N−1∑
n=0

x(n) e−j2π n
N ·k volts, k = 0 to N − 1 (1-2)
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−j 0.5
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k = 1

dc = +1.0

k = 0

k = 63
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0
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(c)

63

0 to N/2 − 1 = 32 freqs N/2 to N − 1 = 32 freqs

N = 64

0 to N = 64 freq intervals

0 to N −1 = 64 freq values, including dc

N/2 − 1 N/2

Figure 1-2 Sequence (a) is converted to a spectrum (b) and recon-
verted to a sequence (c). (a) 64-point sequence, sine wave plus dc bias.
(b) Two-sided spectrum of w to count freq part (a) showing ho values
and frequency intervals. (c) The spectrum of part (b) is reconverted to the
time sequence of part (a).

In this equation, for each discrete value of (k ) from 0 to N − 1, the func-
tion x (n) is multiplied by the complex exponential, whose magnitude =
1.0. Also, at each (n) a constant negative (clockwise) phase lag incre-
ment (−2πnk /N ) radians is added to the exponential. Figure 1-2b shows
that the spectrum has just two lines of amplitude ± j 0.5 at k = 1 and 63,
which is correct for a sine wave of frequency 1.0, plus the dc at k = 0.

These two lines combine coherently to produce a real sine wave of
amplitude A = 1.0. The peak power in a 1.0 ohm resistor is not the sum of
the peak powers of the two components, which is (0.52 + 0.52) = 0.5 W;
instead, the peak power is the square of the sum of the two components,
which is (0.5 + 0.5)2 = 1.0 W. If the spectrum component X (k ) has a real
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part and an imaginary part, the real parts add coherently and the imaginary
parts add coherently, and the power is complex (real watts and imaginary
vars). There is much more about this later.

If K x = 1.2 in Eq. (1-1), then 1.2 cycles would be visible, the spectrum
would contain many frequencies, and the final phase would change to
(0.2 · 2π) radians. The value of the phase angle in degrees for each
complex X (k ) is

φ(k) = arctan

(
Im

(
X(k)

)
Re

(
X(k)

)
)

· 180

π
degrees (1-3)

For an example of this type of sequence, look ahead to Fig. 1-6. A later
section of this chapter gives more details on complex frequency-domain
sequences.

At this point, notice that the complex term exp(jωt) is calculated by
Mathcad using its powerful and efficient algorithms, eliminating the need
for an elaborate complex Taylor series expansion by the user at each value
of (n) or (ω). This is good common sense and does not derail us from
our discrete time/frequency objectives.

At each (k ) stop, the sum is performed at 0 to N − 1 values of time (n),
for a total of N values. It may be possible to evaluate accurately enough
the sum at each (k ) value with a smaller number of time steps, say N /2
or N /4. For simplicity and best accuracy, N will be used for both (k )
and (n). Using Mathcad to find the spectrum without assigning discrete
(k ) values from 0 to N − 1, a very large number of frequency values are
evaluated and a continuous graph plot is created. We will do this from
time to time, and the summation (�) becomes more like an integral

(∫ )
,

but this is not always a good idea, for reasons to be seen later.
Note also that in Eq. (1-2) the factor 1/N ahead of the sum and the

minus sign in the exponent are used but are not used in Eq. (1-8) (look
ahead). This notation is common in engineering applications as described
by [Ronald Bracewell, 1986] and is also an option in Mathcad (functions
FFT and IFFT). See also [Oppenheim and Willsky et al., 1983, p. 321].
This agrees with the practical engineering emphasis of this book. It also
agrees with our assumption that each record, 0 to N − 1, is one replication
of an infinite steady-state signal. These two equations, used together and
consistently, produce correct results.
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Each (k ) is a harmonic number for the frequency sequence X (k ). To
repeat a few previous statements for emphasis, k = 1 is the fundamen-
tal frequency, k = 2 is second harmonic, etc. A two-sided (positive and
negative) phasor spectrum is produced by this equation (we will learn to
appreciate the two-sided spectrum concept). N , an integral power of 2,
is chosen large enough to provide adequate resolution of the spectrum
(sufficient harmonics of k = 1). The dc component is at k = 0 [where the
exp(0) term = 1.0] and

X(0) = 1

N

N−1∑
n=0

x(n) = 〈x(n)〉 volts (1-4)

which is the time average over the entire sequence, 1.0, in Fig. 1-2.
Equation (1-2) can be used directly to get the spectrum, but as a matter

of considerable interest later it can be separated into two regions having
an equal number of data points, from 0 to N /2 − 1 and from N /2 to N − 1
as shown in Eq. (1-5). If N = 8, then k (positive frequencies) = 1, 2, 3 and
k (negative frequencies) = 7, 6, 5. Point N is the beginning of the next
periodic continuation. Dc is at k = 0, and N /2 is not used, for reasons to
be explained later in this chapter.

Consider the following manipulations of Eq. (1-2):

X(k) = 1

N


N/2−1∑

n=0

x(n)e−jk2π( n
N ) +

N−1∑
n=N/2

x(n)e−jk2π( n
N )


 (1-5)

The last exponential can be modified as follows without changing its
value:

e−jk2π n
N = ej (2πn)︸ ︷︷ ︸

360◦
e−jk2π n

N = e
j2πn

(
1− k

N

)
= ej2π (N−k) n

N (1-6)

and Eq. (1-2) becomes

X(k) = 1

N


N/2−1∑

n=0

x(n)e−jk2π n
N +

N−1∑
n=N/2

x(n)ej2π(N−k) n
N


 (1-7)
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The second exponential is the phase conjugate (e−jθ→e+jθ) of the first
and is positioned as shown in Fig. 1-2b for k = N /2 to N − 1. At k = 0
we see the dc. The two imaginary components − j0.5 and + j0.5, are at
k = 1 and k = 63 (same as k =− 1), typical for a sine wave of length
64. We use this method quite often to convert two-sided sequences into
one-sided (positive-time or positive-frequency) sequences (see Chapter 2
for more details).

INVERSE DISCRETE FOURIER TRANSFORM

The inverse transformation (IDFT) in Eq. (1-8) [Oppenheim et al., 1983,
p. 321] takes the two-sided spectrum X (k ) in Fig. 1-2b and exactly recre-
ates the original two-sided time sequence x (n) shown in Fig. 1-2c:

x(n) =
N−1∑
k=0

X(k)ejk2π( n
N ) (1-8)

At each value of (n) the spectrum values X (k ) are summed from k = 0 to
k = N − 1. In Eq. (1-8) the phase increments are in the counter-clockwise
(positive) direction. This reverses the negative phase increments that were
introduced into the DFT [Eq. (1-2)]. This step helps to return each complex
X (k ) in the frequency domain to a real x (n) in the time domain. See further
discussion later in the chapter.

It is interesting to focus our attention on Eqs. (1-2) and (1-8) and to
observe that in both cases we are simultaneously in the time and frequency
domains. We must have data from both domains to travel back and forth.
This confirms that we are learning to be comfortable in both domains at
once, which is exactly what we need to do.

So far, Eqs. (1-2) and (1-8) have been used directly, without any need
for a faster method, the FFT (the Fast Fourier Transform), described later.
Modern personal computers are usually fast enough for simple problems
using just these two equations. Also, Eqs. (1-2) and (1-8) are quite accurate
and very easy to use in computerized analysis (however, Mathcad also
has very excellent tools for numerical and symbolic integration that we
will use frequently). We do not have to worry about those two discrete
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equations in our applications because they have been thoroughly tested.
It is a good idea to use Eqs. (1-2) and (1-8) together as a pair. To narrow
the time or frequency resolution, multiply the value of N by 2M(m = 1,
2, 3, . . .), as shown in the next section.

FREQUENCY AND TIME SCALING

Suppose a signal spectrum extends from 0 Hz to 30 MHz (Fig. 1-3) and we
want to display it as a 32-point (=25) two-sided spectrum. The positive
side of the spectrum has 15 X (k ) values from 1 to N /2 − 1 (not count-
ing 0 and N /2), and the negative side of the spectrum also has 15 X (k )
values from N /2 + 1 to N − 1 (not counting N /2 and N ). The frequency
range 0 to 30 MHz consists of a fundamental frequency k1 and 24 − 1 = 15
harmonics of k1. The fundamental frequency k1 is determined by

k1·15 = 3·107 ∴ k1 = 3·107

15
= 2 MHz (1-9)

and this is the best resolution of frequency that can be achieved with
15 points (positive or negative frequencies) of a 30-MHz signal using
a 32-point two-sided spectrum. If we use 2048 data points, we can get
29.31551-kHz resolution using Eq. (1-9).

+/− 30 MHz
00

2.0 MHz resolution

K=
+1

K = −1

−2 MHz

Figure 1-3 A 30-MHz two-sided spectrum with 32 frequency samples,
including 0.



20 DISCRETE-SIGNAL ANALYSIS AND DESIGN

An excellent way to improve this example is to frequency-convert the
signal band to a much lower frequency, for example 3 MHz, using a very
stable local oscillator, which would give us a 2931.55-Hz resolution for
this example. Increasing the samples to 214 at 3 MHz provides a resolution
of 366.26 Hz, and so forth for higher sample numbers. This is basically
what spectrum analyzers do.

The good news for this problem is that a hardware frequency translator
may not be necessary. If the signal is narrowband, such as speech or
low-speed data or some other bandlimited process, the original 30-MHz
problem might be restated at 3 MHz, or maybe even at 0.3 MHz, with the
same signal bandwidth and with no loss of correct results, but with greatly
improved resolution. With programs for personal computer analysis, very
large numbers of samples are not desirable; therefore, we do not try to
push the limits too much. The waveform analysis routines usually tell
us what we want to know, using more reasonable numbers of samples.
Designing the frequency and time scales is very helpful.

Consider a time scaling example, a sequence (record length) that is
10 µsec long from start of one sequence to the start of the next sequence,
as shown in Fig. 1-4. For N = 4 there are 4 time values (0, 1, 2, 3) and
4 time intervals (1, 2, 3, 4) to the beginning of the next sequence, which
is 10−5/4 = 2.5 µsec per interval. In the first half there are 2 intervals
for a total of 5.0 µsec. For the second half there are also 2 intervals, for
a total of 5.0 µsec. Each interval is a “band” of possibly smaller time
increments. The total time is 10.0 µsec.

0 1 2 3

1 2 3 4

0 2.5 +5.0

− 5.0 −2.5 0

N = 4

msec

10 msec

Figure 1-4 A 10-µsec time sequence with positive and negative time
values.
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For N = 2M points there are N values , including 0, and N intervals
to the beginning of the next sequence. For a two-sided time sequence
the special midpoint term N /2 can be labeled as+5.0 µsec and also
−5.0 µsec, as shown in Fig. 1-4. It is important to do this time scaling
correctly.

Figure 1-2b shows an identical way to label frequency values and fre-
quency intervals. Each value is a specific frequency and each interval is
a frequency “band”. This approach helps us to keep the spectrum more
clearly in mind. If amplitude values change too much within an interval,
we will use a higher value of N to improve frequency resolution, as dis-
cussed previously. The same idea applies in the time domain. The term
picket fence effect describes the situation where the selected number of
integer values of frequency or time does not give enough detail. It’s like
watching a ball game through a picket fence.

NUMBER OF SAMPLES

The sampling theorem [Carlson, 1986, p. 351] says that a single sine
wave needs more than two, preferably at least three, samples per cycle. A
frequency of 10,000 Hz requires 1/(10,000·3) = 3.33·10−5seconds for each
sample. A signal at 100 Hz needs 1/(100·3) = 3.33·10−3seconds for each
sample. If both components are present in the same composite signal, the
minimum required total number of samples is (3.33·10−3)/(3.33·10−5) =
102 = 100. In other words, 100 cycles of the 10,000-Hz component occupy
the same time as 1 cycle of the 100-Hz component. Because the time
sequence is two-sided, positive time and negative time, 200 samples would
be a better choice. The nearest preferred value of N is 28 = 256, and the
sequence is from 0 ≤ n ≤ N − 1. The plot of the DFT phasor spectrum
X (k ) is also two-sided with 256 positions. N = 256 is a good choice for
both time and frequency for this example.

If a particular waveform has a well-defined time limit but insufficient
nonzero data values, we can improve the time resolution and therefore
the frequency resolution by adding augmenting zeros to the time-domain
data. Zeros can be added before and after the limited-duration time signal.
The total number of points should be 2M(M = 2, 3, 4, . . .), as mentioned
before. Using Eq. (1-8) and recalling that a time record N produces N /2
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positive-frequency phasors and N /2 negative-frequency phasors, the fre-
quency resolution improves by the factor (total points)/(initial points). The
spectrum can sometimes be distorted by this procedure, and windowing
methods (see Chapter 4) can often reduce the distortion.

COMPLEX FREQUENCY DOMAIN SEQUENCES

We discuss further the complex frequency domain X (k ) and the phasor
concept. This material is very important throughout this book.

The complex plane in Fig. 1-5 shows the locus of imaginary values on
the vertical axis and the locus of real values on the horizontal axis. The
directed line segment Aeje, also known as a phasor , especially in electron-
ics, has a horizontal (real) component Acos θ and a vertical (imaginary)
component jAsin θ. The phasor rotates counter-clockwise at a positive
angular rate (radians per second) = 2πf . At the frozen instant of time
in the diagram the phase lead of phasor 1 relative to phasor 2 becomes
θ =ω�t = 2πf �t . That is, phasor 1 will reach its maximum amplitude
(in the vertical direction) sooner than phasor 2 therefore, phasor 1 leads
phasor 2 in phase and also in time. A time-domain sine-wave diagram of
phasor 1 and 2 verifies this logic. We will see this again in Chapter 5.

Re(x)

j Im(x)

Ae−j q

Ae j q

Acos q

jAsin q

q + p/2

− q
q

Positive
rotation

Negative
rotation

1

2

Figure 1-5 Complex plane and phasor example.
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The letter j has dual meanings: (1) it is a mathematical operator ,

ejπ/2 = cos

(
π

2

)
+ j sin

(
π

2

)
= 0 + j1 = j (1-10)

that performs a 90◦ (quadrature) counter-clockwise leading phase shift
on any phasor in the complex plane, for example from 45◦ to 135◦, and
(2) it is used as a label to tell us that the quantity following it is on
the imaginary axis: for example, R + jX , where R and X are both real
numbers. The conjugate of the phase-leading phasor at angle (θ) is the
phase-lagging clockwise-rotating phasor at angle (−θ). The quadrature
angle is θ± 90◦.

TIME x(n) VERSUS FREQUENCY X(k)

It is very important to keep in mind the concepts of two-sided time and
two-sided frequency and also the idea of complex-valued sequences x (n)
in the time domain and complex-valued samples X (k ) in the frequency
domain, as we now explain.

There is a distinction between a sample in time and a sample in fre-
quency. An individual time sample x(n), where we define x to be a real
number, has two attributes, an amplitude value x and a time value (n).
There is no “phase” or “frequency” associated with this x (n), if viewed
by itself . A special clarification to this idea follows in the next para-
graph. Think of the x (n) sequence as an oscilloscope screen display. This
sequence of time samples may have some combination of frequencies and
phases that are defined by the variations in the amplitude and phase of
the sequence. The DFT in Eq. (1-2) is explicitly designed to give us that
information by examining the time sequence. For example, a phase change
of the entire sequence slides the entire sequence left or right. A sine wave
sequence in phase with a 0◦ reference phase is called an (I ) wave and a
sine wave sequence that is at 90◦ with respect to the (I) wave sequence
is called a (Q or jQ) quadrature wave. Also, an individual time sample
x(n) can have a “phase identifier” by virtue of its position in the time
sequence. So we may speak in this manner of the phase and frequency
of an x (n) time sequence, but we must avoid confusion on this issue. In
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this book, each x (n) in the time domain is assumed to be a “real” signal,
but the “wave” may be complex in the sense that we have described.

A special circumstance can clarify the conclusions in the previous para-
graph. Suppose that instead of x (n) we look at x (n)exp(jθ), where θ is a
constant angle as suggested in Fig. 1-5. Then (see also p. 46)

x(n) exp(jθ) = x(n) cos(θ) + jx(n) sin θ = I (n) + jQ(n) (1-11)

and we now have two sequences that are in phase quadrature, and each
sequence has real values of x(n). Finally, suppose that the constant θ is
replaced by the time-varying θ(n) from n = 0 to N − 1. Equation (1-11)
becomes x (n)exp[jθ(n)], which is a phase modulation of x (n). If we plug
this into the DFT in Eq. (1-2) we get the spectrum

X(k) = 1

N

N−1∑
n=0

[
x(n) exp

[
jθ(n)

]]
exp

(
−j2π

n

N
k

)

= 1

N

N−1∑
n=0

x(n) exp

{
− j

[
2π

n

N
k − θ(n)

]} (1-12)

where k can be any value from 0 to N − 1 and the time variations in
θ(n) become part of the spectrum of a phase-modulated signal, along
with the part of the spectrum that is due to the peak amplitude varia-
tions (if any) of x (n). Equation (1-12) can be used in some interesting
experiments. Note the ease with which Eq. (1-12) can be calculated in the
discrete-time/frequency domains. In this book, in the interest of simplic-
ity, we will assume that the x(n) values are real, as stated at the outset,
and we will complete the discussion.

A frequency sample X (k ), which we often call a phasor , is also a volt-
age or current value X , but it also has phase θ(k ) relative to some reference
θR, and frequency k as shown on an X (k ) graph such as Fig. 1-2b, k = + 1
and k =+ 63 (same as− 1). The phase angle θ(k ) of each phasor can
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Figure 1-6 Example of time to frequency and phase and return to time.
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be shown, if we like, on a separate phase-angle graph (Fig. 1-6). Finally,
to reconstruct the time plot in Fig. 1-2c, the two rotating X (k ) phasors
in Fig. 1-2b re-create the sinusoidal time sequence x (n), using the IDFT
of Eq. (1-8). Figure 1-6 should be studied as an example of converting
exp(−n/20) from time to frequency and phase and back to time. Note that
parts (a) and (d) show only the positive-time part of the x (n) waveform.
The negative-time part is a mirror image and is occasionally not shown,
but it is never ignored.

There is one other thing about sequences. Because in this book they
are steady-state signals in which all transients have disappeared, it does
not matter where they came from. They can be solutions to differential
equations, or signal generator output at the end of a long nonlinear trans-
mission line, etc., etc. The DFT and IDFT do not identify the source of the
sequences, only tell the relationship between the steady-state time domain
and the steady-state frequency domain. We should avoid trying to make
anything more than that out of them. Other methods do a much better job
of tracing the origins of sequences in time and frequency. The Appendix
shows a simple example of this interesting and very important activity.
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