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WHAT IS AN ANTENNA AND HOW
DOES IT WORK?

1.0 SUMMARY

An antenna is a structure that 15 made of material bodies that can be composed of
cither conducting or diclectric materials or may be a combination of both. Such a
structure should be maiched to the source of the electro-magnetic energy so that
it can radiate or receive the eleclromagnetic ficlds in an efficient manrner. The
intercsting phenomenon is that an antenna displays selectivity properties not only
in frequency but also in space. Tn the frequency domain an anteina is capable of
displaying a resonance phenomenon where at a particular frequency the current
density induced on it can be sufficiently significant to cause radiation of
electromagnetic fields from that structure. An antenna also possesses an impulse
response that is a function of both the azimuth and elevation angles. Thus, an
antenna displays spatial selectivity as it generates a radiation pattern that can
selectively transmit or receive electromagnetic energy along certain spatial
directions. As a receiver of electromagnetic fields, an antenna also acts as a
spatial sampler of the electromagnetic fields propagating through space. The
voltage induced in the antenna is related to the polarization and the strength of
the incident electromagnetic fields. The objective of this chapter is to illustrate
how the impulse response of an antenna can be determined. Anather goal 15 to
demonstrate that the impulse response of an antenna when it is transmitting is
different from its response when the same structure operates in the receive mode.
This is in direct contrast to antenna properties in the frequency domain as the
transmit radiation pattern is the same as the recelve antenna patiern. An antenna
provides the matching necessary between the various electrical components
associated with the transmitter and receiver and the free space where the
electromagnetic wave is propagating. From a lunctional perspective an antenna is
thus related o a loudspeaker, which maiches the acoustic generation/receiving
devices o the open space. However, in acoustics, loudspeakers and microphones
are bandlimited devices and so their impulse responses are well behaved. On the
other hand, an antenna is a high pass device and therefore the transmit and the
receive impulse responses are not the same; in fact, the former is the time
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derivative ol the latter. An antenna ig like our lips, whose instantaneous change
of shapes provides the necessary match between the vocal cord and the cutside
environment as the frequency of the voice changes. By proper shaping of the
antenna structure cne can focus the radiated energy along certain specific
directions in space. This spatial directivity occurs only at certain specific
frequencies, providing selectivity in frequency. The interesting point is that it is
difficult to separate these two spatial and temporal properties of the antenna,
even though in the literatire they are treated separaicly. The tools that deal with
the dual-coupled space-time analysis are Maxwell's equations. We first present
the background of Maxwell’s equations and illustrate how to solve for them
analytically. Then we utilize them in the subsequent sections and chapters to
illustrate how to obtain the impulse responses ol antennas both as transmitting
and receiving elements and illustrate their relevance in the saga of smart
antennas.

1.1 HISTORICAL OVERVIEW OF MAXWELL'S EQUATIONS

In the year 1864, James Clerk Maxwell (1831-1879) read his “Dynamical
Theory of the Electromagnetic Field™ {1] at the Royal Society (London). He
observed theoretically that electromagnetic disturbance travels in free space with
the velocity of light [1-7]. Tle then conjectured that light is a transverse
electromagnetic wave by using dimensional analysis [7]. In his original theory
Maxwell mtroduced 20 cquations involving 20 variables. These equations
logether expressed mathematically virtually all that was known about electricity
and magnetism. Through these equations Maxwell essentially summarized the
work of Hans C, Oersted (17771831, Karl F. Gauss (1777-1855}, André M.
Ampére (1773-1836), Michael Faraday (1791-1867), and others, and added his
own radical concept of displacement currens to complete the theory.

Maxwell assigned strong physical significance to the magnetic vector
and clectric scalar potentials 4 and y; respectively (bold variables denote
vectors, italic denotes that they are function of both time and space, whereas
roman variables are a [unction of space only}, both of which played dominant
roles in his formulation. He did not put any emphasis on the sources of these
clectromagnetic potentials, namely the currents and the charges. He also assumed
a hypothetical mechanical medium called ether to justify the existence of
displacement currents in free space. This assumption produced a strong
opposition to Maxwell's theory from many scientists of his time. 1t is well known
that Maxwell's equations, as we know them now, do not contain any potential
variables; neither does his electromagnetic theory require any assumption of an
artificial medium to sustain his displacement current in free space. The original
interpretation given to the displacement current by Maxwell is no longer used;
however, we retain the term in honor of Maxwell. Although modern Maxwell's
equations appear in madified form, the equations introduced by Maxwell in 1864
formed the foundation of electromagnetic theory, which together is popularly
referred to as Maxwell's electromagnetic theory [1-7].
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Maxwell's original equations were modified and later expressed in the
form we now know as Maxwell’s equations independently by Heinrich Hertz
(1837-1894) and Oliver Heaviside (1850-1923). Their work discarded the
requirement of a medium for the existence of displacement current in free space,
and they also eliminated the vector and scalar potentials from the fundamental
equations. Their derivations were based on the impressed scurces, namely the
current and the charge. Thus, Hertz and Heaviside, independently, expressed
Maxwell’s equations involving only the four field vectors £, H, B, and D: the
electric field intensity, the magnetic field intensity, the magnetic flux density,
and the electric flux density or displacement, respectively. Although priority is
given to Heaviside for the vector form of Maxwell’s equations, it is important to
note that Hertz’s 1884 paper [2] provided the Cartesian form of Maxwell's
equations, which also appeared in his later paper of 1850 [3]. Thus, the
coordmate forms of the four cquations that we use nowadays were first obtained
by Hertz [2.7] in scalar form and then by Heaviside in 1888 in vector form [4,7].

It is appropriate to mention here that the importance of Hertz's
theoretical work [2] and its significance appear not to have been fully recognized
[5}. Tn this 1884 paper [2] Hertz started trom the older action-at-a-distance
theories of electromagnetism and proceeded to obtain Maxwell’s equations in an
alternative way that avolded the mechanical models that Maxwell used originally
and formed the basis for all his future contributions to electromagnetism, both
theoretical and experimental. In contrast to the 1884 paper, in his 1890 paper [3]
Hertz postulated Maxwell’s equations rather than deriving them alternatively.
The equations, written in component forms rather than in vector form as done by
Heaviside [4], brought unparalleled clarity to Maxwell's theory. The four
equations in vector notation containing the four electromagnetic field vectors are
now commonly known as Maxwell’s equations. However, Einstein referred to
them as Maxwell—Heaviside—Hertz equations [0,7].

Although the idea of electromagnetic waves was hidden in the set of 20
equations proposed by Maxwell, he had in fact said virlually nothing about
electromagnetic waves other than light, nor did he propose any idea to generate
such waves electromagnetically. It has been stated [6, Ch. 2, p. 24]: “There is
even some reason 1o think that he [Maewell] regarded the electrical production
of such waves as impossibility.” There is no indication left behind by him that he
believed such was even possible, Maxwell did not live to see his prediction
confirmed experimentally and his electromagnetic theory fully accepted. The
former was confirmed by Hertz's brilliant experfments, his theory received
universal acceptance, and his original cquations i a moditied form became the
language of electromagnetic waves and electromagnetics, due mainly to the
efforts of Hertz and Heavigide [7].

Hertz discovered electromagnetic waves around the year 1888 [8]; the
results of his epoch-making experinients and his related theoretical work (based
on the sources of the clectromagnetic waves rather than on the potentials)
confirmed Maxwell's prediction and helped the general acceptance of Maxwell’s
clectromagnetic  theory. IHMowewver, it is not commonly appreciated that
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“Maxwell's theory that Heriz’s brilliant experiments confirmed was not guite the
suae as the one Maxwell left at his death in the vear 18797 [6]. It is interesting
to note how the relevance of electromagnetic waves to Maxweil and his theory
prior to Hertz's experiments and findings are described in [6]: “Thus Maxwell
missed what Is now regarded as the most exciting implication of his theory, and
one with enormous praciical consequences. That relatively long electromagnetic
waves or perhaps light itself, could be generated in the faboratory with ordinary
electrical apparatus was unsuspected through most of the 187057

Maxwell's predictions and theory were thus confirmed by a set of
brilliant experiments conceived and performed by Hertz, who generated, radiated
(transmitted), and received {detected) electromagnetic waves of frequencies
fower than light. His initial experiment started in 1887, and the decisive paper on
the finite velocity of electromagnetic waves in air was published in 1888 [3].
After the 1888 results, Tlerlz continued his work at higher frequencies, and his
later papers proved conclusively the oplical propertics (reflection, polarization,
cte.) of electromagnetic waves and thereby provided unimpeachable confirmation
of Maxwells theory and predicuons. English translation ol ITlertz's original
publications [9] on experimental and theoretical investigation of electric waves s
sull a decisive source of the history of electromagnetic waves and Maxwell’s
theory. Hertz's experimental sctup and his epoch-making findings are described
in [10].

Maxwell’s ideas and equations were expanded, medified, and made
understandable after his death mainly by the efforts of Heinrich Hertz, George
Francis Fitzgerald (1851-1901), Oliver Lodge (1851-1940), and Oliver
Heaviside. The last three have been christened as “the Maxwellians™ by
Heaviside [2, 11].

Next we review the four equations that we use today due to Hertz and
Heavigide, which resulted from the reformulation of Maxwell's original theory.
Here in all the expressions we use 5T units (Systéme International d’unités or
International System of Units).

1.2 REVIEW OF MAXWELL-HEAVISIDE-HERTZ EQUATIONS

The four Maxwell’s equations are among the oldest sels of equations in
mathematical physics, having withstood the erosion and corrosion of time. Even
with the advent of relativiry, there was no change in their form. We briefly
review the derivation of the four equations and illustrate how to solve them
analvtically [12]. The four equations consist of Faraday’s law, generalized
Ampere’s law, generalized Gauss’s law of electrostatics, and Gauss’s law of
magnetostatics, respectively,

1.2.1  Faraday’s Law

Michael Faraday (1791-1867) observed that when a bar magnet was moved near
a loop composed of a metallic wire, there appeared to be a voltage induced
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between Lhe terminats of the wire loop. [n this way, Faraday showed that a
magnetic field produced by the bar magnet under some special circumstances can
indeed generate an electric field to cause the induced voltage in the loop of wire
and there is a connection between the electric and magnetic fields. This physical
principle was then put in the following mathematical form:

s _ - . _ a(b.» . & .
1'_—4;'5-615_— > ——E—;:[JB-ds (1.1
where: ¥ = voltage induced in the wire {oop of length L

d# = ditferential length vector along the axis of the wire loop,

E = electric field along the wire loop,

& = magnetic flux linkage with the loop of surface area §,

B = magnetic flux density,

S = surface over which the magnetic flux is integrated (this

surface is bounded by the contour of the wire loop),

L = total length of the loop of wire,

. —  scalar dot product between two vectors,

ds = differential surface vector normal to the surface.

This is the integral form of Faraday’s law, which implies that this
relationship is valid over a region. It states that the linc integral of the electric
field is equivalent to the rate of change of the magnetic flux passing through an
open surfuce §, the contour of which is the path of the line integral. In this
chapter, the variables in italic, for example B, indicate that they are functions of
four variables, x. v, z, #. Thig consists of three space variables (x, y, 2} and a time
variable, ¢. When the vector variable s written as B, it is a function ol the three
spatial variables {x, v. 2) only. This nomenclature between the variables denoted
by italic as opposed to roman is used o distinguish their functional dependence
on spatial-temporal variables or spatial variables, respectively,

To extend this relationship to a point, we now establish the differential
form of Faraday’s law by invoking Stokes” theorem for the clectric field. Stokes’
theorem relates the line integral of a vector over a closed contour to a surface
integral of the curl of the vector, which is defined as the rate of spatial change of
the vector along a dircction perpendicular to its orientation (which provides a
rotary motion, and hence the term curl was first introduced by Maxwell}. so that

iE.dﬁ’:.[j(VxE].ds (1.2)

where the curl of a vector in the Cartesian coordinates is defined by
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X F i
. & é ¢
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| (1.3)
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Herce x, p, and 7 represent the unit vectors along the respective

coordinate axes, and £,, £,, and £, represent the x, v, and z components of the
electric field intensity along the respective coordinate directions. The surface S is
limited by the contowr L. ¥ stands for the  operator

" x{@/éx)+ p(aigy) + £(@/2z)1. Using{1.2), (1.1) can be expressed as

d Eedi= [J(VxE)eds = - i 8. ds (1.4)
5 5

é

If we assume that the surface S does not change with time and in the
limit making it shrink to a point, we get Faraday’s law at a point in space and
time as

[
VXE(X,}’,Z,I}=—VXD(_)C,‘L’,Z,I)

L <
_EB(xyz.1) _ﬂﬁﬂ(x..,v, z,f) (1.3)

&t o1

where the constitutive relationships between the flux densities and the field
intensities are given by

B=uH= yuH (1.6a)

D=¢F = g E (1.6b)

D is the electric flux density and # is the magnetic field intensity. Here, & and g
are the permittivity and permeability of vacuum, respectively, and & and u. are
the relative permittivity and permeubility of the medium through which the wave
is propagating.

Cquaiion (1.5) is the point form of Faraday’s law or the first of ihe four
Maxwell’s equations, Ti states that at a point the negative rate of the temporal
vartation of the magnetic flux densily is related to the spatal change of the
electric field along a direction perpendicular to the orientation of the electric field
(termed the curl of a vector) at that same point.
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1.2.2  Generalized Ampére's Law

André M. Ampeére observed that when a wire carrying current is brought near a
magnetic needle, the magnetic necdle 18 deflected in a very specific way
determined by the direction of the (low of the current with respect to the
magnetic needle. [n this way Ampére established the complementary connection
with the magnetic field generated by an electric current created by an clectric
fleld that is the result of applying a voltage difference between the two ends of
the wire. Ampere first illustrated how to generate a magnetic field using the
electric field or current. Ampere’s law can be stated mathematically as

I:(i_H-dfr' (1.7)

where { is the total current encircled by the contour. We call this the generalized
Ampere’s law because we use the total current, which includes the displacement
current due to Maxweil and the conduction current. In principle. Ampére’s law is
connected strictly with the conduction curreni. Since we use the lerm foral
current, we use the prefix generafized as it is a sum of both the conduction an
displacement currents. Therefore, the line integral of H, the magnetic field
intensity along any closed contour £, is equal to the total current flowing through
that contour.

To obtain a point form of Ampeére’s law, we employ Stokes’ theorem to
the magnetic field intensity and integrate the current density J over a surface to
obtain

——y
Il

H.f.dvchf_ﬁodf: H(’V x HY)eds
5 &

(1.8)

‘la {j(v x B)+ ds

This is the mtegral form of Ampére’s law, and by shrinking S to a point, one
obtains a relationship between the electric current density and the magnetic field
intensity at the same point, resulting in

Jlx,v,z.0) = Vx H{x,yz,) (1.9)

Physically, it states that the spatial dertvative of the magnetic field intensity
along a direction perpendicular to the orientation of the magnetic field ntensity
1s related to the clectric current density at that pomt. Now the electric current
density J may consist of different components. This may include the conduction
current (current flowing through a conductor) density J,. and displacement
current density (current flowing through air, as from a transmitter to a receiver
without any physical connection, or current flowing through the dielectric
between the plates of a capacitor) J,, in addition to an extemally applied
impressed current density J,. So in this case we have

J=J+J. +Jd,=J +cE + =V H {1.10}

of
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where D is the electric flux density or electric displacement and o is the
conductivity of the medium. The conduction current density is given by Ohim s
favw, which states that at a point the conduction current density is related to the
electric field intensity by

J = oFE (1.11)

The displacemient current density introduced by Maxwell is defined by

fal )]
g, = 1.12
Y (1.12)

We are neglecting the convection current density, which is due to the diffusion of
the charge density at that point. We consider the impressed current density as the
source of all the electromagnetic fields.

1.2.3 Generalized Gauss’s Law of Electrostatics

Karl Friedrich Gauss established the following relation between the total charge
enclosed by a surface and the electric flux density or displacement D passing
through that surface through the following relationship:

fo.ds=0 (L13)
;

where integration of the electric displacement is carried over a closed surface and
is equal to the total charge @ enclosed by that surface 5.

We now employ the divergence theorem. This is a relation between the
flux of a vector function through a closed surface § and the integral of the
divergence of the same vector over the volume I enclosed by 5. The divergence
of'a vector is the rate of change of the vector atong its orientation, It js given by

q;jf D .ds = [jj V. D dv (1.14)

Here dv represents the differential volume. In Cartesian coordinales the
divergence of 4 vector, which represents the rate of spatiat variation of the vector
along its orientation, is given by

V. Dﬁ{fci—)-i-jr
(1.15)

(v, z.) . (?D}:(_x__y,z,t) N 8D, (x,v.2,0)
ox ' £y Gz
So the divergence (V «} of a vector represents the spalial rate of change of the

veetor along its direction, and hence it is a scalar quantity, whereas the curl (V x)
of a vector is related to the rate of spatial change of the vector perpendicular to
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its orientation, which is a vector quantity and so possesses both a magnitude and
a direction. All of the three definitions of grad, Div and curl were first introduced
by Maxwell.

By applving the divergence theorem to the vector D, we get

q? D . ds= _gjv D dv=0 = J;ﬂql:dv (116)

Here ¢. is the volume charge density and ¥ is the volume enclosed by the surface
S. Therefore, if we shrink the volume 1n (1.16) to a point, we obtain
ED, (x,5,2,0) . D (x,3.2.0) . AD.(x, ¥,2,0)

gx ey Gz {1.17}
= gr(.x.'. ’],-'.,Z_,t)

voD:

This implics thal the rale change of the clectric flux density along its
orientation 1s influenced only by the presence of a free charge density at that
point.

1.2.4  Generalized Gauss’s Law of Magnetostatics

Gauss's law of magnetostatics is similar to the law of electrostatics defined in
Section 1.2.3. If one uses the closed surface integral for the magnetic flux density
B, its integral over a closed surface is equal to zero, as no free magnetic charges
occur in nature. Typically, magnetic charges appear as pole pairs. Therefore, we
have

gf B.ds =0 (1.18)
From the application of the divergence theorem to {1.18), one obtains
fifvesa=o (1.19)
I
which results in
Ve B=0 (1.20)

Equivalenily in Cartesian coordinates, this becomes

8B (x,y.z,1) N 38}.(-‘(5}’:5,?‘) N cB.(x,y,z2.1)
¢x cy &z

=0 (1.21)

This completes the presentation of the four cquations, which are popularly
referred to as Maxwell’s equations, which really were developed by Hertz in
scalar form and cast by Heaviside into the vector form that we use today. These
four equations relate all the spattal-temporal relationships between the electric
and magnetic fields.
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1.2.5  Equation of Continuity

Often, the equation of continuity is used in addition to equations (1.18)-(1.21) o
relate the impressed current density J; to the free charge density ¢, at that point.
The equation of continuity states that the total current is related to the negative of
the time derivative of the total charge by

-aQ
I = 1.22
2 (1.22)
By applying the divergence theorem to the current density, we obtain
. _ &
I = CﬁJ e ds = H (V o J) o = = m‘ g, dv (1.23)
s ¥ : 15
Now shrinking the volume 77 to a point results in
-dg.
Ved = 4 (1.24)
Ci
In Cartesian coordinates this becomes
8 (X, v,2.t e x.v,z0) ad (xv,z, cq. (% v, 2,0
bJxyzt)  CUuL . ch(_\:..,t. A Gq.(xy.z0) (1.25)
&x £y Gz €t

This states that there will be a spatial change of the current density atong the
direction of its flow if there is a temporal change in the charge density at that
point. Next we obtain the solution of Maxwell’s equations.

1.3 SOLUTION OF MAXWELL’S EQUATIONS

Instead of solving the four coupled differential Maxwell’s equations directly
dealing with the clectric and magnetic fields, we intreduce two additional
variables 4 and . Here 4 is the magnetic vector polential and w is the scalar
electric potential. The introduction of these two auxiliary variables facilitates the
solution of the four equations.

W start with the generalized Gauss’s law of magnetostatics, which
states that

VeB(x,y,z.0) =0 (1.26)
Since the divergence of the curl of any vector A is always zero, that is,
Ve Vi A(x,v,z,0) = 0 (1.27}
one can always write

B(x, vz} =V x A{x,y,2,1) (1.28)
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which states that the magnetic flux density can be obtained from the curl of the
magnetic vector potential 4. So if we can solve for A, we obtain B by a simple
differentiation. It is important to note that at this point 4 is still an unknown
quantity. In Cartesian coordinates this relationship becomes

Bix.yv.o.fy = 2B (x.p,5,0) + PH(x.v,7.0) + B.Ax, y.2.1)

| ¥y oz
i A )
= determinant of | ﬁc £ T(..
ox  dy Oz
\\ '4.\’ 4\' 4;
2| [ 8. 1. (\’ v,z,1) 5:1_,,.(,1:,):,2,3)} (1.29)
= | _ .
: ¢

{c 4. pz0) éA:(.r,y,z,!)—!

£z £x

P 4_, XVl EA vzt
g ey

Note that if we substitute B from (1.28) into Faraday's law given by (1.5), we
obtain

A & A
VxE:—(—:ﬁ:—{;[VxA]:—VxCﬁA (1.30)
of o f ot
or equivalently,
o )
v x| E+ S (1.31)
cro

If the curl of a vector is zero, that vector can always be wrillen in terms
of the gradient of a scalar function . since it 1s always true that the curl of the
gradient of a scalar function  is always zero, that is,

V x Viwi(x,v.o,rp =0 (1.32)
where the gradient of a vector is defined through

& .8 .2

—~ —~ < -~
Ax 8y éz)

wix, v, z.1) (1.33}

We call i ihe electric scalar potential. Therefore, we can write the following (we
choose a negative sign in front of the term on the right-hand side of the equation
for convenience):
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E+ 2= vy (1.34)

or
GA(x, v, z,1)

E(x,v.z,r) = -
£t

- Vwix, y.z2,1) (1.35)

This states that the electric field at any point can be given by the time derivative
of the magnetic vector potential and the gradient of the scalar electric potential.
So we have the solution for both B frem (1.28) and E from (1.35) in terms of A
and ¢ The problem new is how we solve for 4 and . Once 4 and w are
known, £ and B can be obtained through simple differentiation, as in (1.35) and
{1.28), respectively.

Next we substitute the sohstion for both E [using (1.35)] and 8 [using (1.28)]
into Ampére’s law, which is given by {1.10), to obtain

S, v + gkl oz +

aD(_;f:’z“'r) =V x H(x,y,z1) (1.36)

Since the constitutive relationships are given by {1.6) (ie., D=¢E and B =
#H), then

oF 1

J+oE +g—=—V¥xVxA4 (1.37)

of i)
Here we will set & =0, so that the medium in which the wave is propagating 13
assumed to be frec space, and therefore conductivity is zero. So we are looking
for the solution for an electromagnetic wave propagating in a non-conducting
medium, In addition, we use the following vector identity:

Ve ¥Ved = VIVed)—(VeV)A (1.38)
By using (1.38) in (1.37), one obtains
VxVxdAd= V(Ved) - (V.V) A

=ud + ;zsi(—% —th}
aIL

o (1.39)
=pud - ne Af] —;.JEVGAX
e ot
or equivalently,
;A4 ) 3
(Vevyd — pue S5 v ud, =V |Ved+ pe ‘-;1 (1.40)
ére |_ ér |

Since we have introduced two additional new variables, A and v, we can without
any problem impose a constraint between these two variables or these two
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potentials, This can be achieved by setting the right-hand side of the expression
in (1.40} equal to zero. This results in

3

-

Ved+ ge Lo (141
a1

which is known as the Lorenz gauge condition [13]. Tt is important to note that
thig is not the only constraint that is possible between the two newly introduced
variables 4 and . This is only a particular assumption, and other choices will
yield different forms of the solution of the Maxwell - Heaviside—Hertz equations.
Interestingly, Maxwell 10 lis treatise [1] chose the Coulomb gauge | 7], which is
generally used tor the solution of static problems.

Next, we observe that by using (1.41) in (1.40), one obtains

4

A
(V.V) 4 _:”C(iz = —ud, (1.42)

of

In summary, the solution of Maxwell’s cquations starts with the solution of
equation (1.42) first, for 4 given the impressed current J. Then the scalar
potential i 1s solved for by using (1.41}. Once A and w are obtained, the electric
and magnetic ficld intensities are derived trom

1 1
H=—8B=—VxA (1.43)

i i
&A

E=-— -V (1.44)
o

This completes the solution in the time domain, even though we have
not yet provided an explicit form of the solution. We now derive the explicit
form of the solution in the frequency domain and from that obtain the time
domain representation. We assume the temporal variation of all the fields to be
time harmonic in nature, so that

E(x,y.2.0) = E(x,y,2) &' (1.45)

Bix,v,z.1) Bix, vz} /™ (1.46)

where w=2 & fand £ is the frequency {Hertz) of the electromagnetic fields. By
assuming a lime variation of the form ¢/*", we now have an explicit form for
the time differentiations, resulting in
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-,

%
ot ot

A (,‘,”,_'J) = — | Al Y ] N
[4(ny | [ ,1,2) ¢ J .

i

= jJoA{x,n.2)e

Therefore, (1.43} and (1.44) are simplified in the trequency domain after

eliminating the common time variations of ¢/ from both sides to form
l 1 .
H(x, 35 = — B(x,p.2} = — Vx A(x,v,2) (1.48)
u u

E{x.1nz) = — joA(x,v,z} — Vy{x,p.2) (1.49)

Furthermore, in the frequency domain (1.41) transforms into
VeA 4+ jouey =0
or equivalently,
VA

W= — Twie (1.500

In the frequency domain, (1.42) transforms into
VA + o'peA = - ul, (1.51)

The solution for A in (1.51) can now be written explicitly in an analytical form
through [12]

tor Ly kR
Az = £ [l El e (1.52)
dz ¥
where
r=xXx-—-ypy+iz {1.53)
r'= Xx'+pv + 22 (1.54)
R=lr-r|=Je - +0-yV+G-=) (1.55)
2x 2; ' K P -
F= = St = Jo_r,ug = J(Z:-T_)‘f‘,ug (1.56)
A &
S . l
¢ = veloaty of light in the medium = —— (1.57)
Jue
4 = wavelength in the medium (1.38)

In surmmary, first the magnetic vector potential A is solved for in the frequency
domain given the impressed currents J{r} through
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—__."»E’|r -t |

A(ry = Alx,v,0) = M ..'.U J.(r) e

47 < ‘r—r’

dr’ (1.39)

then the scalar electric potential v is obtained from (1.30}. Next, the eleciric field
intensity E is computed from {1.49} and the magnetic field intensity H from
(1.48).

In the time domain the equivalent solution for the magnetic veclor
potential 4 1s then given by the Ume-relarded potentials:

. |r —r'|
J'I.(r,g 0
Alr,t) = A(x,y.2,0) = M J'H ¢ dr’

4 Y |r—r"|

{1.60)

It is interesting to note thal the time and space variables are now coupled and
they are not scparable. That is why in the time domain the spatial and temporal
responses of an antenna are intimately connected and one needs to look at the
complete solution. From the magnetic vector potential we obtain the scalar
potential by using {1.41). From the two vector and scalar potentials the
electric field intensity E is obtained thiough (1.44) and the magnetic field
intensity A using (1.43).

We now use these expressions 1o calculate the impulse response of some
typical antennas in both the transmit and receive modes of operations. The reason
that impulse response of an antenna is different in the transmit mode than in the
receive mode is because the reciprocity principle in the time domain contains an
integral over time. The reciprocity theorem in the time domain is quite different
from its counterpart in the frequency domain. For the former a time integral is
involved, whereas for the latter no such relationship is involved. Because of the
frequency domain reciprocity theorem, the antenna radiation pattern when in the
transmit mode is equal to the antenna pattern in the receive mode. However, this
is not true in the time domain, as we shall now see through examples.

1.4 RADIATION AND RECEPTION PROPERTIES OF A POINT
SOURCE ANTENNA IN FREQUENCY AND IN TIME DOMAIN

1.4.1 Radiation of Fields from Point Sources

In this seciion we [irst define what is meant by the term radiotion and then
observe the nature of the fields radiated by point sources and the temporal nature
of the voltages induced when electromagnetic fields are incident on them. In
contrast to the acoustic case (where an isotropic source exists), in the
electromagnetic case there are no isotropic point sources. Even for a point
source, which in the electromagnetic case is called a Hertzian dipole, the
radiation pattern is not isotropic, but it can be omnidirectional in certain planes.
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We describe the solution in both the frequency and time domains for such classes
of problems.

Any element of current or charge located in a medium will produce
electric and magnetic fields. However, by the term radiation we imply the
amount of finite energy transmirted to infinity from these currents. Hence,
radiation is related to the far fields or the fields at infinity. This will be discussed
in detail in Chapter 2. A static charge may generate near fields, but it does not
produce radiation, as the field at infinity due to this charge is zero. Therefore,
radiated fields or far fields are synonymous. We will also explore the sources of a
radiating field.

1.4.1.1 Far Field in Frequency Domain of a Point Radiator, 1f we consider a
delta element of current or a Hertzian dipole located at the origin represented by
a constant J times a delta function & (0. 0, 0). the magnetic vector potential from
that current element is given by

LR
Ju e..l’
Alx,y,2) = — J. 1.61)
Afx.y,2) ppiar-ant) {
where
R = x+)2+7 (1.62)

Here we imit our attention to the electric field. The electric field at any point in
space s then given by

E{x.y.z) =—jaoA —Vy =-joA+ VFV A
Jous
1 (1.63)
=——[FA-vE.A)]
JouE
In rectangular coordinates, the fields at any point located in space will be
[ A 5 51
k* Alx,v,z) + -J'.% S ZE" + z j T li
1\ 1y cy ¢ i
l ' :
E(x,v.2) = — o (1.64)
Jerpe . oA ) oA o
T A (x,p.2 N
x»jCA-"E"J‘ZJ+( »572) ¢ S(xy.o) |
| ox cy fogot N

However, some simplifications are possible for the far field (ie., il we arc
observing the [ields radiated by a source of finite size at a distance of 2/9°/4 from
it, where O is the largest physical dimension of the source and 4 is the
wavelength - the physical significance of this will be addressed in chapter 2.).
For a point source, evervthing is in the far field. Therefore, for all practical
purposcs, observing the fields at a distance 20°/2 from a source is equivalent to
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observing the fields from the same source at infinity. In that case, the far fields
can be obtained from the first terin onty in (1.63} or (1.64). This first term due to
the magnetic vector potential is responsible for the far field and there is no
contribution from the scalar cleetric potential y. Hence,
Cwu o e R

Ep (x,v2) = -joA =-j—J,
dx

1.65
2 {1.65)

and one obtains a spherical wavefront in the far field for a point source.
However. the power density radiated is proportional to Ey and that is clearly zero
along € = 0° and is maximum in the azimuth plane where & = 90° The
characteristic feature is that the far field is polarized and the orientation ol the
tield is along the direction of the current element, Tt is also clear that one obtains
a spherical wavefront in the far field radiated by a point source.

The situation is quite different in the time domain, as the presence of the
term o in the front of the expression of the magnetic vector potential will
illustrate.

1.4.1.2 Far Field in Time Domain of a Poimt Radiator. We consider a delta
current source at the origin of the form

J;6{0,0,0,1) = £58(0,0,0) f (¢ (1.66)

where 2 is the direction of the orientation of the clemental current clement and
f1) is the temporal variation for the current fed to the point source located at the
origin. The magnetic vector potential in this ¢casc 1s given by

K 2 - |R|s"c)

Air,f) =
(r.1) A5 R

(1.67)
There will be a time retardation factor due to the space-time connection of the
clectromagneiic wave that is propagating, where R is given by (1.62),

Now the transient far field due to this impulsive current will be given
by

_JAr) oz afie - [R|x’c')
i 4z R ot

E(rp) = (1.68)

Hence. the time domain ficlkd radiated by a point source is given by the time
derivative of the transient variation of the elemental current element, Therefore. a
tme-varying current element will always produce a far field and hence will cause
radiation, However, if the current element is not changing with time, there will
be no radiation rom it. Equivalently, the current density J; can be expressed in
terms of the flow of charges; thus it is equivalent to pu, where p 1s the charge
densily and v is its velocity. Therefore, radiation from a time-varying curtent
element in (1.68) can occur it any of the following three scenarios oceut:
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The charge density o may change as a function of time.
2. The direction of the velocity vector & may change as a function of time.

The magnitude of the velocity vector v may change as a function of
time, or equivalently, the charge is accelerated or decelerated,

Therelore, in theory any onc of thesc (hree scenarios can cause
radiation. For example, in a dipole the current goes to zero al the ends of the
structure and hence the charges decelerate when they come to the end of a wire.
That is why radiation seems to emanate from the ends of the wire and also from
the feed point of a dipole where a current is injected or a voltage is applied and
where the charges are induced and hence accelerated. Current flowing in a loop
of wire can also radiate as the direction of the velocity is changing as a function
of time even though its magnitude is constant. So a current flowing in a loop of
wire may have a constant angular velocity, but the temporal change in the
orientation of the velocity vector may cause radiation. To maintain the same
current along a cross-section of the wire loop, the charges located aiong the inner
circumference of the loop have to decelerate, whereas the charges on the outer
boundary have to accelerate. This will cause radiation. In a klystron. by
modulating the velocity of the electrons, one can have bunching of the electrons
or a change of the electron density with time. This also causes radiation. In
summary, it any one of the three conditions described above occurs, there will be
radiation.

By observing (1.68), we see that a transmifting antenna acts as a
differentiator of the transient waveform fed 1o its input. The important peint to
note is that an antenna impulse response on transmit is a differentiation of the
excitation on transmit. Therefore in all baseband broadband simulations the
differential nature of the point source must be taken into account. This implies
that if the input to a point radiator is a pulse, it will radiate two impulses of
opposite pelarities — a derivative of the pulse. Therefore, when a baseband
broadband signal is fed to an antenna, what comes out is the derivative of that
pulse. Tt is rather unfortunate that very few simulations dealing with baseband
broadband signals really take this property of an isotropic point source antenna
into account in analyzing systems.

1.4.2  Reception Propertics of a Point Receiver

On receive, an antenma behaves in a completely different way than on transmit.
We observed that an isofropic point antenng acts as a differentiator on transmit.
On receive, the voltage received at the terminals of the antenna is given by

V=[E.qs (1.69)

where the path of the integral is along the length of the antenna. Equivalently,
this voltage, which is called the open-cireuit voitage V., is equivalent to the dot
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product of the incident field vector and the effective height of the antenna and is
given by [14, 15]
Ve = E« Hyy

[

The effective height of an antenna is defined by
#
H, = .|'U I{z) d= = HI (1.70)

where /7 is the length of the antenna and it is assumed that the maximum value of
the current along the length of the antenna /(z) is unity. 7, then is the average
value of the current on the antenna. This equation is valid at only a single
frequency, Therefore, when an electric field £™ is incident on a small dipole of
total length L from a broadside direction, it induces approximately a triangular
current on the structure [15]. Therefore. the effective height in this case is L2
and the open-cireuit voltage induced on the structure in the frequency domain is
given by

LE™ ()

-
£

Vi (@) = (1.71)

and in the time domain as the elfective height now becomes an impulse-like

function, we have

~ LEincU)

2

V(1) = (1.72)

Therefore, in an electrically small receiving antenna called a voltage probe the
induced waveform wifl be a replica of the incident field provided that the
frequency spectrum of the incident electric field lies mainly in the low-frequency
region, so that the concept of an electrically small antenna is still applicable.

In summary, the impulse response of an antenna on transmit given by
(1.65} is the time derivative of the impulse response of the same antenna when it
is operating in the receive mode as given by (1.72). In the frequency domain as
we observe in (1.65) the term je is benign as it merely introduces a purely
imaginary scale factor at a particular value of w. However, the same term when
transferred to the time domain represents a time derivative operation. Tlence, in
frequency domain the transmit radiation antenna pattern is identical to the
antenna pattern when it is operating in the receive mode. In time domain, the
transmit impulse response of the same antenna is the time derivative of the
fmpulse response in the reecive mode for the same antenna. At this point, it may
be too hasty to jump to the conclusion that something is really amiss as it does
not refate quite the same way lo the reciprocity theorem which in the frequency
domain has shown that the two patterns in the transmit—receive modes are
identical. This is because the mathematical form of the reciprocity theorem is
quite different in the time and in the frequency domains. Since the reciprocity
theorem manifests itself as a product of two quantities in the frequency domain,
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in the time domain then # becomes a convolution. Tt 1s this phenomenon that
makes the impulse response of the transmit and the receive modes different. We
use another example, namely a dipole, to illustrate this point lurther.

1.5 RADIATION AND RECEPTTION PROPERTIES OF FINITE-
SIZED DIPOLE-LTKE STRUCTURES IN FREQUENCY AND IN TIME

In this section we describe the impulse responses of transmitting and receiving
dipole-like structures whose dimensions are comparable to a wavelength,
Therefore, these structures are not electrically small. Detailed analysis of these
structures will be done in Chapter 3. In this section, the main results are
summarized. The reason for choosing finite-sized structures is that the impulse
responses of these wire-like structures are quite different from the cases
described in the preceding section. For a finite-sized antenna structure, which is
comparable to the wavelength at the frequency of operation, the current
distribution on the structure can no longer be taken to be independent of
frequency. Hence the frequency term must explicitly be incorporated in the
expression of the current,

1.5.1 Radiation Fields from Wire-like Structures in the Frequency
Domain

For a finite-sized dipole, the current distribution that is induced on it can be
represented mathematically to be of the form [14]

(z) = sin[k(L/2-]2])] (1.73)

where L is the wire antenna length. We here assume that the current distribution
1s known, However, in a general situation we have lo use a numerical technique
to solve for the current distribution on the structure before we can solve for the
far fields. This is particularly important when mutual coupling effects are present
or there are other near-field scatterers. For a current distribution given by (1.733,
the far fields can be obtained [14] as

(kL K kE

fealen n cos CoOsH | — cos— |
E ID ??E S ru J.c’.‘] L 2 ; :

= - . i 1.74

v 2w siné ( )

where 1 is the characteristic impendence of free space and I, represents the
maximunt value of the current. Here L is the length of the antenna, & is the free-
space wavenumber and is equal to 2474 = @/¢, where ¢ is the velocity ol light
in that medium, It is important to note that only along the broadside direction and
in the azimuth planc of # = /2 = 90° ig the radiated electric field omni-
directional in nature.
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1.5.2  Radiation Fields from Wire-like Structures in the Time Domain

When the current induced on the dipole is a function of frequency, the far-zone
time-dependent electric ficld at a spatial location r is given approximately by

{15]
I|'z—1‘+f{r—i—£} w
'\ <) C C ‘
i ¥ L .
E (t)=—"—— ¢ - J|r-2 - = (l+cosd 1.75
{[) 2xrsin9} { ¢ 20(' cos ]}r (1.75)
! |
J —I{f—f—-L—(l—cosﬁ)}i_
L ¢ 2c ]

where /(£) is the transient current distribution on the structure. It is interesting to
note that for L/¢ small compared to the pulse duration of the transient current
distribution on the structure, then from [15] the approximate far field can be
written as

- 'f. }'\
o=
PN VD G T (1.76)
2rr\ 2c) &

that is. the far-field now is proportional to the second temporal derivative of the
transient current on the structure.

1.5.3  Induced Voltage on a Finite-Sized Receive Wire-like Structure Due
to a Transient Incident Field

For a finite-sized antenna of total length £, the effective height will be a function
of frequency and it is given by

2 (L i 2¢ T (kLY
Hy (@)= .[_L_.-:Sm \-k| == | z| r} dz =25 1 - cos 7 (1.77)
o= A

o L

Hence the induced voltage for a broadside incidence will be given approximately
by
V(@) =11, (0)E™ (@) (1.78)

In the time domain, the effective height will be given by

L
‘: +1 <t « 2—
. i
Hey (1) = je o (1.79)
-1 =L <t <9
2¢
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Hence the transient received voltage in the antenna due to an incident field will
result in the following convolution (defined by the symbol € between the
incident electric field and the effective height, resulting in

V(1) ==£" (1) ©H (1) (1.80)

This illustrates that when (1,79} is used in (1.80), the received open-
cireuit voltage will be approximately the derivative of the incident field when /¢
is small compared to the duration of the initial duration of the transient incident
field. In Chapter 2, we study the properties of arbitrary shaped antennas in the
frequency domain using a general purpose computer code described in [16].
Furthermore, we focus on the implications of near and far fields. The near/far
field concepts are really pertinent in the frequency domain as they characterize
the radiation properties of antennas. However, in the time domain this distinction
is really not applicable as everything is near field unless we have a strictly band
limited signall In Chapter 3 the properties of arbitrary shaped antennas embedded
in different malerials arc studied in the time domain using the methodology of

[17].

1.6 CONCLUSION

The chjective of this chapter has been to present the neccessary mathematical
formulations, popularly known as Maxwell’s cquations, which dictate the space-
time behavior of antennas. Additionally, some examples are presented to note
that the impulse response of antennas is quite complicated and the waveshapes
depend on both the observation and the incident angles in azimuth and elevation
of the electric fields. Specifically, the transmit impulse response of an antenna is
the time derivative of the impulse response of the same antenna in the reccive
mode. This is in contrast to the properties in the frequency domain where the
transmit antenna pattern is the same as the receive antenna patiern. Any
broadband processing must deal with factoring out the impulse response of both
the transmitting and receiving antennas. The examples presented in this chapter
do reveal that the waveshape of the impulse response is indeed different for both
transmit and receive modes, which are again dependent on both the azimuth and
elevation angles. For an electrically small antenna, the radiated fields produced
by il along the broadside direction are simply the differentiation of the time
domain waveshape that is led to it. While on receive it samples the fleld incident
on it. However, for a finite-sized antenna, the radiated fields are proportional to
the temporal double derivative of the current induced on it, and on receive, the
same antenna differentiates the transient eleetric ficld that is incident on it. Hence
all baseband broadband applications should deal with the compiex problem of
determining the impulse responses of the transmilling and receiving antennas.
This is in contrast to spread spectrum methodologies where one deals with an
instantanecus narrowband signals even when frequency hopping. For the
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narrowband case, determination of the impulse response is not necessary. The
goal of this chapter is to outline the methodology that will be necessary to
determine the impulse response of the transmitreceive antennas. By thus
combining the electromagnetic analysis with the signal-processing algorithms, it
will be possible to design betler systems.
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