
Chapter 1

Creating Your First C#
Console Application

In This Chapter
� A quick introduction to programming

� Creating a simple console application

� Reviewing the console application

� Creating the rest of the programs in this book

In this chapter, I explain a little bit about computers, computer languages,
C#, and Visual Studio 2008. Then I take you through the steps for creating

a very simple program written in C#.

Getting a Handle on Computer
Languages, C#, and .NET

A computer is an amazingly fast, but incredibly stupid servant. Computers
will do anything you ask them to (within reason), they do it extremely fast —
and they’re getting faster all the time.

Unfortunately, computers don’t understand anything that resembles a human
language. Oh, you may come back at me and say something like, “Hey, my
telephone lets me dial my friend by just speaking his name. I know that a tiny
computer runs my telephone. So that computer speaks English.” But that’s a
computer program that understands English, not the computer itself.

The language that computers really understand is often called machine lan-
guage. It is possible, but extremely difficult and error-prone, for humans to
write machine language.

Humans and computers have decided to meet somewhere in the middle.
Programmers create programs in a language that is not nearly as free as

05_191095 ch01.qxp 1/17/08 6:15 PM Page 11

CO
PYRIG

HTED
 M

ATERIA
L

human speech but a lot more flexible and easy to use than machine language.
The languages occupying this middle ground — C#, for example — are called
high-level computer languages. (High is a relative term here.)

What’s a program?
What is a program? In a practical sense, a Windows program is an executable
file that you can run by double-clicking its icon. For example, the version of
Microsoft Word that I’m using to write this book is a program. You call that an
executable program, or executable for short. The names of executable pro-
gram files generally end with the extension .EXE. Word, for example, is called
Winword.exe.

But a program is something else, as well. An executable program consists of
one or more source files. A C# program file is a text file that contains a
sequence of C# commands, which fit together according to the laws of C#
grammar. This file is known as a source file, probably because it’s a source of
frustration and anxiety.

Uh, grammar? There’s going to be grammar? Just the C# kind, which is much
easier than the kind most of us struggled with in junior high school.

What’s C#?
The C# programming language is one of those intermediate languages that
programmers use to create executable programs. C# combines the range of
the powerful-but-complicated C++ with the ease of use of the friendly but more
verbose Visual Basic. (Visual Basic’s newer .NET incarnation is almost on par
with C# in most respects. As the flagship language of .NET, C# tends to intro-
duce most new features first.) A C# program file carries the extension .CS.

Some wags have pointed out that C-sharp and D-flat are the same note, but
you should not refer to this new language as “D-flat” within earshot of
Redmond, Washington.

C# is

� Flexible: C# programs can execute on the current machine, or they can
be transmitted over the Web and executed on some distant computer.

� Powerful: C# has essentially the same command set as C++, but with the
rough edges filed smooth.

12 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 12

� Easier to use: C# error-proofs the commands responsible for most C++
errors so you spend far less time chasing down those errors.

� Visually oriented: The .NET code library that C# uses for many of its
capabilities provides the help needed to readily create complicated dis-
play frames with drop-down lists, tabbed windows, grouped buttons,
scroll bars, and background images, to name just a few.

� Internet-friendly: C# plays a pivotal role in the .NET Framework,
Microsoft’s current approach to programming for Windows, the Internet,
and beyond.

.NET is pronounced dot net.

� Secure: Any language intended for use on the Internet must include seri-
ous security to protect against malevolent hackers.

Finally, C# is an integral part of .NET.

Because this book focuses on the C# language, it’s not a Web-programming
book, a database book, or a Windows graphical programming book.

What’s .NET?
.NET began a few years ago as Microsoft’s strategy to open up the Web to mere
mortals like you and me. Today it’s bigger than that, encompassing everything
Microsoft does. In particular, it’s the new way to program for Windows. It also
gives a C-based language, C#, the simple, visual tools that made Visual Basic so
popular. A little background will help you see the roots of C# and .NET.

Internet programming was traditionally very difficult in older languages such
as C and C++. Sun Microsystems responded to that problem by creating the
Java programming language. To create Java, Sun took the grammar of C++, made
it a lot more user-friendly, and centered it around distributed development.

When programmers say “distributed,” they’re describing geographically dis-
persed computers running programs that talk to each other — in many cases,
via the Internet.

When Microsoft licensed Java some years ago, it ran into legal difficulties with
Sun over changes it wanted to make to the language. As a result, Microsoft
more or less gave up on Java and started looking for ways to compete with it.

Being forced out of Java was just as well because Java has a serious problem:
Although Java is a capable language, you pretty much have to write your

13Chapter 1: Creating Your First C# Console Application

05_191095 ch01.qxp 1/17/08 6:15 PM Page 13

entire program in Java to get the full benefit. Microsoft had too many devel-
opers and too many millions of lines of existing source code, so Microsoft
had to come up with some way to support multiple languages. Enter .NET.

.NET is a framework, in many ways similar to Java’s libraries — and the C#
language is highly similar to the Java language. Just as Java is both the language
itself and its extensive code library, C# is really much more than just the key-
words and syntax of the C# language. It’s those things empowered by a thor-
oughly object-oriented library containing thousands of code elements that
simplify doing about any kind of programming you can imagine, from Web-
based databases to cryptography to the humble Windows dialog box.

Microsoft would claim that .NET is much superior to Sun’s suite of Web tools
based on Java, but that’s not the point. Unlike Java, .NET does not require
you to rewrite existing programs. A Visual Basic programmer can add just a
few lines to make an existing program “Web-knowledgeable” (meaning that
it knows how to get data off the Internet). .NET supports all the common
Microsoft languages — and more than 40 other languages written by third-
party vendors (see dotnetpowered.com/languages.aspx for the latest
list). However, C# is the flagship language of the .NET fleet. C# is always the
first language to access every new feature of .NET.

What is Visual Studio 2008?
What about Visual C#?
(You sure ask lots of questions.) The first “Visual” language from Microsoft
was Visual Basic. The first popular C-based language from Microsoft was
Visual C++. Like Visual Basic, it was called “Visual” because it had a built-in
graphical user interface (GUI — pronounced gooey). This GUI included every-
thing you needed to develop nifty-giffy C++ programs.

Eventually, Microsoft rolled all its languages into a single environment —
Visual Studio. As Visual Studio 6.0 started getting a little long in the tooth,
developers anxiously awaited Version 7. Shortly before its release, however,
Microsoft decided to rename it Visual Studio .NET to highlight this new envi-
ronment’s relationship to .NET.

That sounded like a marketing ploy to me — until I started delving into it.
Visual Studio .NET differed quite a bit from its predecessors — enough to
warrant a new name. Visual Studio 2008 is the third-generation successor to
the original Visual Studio .NET. (See Bonus Chapter 6 on the Web site for a
tour of some of Visual Studio’s more potent features.)

14 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 14

Microsoft calls its implementation of the language Visual C#. In reality, Visual
C# is nothing more than the C# component of Visual Studio. C# is C#, with or
without the Visual Studio.

Okay, that’s it. No more questions. (For now, anyway.)

Creating Your First Console Application
Visual Studio 2008 includes an Application Wizard that builds template pro-
grams and saves you a lot of the dirty work you’d have to do if you did every-
thing from scratch. (I don’t recommend the from-scratch approach.)

Typically, starter programs don’t actually do anything — at least, not any-
thing useful (sounds like most of my programs). However, they do get you
beyond that initial hurdle of getting started. Some starter programs are rea-
sonably sophisticated. In fact, you’ll be amazed at how much capability the
App Wizard can build on its own, especially for graphical programs.

The following instructions are for Visual Studio. If you use anything other
than Visual Studio, you have to refer to the documentation that came with
your environment. Alternatively, you can just type the source code directly
into your C# environment. See the introduction to this book for some alterna-
tives to Visual Studio.

Creating the source program
To start Visual Studio, choose Start➪All Programs➪Microsoft Visual Studio
2008➪Microsoft Visual Studio 2008.

Complete these steps to create your C# console app:

1. Choose File➪New➪Project to create a new project, as shown in
Figure 1-1.

Visual Studio presents you with lots of icons representing the different
types of applications you can create, as shown in Figure 1-2.

2. From this New Project window, click the Console Application icon.

Make sure that you select Visual C# — and under it, Windows — in the
Project Types pane; otherwise Visual Studio may create something awful
like a Visual Basic or Visual C++ application. Then click the Console
Application icon in the Templates pane.

15Chapter 1: Creating Your First C# Console Application

05_191095 ch01.qxp 1/17/08 6:15 PM Page 15

Visual Studio requires you to create a project before you can start to
enter your C# program. A project is like a bucket in which you throw all
the files that go into making your program. When you tell your compiler
to build (compile) the program, it sorts through the project to find the
files it needs in order to re-create the executable program.

The default name for your first application is ConsoleApplication1,
but change it this time to Program1.

Figure 1-2:
The Visual

Studio App
Wizard is
eager to

create
a new

program
for you.

Figure 1-1:
Creating a

new project
starts you
down the
road to a

better
Windows

application.

16 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 16

The default place to store this file is somewhere deep in your Documents
directory. Maybe because I’m difficult (or maybe because I’m writing a
book), I like to put my programs where I want them to go, not necessar-
ily where Visual Studio wants them. ‘To simplify working with this book,
you can change the default program location. Follow these steps to
make that happen:

a. Choose Tools➪Options➪Projects and Solutions➪General.

b. Select the new location (I recommend C:\C#Programs for this
book) in the Visual Studio Projects Location box, and click OK.

You can create the new directory in the Project Location dialog
box at the same time. Click the folder icon with a small sunburst
at the top of the dialog box. (The directory may already exist if
you’ve installed the example programs from the Web site.)

Leave the other boxes in the project settings alone.

3. Click the OK button.

After a bit of disk whirring and chattering, Visual Studio generates a file
called Program.cs. (If you look in the window labeled Solution Explorer,
you see some other files; ignore them for now. If Solution Explorer isn’t
visible, choose View➪Solution Explorer.) C# source files carry the exten-
sion .CS. The name Program is the default name assigned for the pro-
gram file.

The contents of your first console app appear as follows:

using ...

namespace Program1
{
class Program
{
static void Main(string[] args)
{

}
}

}

Along the left edge of the code window, you see several small plus (+) and
minus (–) signs in boxes. Click the + sign next to using.... This expands a
code region, a handy Visual Studio feature that keeps down the clutter. Here
are the directives when you expand the region in the default console app:

17Chapter 1: Creating Your First C# Console Application

05_191095 ch01.qxp 1/17/08 6:15 PM Page 17

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

Regions help you focus on the code you’re working on by hiding code that
you aren’t. Certain blocks of code — such as the namespace block, class
block, methods, and other code items — get a +/– automatically without a
#region directive. You can add your own collapsible regions, if you like, by
typing #region above a code section and #endregion after it. It helps to
supply a name for the region, such as Public methods.’ Here’s what this
code section looks like:

#region Public methods
... your code
#endregion Public methods

This name can include spaces. Also, you can nest one region inside another,
but regions can’t overlap.

For now, using System; is the only using directive you really need. You can
delete the others; the compiler lets you know whether you’re missing one.

Taking it out for a test drive
To convert your C# program into an executable program, choose Build➪Build
Program1. Visual Studio responds with the following message:

- Build started: Project: Program1, Configuration: Debug Any CPU -

Csc.exe /noconfig /nowarn ... (and much more)

Compile complete -- 0 errors, 0 warnings
Program1 -> C:\C#Programs\ ... (and more)==Build: 1 succeeded or up-to-date, 0

failed, 0 skipped==

The key point here is the 1 succeeded part on the last line.

As a general rule of programming, “succeeded” is good; “failed” is bad.

To execute the program, choose Debug➪Start. The program brings up a black
console window and terminates immediately. The program has seemingly done
nothing. In fact, this is the case. The template is nothing but an empty shell.

18 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 18

An alternative command, Debug➪Start Without Debugging, behaves a bit
better at this point. Try it out.

Making Your Console App Do Something
Edit the Program.cs template file until it appears as follows:

using System;

namespace Program1
{
public class Program
{
// This is where your program starts.
static void Main(string[] args)
{
// Prompt user to enter a name.
Console.WriteLine(“Enter your name, please:”);

// Now read the name entered.
string name = Console.ReadLine();

// Greet the user with the name that was entered.
Console.WriteLine(“Hello, “ + name);

// Wait for user to acknowledge the results.
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

}
}

}

Don’t sweat the stuff following the double or triple slashes (// or ///), and
don’t worry about whether to enter one or two spaces or one or two new
lines. However, do pay attention to capitalization.

Choose Build➪Build Program1 to convert this new version of Program.cs
into the Program1.exe program.

From within Visual Studio 2008, choose Debug➪Start Without Debugging.
The black console window appears and prompts you for your name. (You
may need to activate the console window by clicking it.) Then the window
shows Hello, followed by the name entered, and displays Press Enter to
terminate Pressing Enter closes the window.

19Chapter 1: Creating Your First C# Console Application

05_191095 ch01.qxp 1/17/08 6:15 PM Page 19

You can also execute the program from the DOS command line. To do so,
open a Command Prompt window and enter the following:

CD \C#Programs\Program1\bin\Debug

Now enter Program1 to execute the program. The output should be identi-
cal to what you saw earlier. You can also navigate to the \C#Programs\
Program1\bin\Debug folder in Windows Explorer and then double-click the
Program1.exe file.

To open a Command Prompt window, try choosing Tools➪Command Prompt. If
that command isn’t available on your Visual Studio Tools menu, choose Start➪
All Programs➪Microsoft Visual Studio 2008➪Visual Studio Tools➪Visual
Studio 2008 Command Prompt.

Reviewing Your Console Application
In the following sections, you take this first C# console app apart one section
at a time to understand how it works.

The program framework
The basic framework for all console applications starts as the following:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Program1
{
public class Program
{
// This is where your program starts.
public static void Main(string[] args)
{

// Your code goes here.
}

}
}

The program starts executing right after the statement containing Main()
and ends at the closed curly brace following Main(). (I explain the meaning
of these statements in due course. More than that I cannot say for now.)

20 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 20

The list of using directives can come immediately before or immediately
after the phrase namespace Program1 {. The order doesn’t matter. You
can apply using to lots of things in .NET. The whole business of namespaces
and using is explained in Bonus Chapter 1 on the Web site.

Comments
The template already has lots of lines, and I’ve added several other lines,
such as the following (in boldface):

// This is where your program starts.
public static void Main(string[] args)

C# ignores the first line in this example. This line is known as a comment.

Any line that begins with // or /// is free text and is ignored by C#. Consider
// and /// to be equivalent for now.

Why include lines if the computer ignores them? Because comments explain
your C# statements. A program, even in C#, isn’t easy to understand. Remem-
ber that a programming language is a compromise between what computers
understand and what humans understand. These comments are useful while
you write the code, and they’re especially helpful to the poor sap — possibly
you — who tries to re-create your logic a year later. Comments make the job
much easier.

Comment early and often.

The meat of the program
The real core of this program is embedded within the block of code marked
with Main(), as follows:

// Prompt user to enter a name.
Console.WriteLine(“Enter your name, please:”);

// Now read the name entered.
string name = Console.ReadLine();

// Greet the user with the name that was entered.
Console.WriteLine(“Hello, “ + name);

21Chapter 1: Creating Your First C# Console Application

05_191095 ch01.qxp 1/17/08 6:15 PM Page 21

Save a ton of routine typing with the new C# Code Snippets feature. Snippets
are great for common statements like Console.WriteLine. Press Ctrl+K
and then Ctrl+X to see a pop-up menu of snippets. (You may need to press
Tab once or twice to open up the Visual C# folder or other folders on that
menu.) Scroll down the menu to cw and press Enter. Visual Studio inserts
the body of a Console.WriteLine() statement with the insertion point
between the parentheses, ready to go. When you have a few of the shortcuts
like cw, for, and if memorized, use the even quicker technique: Type cw
and press Tab twice. (Also try selecting some lines of code, pressing Ctrl+K,
and then pressing Ctrl+S. Choose something like if. An if statement sur-
rounds the selected code lines.) The program begins executing with the first
C# statement: Console.WriteLine. This command writes the character
string Enter your name, please: to the console.

The next statement reads in the user’s answer and stores it in a variable (a
kind of “workbox”) called name. (See Chapter 2 for more on these storage
locations.) The last line combines the string Hello, with the user’s name
and outputs the result to the console.

The final three lines cause the computer to wait for the user to press Enter
before proceeding. These lines ensure that the user has time to read the
output before the program continues, as follows:

// Wait for user to acknowledge the results.
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

This step can be important depending on how you execute the program and
depending on the environment. In particular, running your console app inside
Visual Studio, or from Windows Explorer, makes the lines above necessary —
otherwise, the console window closes so fast you can’t read the output. If
you open a console window and run the program from there, the window
stays open regardless.

Introducing the Toolbox Trick
Actually, the key part of the program you’ve created in the preceding section
is the final two lines of code:

// Wait for user to acknowledge the results.
Console.WriteLine(“Press Enter to terminate...”);
Console.Read();

22 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 22

The easiest way to recreate those key lines in each future console application
that you write is as follows.

Saving code in the Toolbox
The first step is to save those lines in a handy location for future use in a
handy place: the Toolbox window. ‘With your Program1 console application
open in Visual Studio, follow these steps:

1. In the Main() method of class Program, select the lines you want to
save — in this case, the lines above.

2. Make sure the Toolbox window is open. (If it isn’t, open it by choosing
View➪Toolbox.)

3. Drag the selected lines into the General tab of the Toolbox window
and drop them. (Or copy the lines and paste them into the Toolbox.)

The Toolbox stores the lines there for you in perpetuity. Figure 1-3
shows the lines placed in the Toolbox.

Reusing code from the Toolbox
Now that you have your template text stored in the Toolbox, you can reuse it
in all of the console applications you write henceforth. Here’s how to use it:

1. In Visual Studio, create a new console application as described earlier in
this chapter.

2. Click in the editor at the spot where you’d like to insert some
Toolbox text.

3. With the Program.cs file open for editing, make sure the Toolbox
window is open. (If it isn’t, see the procedure above.)

4. In the General tab of the Toolbox window (other tabs could be showing),
find the saved text you want to use and double-click it.

The selected item is inserted at the insertion point in the editor window.

With that boilerplate text in place, you can write the rest of your application
above those lines. That’s it. You now have a finished console app. Try it out
for oh, say, 30 seconds. Then head for Chapter 2.

23Chapter 1: Creating Your First C# Console Application

05_191095 ch01.qxp 1/17/08 6:15 PM Page 23

Figure 1-3:
Setting up

the Toolbox
with some

handy
saved text
for future

use.

24 Part I: Getting Started with C#

05_191095 ch01.qxp 1/17/08 6:15 PM Page 24

