
 User Registration

 Offering account registration and user log ins is a great way of giving users a sense of individuality
and serving tailored content. Such authentication is often at the very heart of many community -
 oriented and e - commerce web sites. Because this functionality is so useful, the first application I
present is a user registration system.

 From a functional perspective, the system will allow users to create accounts. Members must
provide an e - mail address that they can use to validate their registration. Users should also be able
to update their passwords and e-mail addresses and reset forgotten passwords. This is pretty
standard functionality and what the web users of today have come to expect.

 From an architectural standpoint, the directory holding your code should be logically organized.
For example, support and include files should be kept outside of a publically accessible directory.
Also, user records should be stored in a database. Since there are a large number of tools designed
to view and work with data stored in relational databases such as MySQL, this affords
transparency and flexibility.

 Plan the Directory Layout
 The first step is to plan the directory structure for the application. I ’ m going to recommend you
create three main folders: One named public_files from which all publicly accessible files will
be served, another named lib to store include files to be shared by any number of other files, and
finally a templates folder to store presentation files. Although PHP will be able to reference files
from anywhere in your setup, the web server should only serve files from the public_files folder.
Keeping support files outside of the publicly accessible directory increases security.

 Inside the public_files I also create css to store any style sheets, js for JavaScript source files
and img for graphic files. You may want to create other folders to keep yourself organized. One
named sql to store MySQL files would be a good idea, doc for documentation and development
notes and tests to store smoke test or unit testing files.

c01.indd 1c01.indd 1 3/29/08 10:31:30 AM3/29/08 10:31:30 AM

CO
PYRIG

HTED
 M

ATERIA
L

Chapter 1: User Registration

2

 Planning the Database
 In addition to planning the directory layout, thought needs to be given to the database layout as well.
The information you choose to collect from your users will depend on what type of service your site
offers. In turn, this affects how your database tables will look. At the very least a unique user ID,
username, password hash, and e-mail address should be stored. You will also need a mechanism to track
which accounts have been verified or are pending verification.

CREATE TABLE WROX_USER (

 USER_ID INTEGER UNSIGNED NOT NULL AUTO_INCREMENT,

 USERNAME VARCHAR(20) NOT NULL,

 PASSWORD CHAR(40) NOT NULL,

 EMAIL_ADDR VARCHAR(100) NOT NULL,

 IS_ACTIVE TINYINT(1) DEFAULT 0,

 PRIMARY KEY (USER_ID)

)

ENGINE=MyISAM DEFAULT CHARACTER SET latin1

 COLLATE latin1_general_cs AUTO_INCREMENT=0;

CREATE TABLE WROX_PENDING (

 USER_ID INTEGER UNSIGNED NOT NULL,

 TOKEN CHAR(10) NOT NULL,

 CREATED_DATE TIMESTAMP DEFAULT CURRENT_TIMESTAMP,

 FOREIGN KEY (USER_ID)

 REFERENCES WROX_USER(USER_ID)

)

ENGINE=MyISAM DEFAULT CHARACTER SET latin1

 COLLATE latin1_general_cs;

 I have allocated 40 characters of storage for the password hash in WROX_USER as I will use the sha1()
function which returns a 40 - character hexadecimal string. You should never store the original password
in the database — a good security precaution. The idea here is that a hash is generated when the user
provides his or her password for the first time. The password given subsequently is hashed using the
same function and the result is compared with what ’ s stored to see if they match.

 I set the maximum storage length for an e-mail address at 100 characters. Technically the standards set
the maximum length for an e-mail address at 320 (64 characters are allowed for the username, one for the
 @ symbol and then 255 for the hostname). I don ’ t know anyone that has such a long e-mail address
though and I have seen plenty of database schemas that use 100 and work fine.

 Some other information you may want to store are first and last name, address, city, state/province,
postal code, phone numbers, and the list goes on.

 The WROX_PENDING table has an automatically initializing timestamp column, which lets you go
back to the database and delete pending accounts that haven ’ t been activated after a certain amount of
time. The table ’ s columns could be merged with WROX_USER , but I chose to separate them since the
pending token is only used once. User data is considered more permanent and the WROX_USER table isn ’ t
cluttered with temporary data.

c01.indd 2c01.indd 2 3/29/08 10:31:33 AM3/29/08 10:31:33 AM

Chapter 1: User Registration

3

 Writing Shared Code
 Code that is shared by multiple files should be set aside in its own file and included using include or
 require so it ’ s not duplicated, which makes maintaining the application easier. Where possible, code
that might be useful in future applications should be collected separately as functions or classes to be
reused. It ’ s a good idea to write code with reusability in mind. common.php contains shared code to
be included in other scripts in the application to establish a sane baseline environment at runtime. Since
it should never be called directly by a user, it should be saved in the lib directory.

 < ?php

// set true if production environment else false for development

define (‘IS_ENV_PRODUCTION’, true);

// configure error reporting options

error_reporting(E_ALL | E_STRICT);

ini_set(‘display_errors’, !IS_ENV_PRODUCTION);

ini_set(‘error_log’, ‘log/phperror.txt’);

// set time zone to use date/time functions without warnings

date_default_timezone_set(‘America/New_York’);

// compensate for magic quotes if necessary

if (get_magic_quotes_gpc())

{

 function _stripslashes_rcurs($variable, $top = true)

 {

 $clean_data = array();

 foreach ($variable as $key = > $value)

 {

 $key = ($top) ? $key : stripslashes($key);

 $clean_data[$key] = (is_array($value)) ?

 stripslashes_rcurs($value, false) : stripslashes($value);

 }

 return $clean_data;

 }

 $_GET = _stripslashes_rcurs($_GET);

 $_POST = _stripslashes_rcurs($_POST);

 // $_REQUEST = _stripslashes_rcurs($_REQUEST);

 // $_COOKIE = _stripslashes_rcurs($_COOKIE);

}

? >

 You may not always have control over the configuration of your server so it is wise to specify some
common directives to make your applications more portable. Setting error reporting options, for
example, lets you display errors while in development or redirect them in a production environment so
they don ’ t show to the user.

 Magic quotes is a configuration option where PHP can automatically escape single quotes, double
quotes, and backslashes in incoming data. Although this might seem useful, assuming whether this
directive is on or not can lead to problems. It ’ s better to normalize the data first and then escape it with
 addslashes() or mysql_real_escape_string() (preferably the latter if it ’ s going to be stored in the

c01.indd 3c01.indd 3 3/29/08 10:31:34 AM3/29/08 10:31:34 AM

Chapter 1: User Registration

4

database) when necessary. Compensating for magic quotes ensures data is properly escaped how
you want and when you want despite how PHP is configured, making development easier and less
error-prone.

 Establishing a connection to a MySQL database is a common activity which makes sense to move out to
it s own file. db.php holds configuration constants and code to establish the connection. Again, as it is
meant to be included in other files and not called directly, it should be saved in lib .

 < ?php

// database connection and schema constants

define(‘DB_HOST’, ‘localhost’);

define(‘DB_USER’, ‘username’);

define(‘DB_PASSWORD’, ‘password’);

define(‘DB_SCHEMA’, ‘WROX_DATABASE’);

define(‘DB_TBL_PREFIX’, ‘WROX_’);

// establish a connection to the database server

if (!$GLOBALS[‘DB’] = mysql_connect(DB_HOST, DB_USER, DB_PASSWORD))

{

 die(‘Error: Unable to connect to database server.’);

}

if (!mysql_select_db(DB_SCHEMA, $GLOBALS[‘DB’]))

{

 mysql_close($GLOBALS[‘DB’]);

 die(‘Error: Unable to select database schema.’);

}

? >

 The DB_HOST , DB_USER , DB_PASSWORD and DB_SCHEMA constants represent the values needed to
establish a successful connection to the database. If the code is put into production in an environment
where the database server is not running on the same host as PHP and the web server, you might also
want to provide a DB_PORT value and adjust the call to mysql_connect() appropriately.

 The connection handle for the database is then stored in the $GLOBALS super global array so it is
available in any scope of any file that includes db.php (or that is included in the file that has
referenced db.php).

 Prefixing table names helps prevent clashes with other programs ’ tables that might be stored in the same
schema and providing the prefix as a constant makes the code easier to update later if it should change,
since the value appears just in one place.

 Common functions can also be placed in their own files. I plan to use this random_text() function,
for example, to generate a CAPTCHA string and validation token so it can be saved in a file named
 functions.php .

 < ?php

// return a string of random text of a desired length

function random_text($count, $rm_similar = false)

{

 // create list of characters

 $chars = array_flip(array_merge(range(0, 9), range(‘A’, ‘Z’)));

c01.indd 4c01.indd 4 3/29/08 10:31:34 AM3/29/08 10:31:34 AM

Chapter 1: User Registration

5

 // remove similar looking characters that might cause confusion

 if ($rm_similar)

 {

 unset($chars[0], $chars[1], $chars[2], $chars[5], $chars[8],

 $chars[‘B’], $chars[‘I’], $chars[‘O’], $chars[‘Q’],

 $chars[‘S’], $chars[‘U’], $chars[‘V’], $chars[‘Z’]);

 }

 // generate the string of random text

 for ($i = 0, $text = ‘’; $i < $count; $i++)

 {

 $text .= array_rand($chars);

 }

 return $text;

}

? >

 An important rule when programming no matter what language you ’ re using is to never trust user
input. People can (and will) provide all sorts of crazy and unexpected input. Sometimes this is
accidental, at other times it ’ s malicious. PHP ’ s filter_input() and filter_var() functions can be
used to scrub incoming data, though some people still prefer to write their own routines, as the filter
extension may not be available in versions prior to 5.2.0. If you ’ re one of those people, then they can
be placed in functions.php as well.

 User Class
 The majority of the code written maintaining a user ’ s account can be encapsulated into one data
structure, making it easy to extend or reuse in future applications. This includes the database interaction
logic, which will make storing and retrieving information easier. Here ’ s User.php :

 < ?php

class User

{

 private $uid; // user id

 private $fields; // other record fields

 // initialize a User object

 public function __construct()

 {

 $this- > uid = null;

 $this- > fields = array(‘username’ = > ‘’,

 ‘password’ = > ‘’,

 ‘emailAddr’ = > ‘’,

 ‘isActive’ = > false);

 }

 // override magic method to retrieve properties

 public function __get($field)

(continued)

c01.indd 5c01.indd 5 3/29/08 10:31:35 AM3/29/08 10:31:35 AM

Chapter 1: User Registration

6

 {

 if ($field == ‘userId’)

 {

 return $this- > uid;

 }

 else

 {

 return $this- > fields[$field];

 }

 }

 // override magic method to set properties

 public function __set($field, $value)

 {

 if (array_key_exists($field, $this- > fields))

 {

 $this- > fields[$field] = $value;

 }

 }

 // return if username is valid format

 public static function validateUsername($username)

 {

 return preg_match(‘/^[A-Z0-9]{2,20}$/i’, $username);

 }

 // return if email address is valid format

 public static function validateEmailAddr($email)

 {

 return filter_var($email, FILTER_VALIDATE_EMAIL);

 }

 // return an object populated based on the record’s user id

 public static function getById($user_id)

 {

 $user = new User();

 $query = sprintf(‘SELECT USERNAME, PASSWORD, EMAIL_ADDR, IS_ACTIVE ‘ .

 ‘FROM %sUSER WHERE USER_ID = %d’, DB_TBL_PREFIX, $user_id);

 $result = mysql_query($query, $GLOBALS[‘DB’]);

 if (mysql_num_rows($result))

 {

 $row = mysql_fetch_assoc($result);

 $user- > username = $row[‘USERNAME’];

 $user- > password = $row[‘PASSWORD’];

 $user- > emailAddr = $row[‘EMAIL_ADDR’];

 $user- > isActive = $row[‘IS_ACTIVE’];

 $user- > uid = $user_id;

 }

 mysql_free_result($result);

 return $user;

 }

(continued)

c01.indd 6c01.indd 6 3/29/08 10:31:35 AM3/29/08 10:31:35 AM

Chapter 1: User Registration

7

 // return an object populated based on the record’s username

 public static function getByUsername($username)

 {

 $user = new User();

 $query = sprintf(‘SELECT USER_ID, PASSWORD, EMAIL_ADDR, IS_ACTIVE ‘ .

 ‘FROM %sUSER WHERE USERNAME = “%s”’, DB_TBL_PREFIX,

 mysql_real_escape_string($username, $GLOBALS[‘DB’]));

 $result = mysql_query($query, $GLOBALS[‘DB’]);

 if (mysql_num_rows($result))

 {

 $row = mysql_fetch_assoc($result);

 $user- > username = $username;

 $user- > password = $row[‘PASSWORD’];

 $user- > emailAddr = $row[‘EMAIL_ADDR’];

 $user- > isActive = $row[‘IS_ACTIVE’];

 $user- > uid = $row[‘USER_ID’];

 }

 mysql_free_result($result);

 return $user;

 }

 // save the record to the database

 public function save()

 {

 if ($this- > uid)

 {

 $query = sprintf(‘UPDATE %sUSER SET USERNAME = “%s”, ‘ .

 ‘PASSWORD = “%s”, EMAIL_ADDR = “%s”, IS_ACTIVE = %d ‘ .

 ‘WHERE USER_ID = %d’, DB_TBL_PREFIX,

 mysql_real_escape_string($this- > username, $GLOBALS[‘DB’]),

 mysql_real_escape_string($this- > password, $GLOBALS[‘DB’]),

 mysql_real_escape_string($this- > emailAddr, $GLOBALS[‘DB’]),

 $this- > isActive, $this- > userId);

 return mysql_query($query, $GLOBALS[‘DB’]);

 }

 else

 {

 $query = sprintf(‘INSERT INTO %sUSER (USERNAME, PASSWORD, ‘ .

 ‘EMAIL_ADDR, IS_ACTIVE) VALUES (“%s”, “%s”, “%s”, %d)’,

 DB_TBL_PREFIX,

 mysql_real_escape_string($this- > username, $GLOBALS[‘DB’]),

 mysql_real_escape_string($this- > password, $GLOBALS[‘DB’]),

 mysql_real_escape_string($this- > emailAddr, $GLOBALS[‘DB’]),

 $this- > isActive);

 if (mysql_query($query, $GLOBALS[‘DB’]))

 {

 $this- > uid = mysql_insert_id($GLOBALS[‘DB’]);

 return true;

 }

(continued)

c01.indd 7c01.indd 7 3/29/08 10:31:36 AM3/29/08 10:31:36 AM

Chapter 1: User Registration

8

 else

 {

 return false;

 }

 }

 }

 // set the record as inactive and return an activation token

 public function setInactive()

 {

 $this- > isActive = false;

 $this- > save(); // make sure the record is saved

 $token = random_text(5);

 $query = sprintf(‘INSERT INTO %sPENDING (USER_ID, TOKEN) ‘ .

 ‘VALUES (%d, “%s”)’, DB_TBL_PREFIX, $this- > uid, $token);

 return (mysql_query($query, $GLOBALS[‘DB’])) ? $token : false;

 }

 // clear the user’s pending status and set the record as active

 public function setActive($token)

 {

 $query = sprintf(‘SELECT TOKEN FROM %sPENDING WHERE USER_ID = %d ‘ .

 ‘AND TOKEN = “%s”’, DB_TBL_PREFIX, $this- > uid,

 mysql_real_escape_string($token, $GLOBALS[‘DB’]));

 $result = mysql_query($query, $GLOBALS[‘DB’]);

 if (!mysql_num_rows($result))

 {

 mysql_free_result($result);

 return false;

 }

 else

 {

 mysql_free_result($result);

 $query = sprintf(‘DELETE FROM %sPENDING WHERE USER_ID = %d ‘ .

 ‘AND TOKEN = “%s”’, DB_TBL_PREFIX, $this- > uid,

 mysql_real_escape_string($token, $GLOBALS[‘DB’]));

 if (!mysql_query($query, $GLOBALS[‘DB’]))

 {

 return false;

 }

 else

 {

 $this- > isActive = true;

 return $this- > save();

 }

 }

 }

}

? >

(continued)

c01.indd 8c01.indd 8 3/29/08 10:31:36 AM3/29/08 10:31:36 AM

Chapter 1: User Registration

9

 The class has two private properties: $uid which maps to the WROX_USER table ’ s USER_ID column
and the array $fields which maps to the other columns. They are exposed in an intuitive manner by
overriding the __get() and __set() magic methods, but I still protect $uid from accidental change.

 The static getById() and getByUsername() methods contain code responsible for retrieving the record
from the database and populating the object. save() writes the record to the database and is smart
enough to know when to execute an INSERT query or an UPDATE query based on if the user ID is set.
All that ’ s necessary to create a new user account is to obtain a new instance of a User object, set the
record ’ s fields, and call save() .

 < ?php

$u = new User();

$u- > username = ‘timothy’;

$u- > password = sha1(‘secret’);

$u- > emailAddr = ‘timothy@example.com’;

$u- > save();

? >

 It ’ s the same logic to update an account; I retrieve the existing account, make my changes, and again
save it to the database with save() .

 < ?php

$u = User::getByUsername(‘timothy’);

$u- > password = sha1(‘new_password’);

$u- > save();

? >

 The setInactive() and setActive() methods handle the account activation. Calling
 setInactive() marks the account inactive, generates, an activation token, stores, the information in the
database, and returns, the token. When the user activates their account, you accept the token and
provide it to setActive() . The method will remove the token record and set the account active.

 CAPTCHA
 The word CAPTCHA stands for Completely Automated Public Turing Test to Tell C omputers and Humans
Apart . Besides being a painfully contrived acronym, CAPTCHAs are often used as a deterrent to keep
spammers and other malicious users from automatically registering user accounts.

 The user is presented with a challenge, oftentimes as a graphical image containing letters and numbers.
He or she then has to read the text and enter it in an input field. If the two values match, then it is
assumed an intelligent human being and not a computer is requesting the account sign-up.

 It ’ s not a perfect solution, however. CAPTCHAs cause problems for legitimate users with special
accessibility needs, and some modern software can read the text in CAPTCHA images (see
www.cs.sfu.ca/~mori/research/gimpy/). There are other types of challenges which can be
presented to a user. For example, there are audio CAPTCHAs where the user enters the letters and
numbers after hearing them recited in an audio file. Some even present math problems to the user.

c01.indd 9c01.indd 9 3/29/08 10:31:37 AM3/29/08 10:31:37 AM

Chapter 1: User Registration

10

 CAPTCHAs should be considered a tool in the web master ’ s arsenal to deter lazy miscreants and not a
replacement for proper monitoring and security. Inconvenience to the visitor increases with the
complexity of the challenge method, so I ’ ll stick with a simple image - based CAPTCHA example here.

 < ?php

include ‘../../lib/functions.php’;

// must start or continue session and save CAPTCHA string in $_SESSION for it

// to be available to other requests

if (!isset($_SESSION))

{

 session_start();

 header(‘Cache-control: private’);

}

// create a 65x20 pixel image

$width = 65;

$height = 20;

$image = imagecreate(65, 20);

// fill the image background color

$bg_color = imagecolorallocate($image, 0x33, 0x66, 0xFF);

imagefilledrectangle($image, 0, 0, $width, $height, $bg_color);

// fetch random text

$text = random_text(5);

// determine x and y coordinates for centering text

$font = 5;

$x = imagesx($image) / 2 - strlen($text) * imagefontwidth($font) / 2;

$y = imagesy($image) / 2 - imagefontheight($font) / 2;

// write text on image

$fg_color = imagecolorallocate($image, 0xFF, 0xFF, 0xFF);

imagestring($image, $font, $x, $y, $text, $fg_color);

// save the CAPTCHA string for later comparison

$_SESSION[‘captcha’] = $text;

// output the image

header(‘Content-type: image/png’);

imagepng($image);

imagedestroy($image);

? >

 I recommend saving the script in the public_files/img folder (since it needs to be publically
accessible and outputs a graphic image) as captcha.php . The image it creates is a 65 × 20 pixel PNG
graphic with blue background and a white random text string five characters long, as seen in Figure 1 - 1 .
The string must be stored as a $_SESSION variable so you can check later to see if the user enters it
correctly. To make the image more complex, you can use different fonts, colors, and background images.

c01.indd 10c01.indd 10 3/29/08 10:31:37 AM3/29/08 10:31:37 AM

Chapter 1: User Registration

11

 Templates
 Templates make it easier for developers to maintain a consistent look and feel across many pages, they
help keep your code organized, and they move presentation logic out of your code, making both your
PHP and HTML files more readable. There are a lot of different templating products available — some
big (like Smarty, http://smarty.php.net) and some small (TinyButStrong, www.tinybutstrong
.com). Each have their own benefits and drawbacks regardless if the solution is commercial, open
source, or home - brewed. Sometimes the choice of which one to use will boil down to a matter of
personal preference.

 Speaking of personal preference, although I love the spirit of templating, I ’ m not a fan of most
implementations. Despite all the benefits, modern templating systems complicate things. Some have
their own special syntax to learn and almost all incur additional processing overhead. Truth be told,
most projects don ’ t need a dedicated template engine; PHP can be considered a template engine itself
and can handle templating for even moderately large web projects with multiple developers if proper
planning and organization is in place.

 The setup that works best for me is to keep the core of my presentation in specific HTML files in a
 templates folder. This folder is usually outside of the web-accessible base (though the CSS, JavaScript
and image files referenced in the HTML do need to be publically accessible) since I don ’ t want a visitor
or search engine to stumble upon a slew of content - less pages.

 For now, here ’ s a basic template that ’ s suitable for the needs of this project:

 < !DOCTYPE html PUBLIC “-//W3C//DTD XHTML 1.0 Strict//EN”

 “http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd” >

 < html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en” lang=”en” >

 < head >

 < title >

 < ?php

if (!empty($GLOBALS[‘TEMPLATE’][‘title’]))

{

 echo $GLOBALS[‘TEMPLATE’][‘title’];

}

? >

 < /title >

 < link rel=”stylesheet” type=”text/css” href=”css/styles.css”/ >

 < ?php

if (!empty($GLOBALS[‘TEMPLATE’][‘extra_head’]))

{

 echo $GLOBALS[‘TEMPLATE’][‘extra_head’];

}

? >

 < /head >

 < body >

 < div id=”header” >

 Figure 1 - 1

(continued)

c01.indd 11c01.indd 11 3/29/08 10:31:38 AM3/29/08 10:31:38 AM

Chapter 1: User Registration

12

 < ?php

if (!empty($GLOBALS[‘TEMPLATE’][‘title’]))

{

 echo $GLOBALS[‘TEMPLATE’][‘title’];

}

? >

 < /div >

 < div id=”content” >

 < ?php

if (!empty($GLOBALS[‘TEMPLATE’][‘content’]))

{

 echo $GLOBALS[‘TEMPLATE’][‘content’];

}

? >

 < /div >

 < div id=”footer” > Copyright & copy; < ?php echo date(‘Y’); ? > < /div >

 < /div >

 < /body >

 < /html >

 There should be some conventions in place to keep things sane. For starters, content will be stored in the
 $GLOBALS array in the requested script so it will be available in any scope within the included template
file. I commonly use the following keys:

 title — Page title

 description — Page description

 keywords — Page keywords (the page ’ s title, description and keywords can all be stored in a
database)

 extra_head — A means to add additional HTML headers or JavaScript code to a page

 content — The page ’ s main content

 Occasionally I ’ ll also include a menu or sidebar key depending on the project and planned layout,
though your exact variables will depend on the template. So long as there are standard conventions
written down and faithfully adhered to, a development team of any size can work successfully with such
a template solution.

 Registering a New User
 With the directory structure laid out and enough of the support code written, the focus can now move to
registering a new user. The following code can be saved in the public_files folder as register.php .
Figure 1 - 2 shows the page viewed in a browser.

❑

❑

❑

❑

❑

(continued)

c01.indd 12c01.indd 12 3/29/08 10:31:38 AM3/29/08 10:31:38 AM

Chapter 1: User Registration

13

 < ?php

// include shared code

include ‘../lib/common.php’;

include ‘../lib/db.php’;

include ‘../lib/functions.php’;

include ‘../lib/User.php’;

// start or continue session so the CAPTCHA text stored in $_SESSION is

// accessible

session_start();

header(‘Cache-control: private’);

// prepare the registration form’s HTML

ob_start();

? >

 < form method=”post”

 action=” < ?php echo htmlspecialchars($_SEVER[‘PHP_SELF’]); ? > ” >

 < table >

 < tr >

 < td > < label for=”username” > Username < /label > < /td >

 < td > < input type=”text” name=”username” id=”username”

 value=” < ?php if (isset($_POST[‘username’]))

 echo htmlspecialchars($_POST[‘username’]); ? > ”/ > < /td >

 < /tr > < tr >

 < td > < label for=”password1” > Password < /label > < /td >

 < td > < input type=”password” name=”password1” id=”password1”

 value=””/ > < /td >

 < /tr > < tr >

 Figure 1 - 2

(continued)

c01.indd 13c01.indd 13 3/29/08 10:31:39 AM3/29/08 10:31:39 AM

Chapter 1: User Registration

14

 < td > < label for=”password2” > Password Again < /label > < /td >

 < td > < input type=”password” name=”password2” id=”password2”

 value=””/ > < /td >

 < /tr > < tr >

 < td > < label for=”email” > Email Address < /label > < /td >

 < td > < input type=”text” name=”email” id=”email”

 value=” < ?php if (isset($_POST[‘email’]))

 echo htmlspecialchars($_POST[‘email’]); ? > ”/ > < /td >

 < /tr > < tr >

 < td > < label for=”captcha” > Verify < /label > < /td >

 < td > Enter text seen in this image < br/ >

 < img src=”img/captcha.php?nocache= < ?php echo time(); ? > ” alt=””/ > < br / >

 < input type=”text” name=”captcha” id=”captcha”/ > < /td >

 < /tr > < tr >

 < td > < /td >

 < td > < input type=”submit” value=”Sign Up”/ > < /td >

 < td > < input type=”hidden” name=”submitted” value=”1”/ > < /td >

 < /tr > < tr >

 < /table >

 < /form >

 < ?php

$form = ob_get_clean();

// show the form if this is the first time the page is viewed

if (!isset($_POST[‘submitted’]))

{

 $GLOBALS[‘TEMPLATE’][‘content’] = $form;

}

// otherwise process incoming data

else

{

 // validate password

 $password1 = (isset($_POST[‘password1’])) ? $_POST[‘password1’] : ‘’;

 $password2 = (isset($_POST[‘password2’])) ? $_POST[‘password2’] : ‘’;

 $password = ($password1 & & $password1 == $password2) ?

 sha1($password1) : ‘’;

 // validate CAPTCHA

 $captcha = (isset($_POST[‘captcha’]) & &

 strtoupper($_POST[‘captcha’]) == $_SESSION[‘captcha’]);

 // add the record if all input validates

 if (User::validateUsername($_POST[‘username’]) & & password & &

 User::validateEmailAddr($_POST[‘email’]) & & $captcha)

 {

 // make sure the user doesn’t already exist

 $user = User::getByUsername($_POST[‘username’]);

 if ($user- > userId)

 {

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Sorry, that ‘ .

 ‘account already exists. < /strong > < /p > < p > Please try a ‘ .

(continued)

c01.indd 14c01.indd 14 3/29/08 10:31:39 AM3/29/08 10:31:39 AM

Chapter 1: User Registration

15

 ‘different username. < /p > ’;

 $GLOBALS[‘TEMPLATE’][‘content’] .= $form;

 }

 else

 {

 // create an inactive user record

 $user = new User();

 $user- > username = $_POST[‘username’];

 $user- > password = $password;

 $user- > emailAddr = $_POST[‘email’];

 $token = $user- > setInactive();

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Thank you for ‘ .

 ‘registering. < /strong > < /p > < p > Be sure to verify your ‘ .

 ‘account by visiting < a href=”verify.php?uid=’ .

 $user- > userId . ‘ & token=’ . $token . ‘” > verify.php?uid=’ .

 $user- > userId . ‘ & token=’ . $token . ‘ < /a > < /p > ’;

 }

 }

 // there was invalid data

 else

 {

 $GLOBALS[‘TEMPLATE’][‘content’] .= ‘ < p > < strong > You provided some ‘ .

 ‘invalid data. < /strong > < /p > < p > Please fill in all fields ‘ .

 ‘correctly so we can register your user account. < /p > ’;

 $GLOBALS[‘TEMPLATE’][‘content’] .= $form;

 }

}

// display the page

include ‘../templates/template-page.php’;

? >

 The first thing register.php does is import the shared code files it depends on. Some programmers
prefer to place all the include statements in one common header file and include that for shorter code.
Personally, however, I prefer to include them individually as I find it easier to maintain.

 Other programmers may use chdir() to change PHP ’ s working directory so they don ’ t have to
repeatedly backtrack in the file system to include a file. Again, this is a matter of personal preference.
Be careful with this approach, however, when targeting older installations of PHP that use safe mode.
 chdir() may fail without generating any kind of error message if the directory is inaccessible.

 < ?php

// include shared code

chdir(‘../’);

include ‘lib/common.php’;

include ‘lib/db.php’;

include ‘lib/functions.php’;

include ‘lib/User.php’;

...

? >

c01.indd 15c01.indd 15 3/29/08 10:31:40 AM3/29/08 10:31:40 AM

Chapter 1: User Registration

16

 After importing the shared code files I call session_start() . HTTP requests are stateless, which means
the web server returns each page without tracking what was done before or anticipating what might
happen next. PHP ’ s session tracking gives you an easy way to maintain state across requests and carry
values from one request to the next. A session is required for keeping track of the CAPTCHA value
generated by captcha.php .

 I like to use output buffering when preparing large blocks of HTML such as the registration form, for
greater readability. Others may prefer to maintain a buffer variable and repeatedly append to it
throughout the script, like so:

 < ?php

$GLOBALS[‘TEMPLATE’][‘content’] = ‘ < form action=”’.

 htmlspecialchars(currentFile()) . ‘” method=”post” > ’;

$GLOBALS[‘TEMPLATE’][‘content’] .= ‘ < table > ’;

$GLOBALS[‘TEMPLATE’][‘content’] .= ‘ < tr > ’;

$GLOBALS[‘TEMPLATE’][‘content’] .= ‘ < td > < label for=”username” > Username < /label > ’ .

 ‘ < /td > ’;

...

? >

 I find that approach becomes rather cumbersome relatively fast. With output buffering, all I need to do is
start the capturing with ob_start() , retrieve the buffer ’ s contents with ob_get_contents() , and stop
capturing with ob_end_clean() . ob_get_clean() combines ob_get_contents() and ob_end_
clean() in one function call. It ’ s also easier for the engine to fall in and out of PHP mode so such code
with large blocks of output would theoretically run faster than with the buffer concatenation method.

 No $_POST values should be received the first time a user views the page so the code just outputs the
registration form. When the user submits the form, the $_POST[’ submitted’] variable is set and it
knows to start processing the input.

 The validation code to check the use rname and password are part of the User class. The two password
values are compared against each other and then the password ’ s hash is saved for later storage. Finally,
the user ’ s CAPTCHA input is checked with what was previously stored in the session by captcha.php .
If everything checks out, the record is added to the database.

 The verify.php script referenced in the HTML code is responsible for taking in a user ID and activation
token, checking the corresponding values in the database, and then activating the user ’ s account. It must
be saved in the publically accessible directory as well.

 < ?php

// include shared code

include ‘../lib/common.php’;

include ‘../lib/db.php’;

include ‘../lib/functions.php’;

include ‘../lib/User.php’;

// make sure a user id and activation token were received

if (!isset($_GET[‘uid’]) || !isset($_GET[‘token’]))

{

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Incomplete information ‘ .

 ‘was received. < /strong > < /p > < p > Please try again. < /p > ’;

c01.indd 16c01.indd 16 3/29/08 10:31:40 AM3/29/08 10:31:40 AM

Chapter 1: User Registration

17

 include ‘../templates/template-page.php’;

 exit();

}

// validate userid

if (!$user = User::getById($_GET[‘uid’]))

{

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > No such account. < /strong > ’ .

 ‘ < /p > < p > Please try again. < /p > ’;

}

// make sure the account is not active

else

{

 if ($user- > isActive)

 {

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > That account ‘ .

 ‘has already been verified. < /strong > < /p > ’;

 }

 // activate the account

 else

 {

 if ($user- > setActive($_GET[‘token’]))

 {

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Thank you ‘ .

 ‘for verifying your account. < /strong > < /p > < p > You may ‘ .

 ‘now < a href=”login.php” > login < /a > . < /p > ’;

 }

 else

 {

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > You provided ‘ .

 ‘invalid data. < /strong > < /p > < p > Please try again. < /p > ’;

 }

 }

}

// display the page

include ‘../templates/template-page.php’;

? >

 E-mailing a Validation Link
 Right now register.php provides a direct link to verify the account, though in a production
environment it ’ s typical to send the link in an e-mail to the address provided. The hope is that
legitimate users will supply legitimate e-mail accounts and actively confirm their accounts, and bulk
spammers wouldn ’ t.

c01.indd 17c01.indd 17 3/29/08 10:31:41 AM3/29/08 10:31:41 AM

Chapter 1: User Registration

18

 The mail() function is used to send e-mails from within PHP. The first argument is the user ’ s e-mail
address, the second is the e-mail ’ s subject, and the third is the message. The use of @ to suppress warning
messages is generally discouraged, though in this case it is necessary because mail() will return false
 and generate a warning if it fails.

 The code you integrate into register.php to send a message instead of displaying the validation link
in the browser window might look something like this:

 < ?php

...

// create an inactive user record

$user = new User();

$user- > username = $_POST[‘username’];

$user- > password = $password;

$user- > emailAddr = $_POST[‘email’];

$token = $user- > setInactive();

$message = ‘Thank you for signing up for an account! Before you ‘.

 ‘ can login you need to verify your account. You can do so ‘ .

 ‘by visiting http://www.example.com/verify.php?uid=’ .

 $user- > userId . ‘ & token=’ . $token . ‘.’;

if (@mail($user- > emailAddr, ‘Activate your new account’, $message))

{

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Thank you for ‘ .

 ‘registering. < /strong > < /p > < p > You will be receiving an ‘ .

 ‘email shortly with instructions on activating your ‘ .

 ‘account. < /p > ’;

}

else

{

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > There was an ‘ .

 ‘error sending you the activation link. < /strong > < /p > ‘ .

 ‘ < p > Please contact the site administrator at < a href=”’ .

 ‘mailto:admin@example.com” > admin@example.com < /a > for ‘ .

 ‘assistance. < /p > ’;

}

...

? >

 Figure 1 - 3 shows the confirmation message sent as an e-mail viewed in an e-mail program.

c01.indd 18c01.indd 18 3/29/08 10:31:41 AM3/29/08 10:31:41 AM

Chapter 1: User Registration

19

 Sending the message as a plain text e-mail is simple, while sending an HTML - formatted message is a bit
more involved. Each have their own merits: plain text messages are more accessible and less likely to get
blocked by a user ’ s spam filter while HTML - formatted messages appear friendlier, less sterile and can
have clickable hyperlinks to make validating the account easier.

 An HTML-formatted e-mail message might look like this:

 < html >

 < p > Thank you for signing up for an account! < /p >

 < p > Before you can login you need to verify your account. You can do so by

visiting < a href=”http://www.example.com/verify.php?uid=### & amp;token=xxxxx” >

http://www.example.com/verify.php?uid=### & amp;token=xxxxx < /a > . < /p >

 < p > If your mail program doesn’t allow you to click on hyperlinks in a

message, copy it and paste it into the address bar of your web browser to

visit the page. < /p >

 < /html >

 However, if you sent it as the previous example then the e-mail would still be received as plain text even
though it contains HTML markup. The proper MIME and Content - Type headers also need to be sent as
well to inform the e-mail client how to display the message. These additional headers are given to
 mail() ’ s optional fourth parameter.

 Figure 1 - 3

c01.indd 19c01.indd 19 3/29/08 10:31:42 AM3/29/08 10:31:42 AM

Chapter 1: User Registration

20

 < ?php

// assume the formatted message is stored as $html_message

// formatted mail requires a MIME and Content-Type header

$headers = array(‘MIME-Version: 1.0’,

 ‘Content-Type: text/html; charset=”iso-8859-1”’);

// additional headers are supplied as the 4th argument to mail()

mail($user- > emailAddr, ‘Please activate your new account’, $html_message,

 join(“\n”, $headers));

? >

 It ’ s possible to have the best of both e-mail worlds by sending a mixed e-mail message. A mixed e-mail
contains both plain - text and HTML-formatted messages and then it becomes the mail client ’ s job to
decide which portion it should display. Here ’ s an example of such a multi - part message:

--==A.BC_123_XYZ_678.9

Content-Type: text/plain; charset=”iso-8859-1”

Thank you for signing up for an account!

Before you can login you need to verify your account. You can do so by visiting

http://www.example.com/verify.php?uid=## & token=xxxxx.

--==A.BC_123_XYZ_678.9

Content-Type: text/plain; charset=”iso-8859-1”

 < html >

 < p > Thank you for signing up for an account! < /p >

 < p > Before you can login you need to verify your account. You can do so by

visiting < a href=”http://www.example.com/verify.php?uid=### & amp;token=xxxxx” >

http://www.example.com/verify.php?uid=### & amp;token=xxxxx < /a > . < /p >

 < p > If your mail program doesn’t allow you to click on hyperlinks in a

message, copy it and paste it into the address bar of your web browser to

visit the page. < /p >

 < /html >

--==A.BC_123_XYZ_678.9--

 The correct headers to use when sending the message would be:

MIME-Version: 1.0

Content-Type: multipart/alternative; boundary=”==A.BC_123_XYZ_678.9”

 Note that a special string is used to mark boundaries of different message segments. There ’ s no
significance to ==A.BC_123_XYZ_678.9 as I ’ ve used — it just needs to be random text which doesn ’ t
appear in the body of any of the message parts. When used to separate message blocks, the string is
preceded by two dashes and is followed by a blank line. Trailing dashes mark the end of the message.

c01.indd 20c01.indd 20 3/29/08 10:31:42 AM3/29/08 10:31:42 AM

Chapter 1: User Registration

21

 Logging In and Out
 With the ability to create new user accounts and verify them as belonging to a real people with valid
e-mail addresses in place, the next logical step is to provide a mechanism for these users to log in and
out. Much of the dirty work tracking the session will be done by PHP so all you need to do is store some
identifying information in $_SESSION . Save this code as login.php .

 < ?php

// include shared code

include ‘../lib/common.php’;

include ‘../lib/db.php’;

include ‘../lib/functions.php’;

include ‘../lib/User.php’;

// start or continue the session

session_start();

header(‘Cache-control: private’);

// perform login logic if login is set

if (isset($_GET[‘login’]))

{

 if (isset($_POST[‘username’]) & & isset($_POST[‘password’]))

 {

 // retrieve user record

 $user = (User::validateUsername($_POST[‘username’])) ?

 User::getByUsername($_POST[‘username’]) : new User();

 if ($user- > userId & & $user- > password == sha1($_POST[‘password’]))

 {

 // everything checks out so store values in session to track the

 // user and redirect to main page

 $_SESSION[‘access’] = TRUE;

 $_SESSION[‘userId’] = $user- > userId;

 $_SESSION[‘username’] = $user- > username;

 header(‘Location: main.php’);

 }

 else

 {

 // invalid user and/or password

 $_SESSION[‘access’] = FALSE;

 $_SESSION[‘username’] = null;

 header(‘Location: 401.php’);

 }

 }

 // missing credentials

 else

 {

 $_SESSION[‘access’] = FALSE;

 $_SESSION[‘username’] = null;

 header(‘Location: 401.php’);

 }

 exit();

}

(continued)

c01.indd 21c01.indd 21 3/29/08 10:31:43 AM3/29/08 10:31:43 AM

Chapter 1: User Registration

22

// perform logout logic if logout is set

// (clearing the session data effectively logsout the user)

else if (isset($_GET[‘logout’]))

{

 if (isset($_COOKIE[session_name()]))

 {

 setcookie(session_name(), ‘’, time() - 42000, ‘/’);

 }

 $_SESSION = array();

 session_unset();

 session_destroy();

}

// generate login form

ob_start();

? >

 < form action=” < ?php echo htmlspecialchars($_SERVER[‘PHP_SELF’]); ? > ?login”

 method=”post” >

 < table >

 < tr >

 < td > < label for=”username” > Username < /label > < /td >

 < td > < input type=”text” name=”username” id=”username”/ > < /td >

 < /tr > < tr >

 < td > < label for=”password” > Password < /label > < /td >

 < td > < input type=”password” name=”password” id=”password”/ > < /td >

 < /tr > < tr >

 < td > < /td >

 < td > < input type=”submit” value=”Log In”/ > < /td >

 < /tr >

 < /table >

 < /form >

 < ?php

$GLOBALS[‘TEMPLATE’][‘content’] = ob_get_clean();

// display the page

include ‘../templates/template-page.php’;

? >

 The code encapsulates the logic to both process logins and logouts by passing a parameter in the page
address. Submitting a login form to login.php?login would processes the login logic. Linking to
 login.php?logoff will effectively log out the user by clearing all session data. The login form is shown
in Figure 1 - 4 .

(continued)

c01.indd 22c01.indd 22 3/29/08 10:31:43 AM3/29/08 10:31:43 AM

Chapter 1: User Registration

23

 To log a user in, the script accepts a username and password. The supplied username is passed to the
 getByUsername() method so the record can be retrieved from the database and the supplied password
is hashed for comparison. If the credentials match, the user provided the correct username and
password and is logged in by storing identifying information in the session and redirecting the browser
to the main page. The session is cleared and the user is redirected to an error page (404.php) if
authentication fails.

 The script outputs HTML code for a login form if called without any parameters. This is convenient if
you want to link to it from another page, or redirect back to the login form from the error page.
But you ’ re not restricted to using this form. Because an exit statement has been strategically placed after
the login code, you can use the script to process any login form, whether it ’ s in a page template or
elsewhere. Just remember to pass the login parameter in the address.

 The user is redirected to 401.php if the login is not successful:

 < ?php

// include shared code

include ‘../lib/common.php’;

// start or join the session

session_start();

header(‘Cache-control: private’);

// issue 401 error if the user has not been authenticated

if (!isset($_SESSION[‘access’]) || $_SESSION[‘access’] != TRUE)

{

 header(‘HTTP/1.0 401 Authorization Error’);

 Figure 1 - 4

(continued)

c01.indd 23c01.indd 23 3/29/08 10:31:43 AM3/29/08 10:31:43 AM

Chapter 1: User Registration

24

 ob_start();

? >

 < script type=”text/javascript” >

window.seconds = 10;

window.onload = function()

{

 if (window.seconds != 0)

 {

 document.getElementById(‘secondsDisplay’).innerHTML = ‘’ +

 window.seconds + ‘ second’ + ((window.seconds > 1) ? ‘s’ : ‘’);

 window.seconds--;

 setTimeout(window.onload, 1000);

 }

 else

 {

 window.location = ‘login.php’;

 }

}

 < /script >

 < ?php

 $GLOBALS[‘TEMPLATE’][‘extra_head’] = ob_get_contents();

 ob_clean();

? >

 < p > The resource you’ve requested requires user authentication. Either you have

not supplied the necessary credentials or the credentials you have supplied

do not authorize you for access. < /p >

 < p > < strong > You will be redirected to the login page in

 < span id=”secondsDisplay” > 10 seconds < /span > . < /strong > < /p >

 < p > If you are not automatically taken there, please click on the following

link: < a href=”login.php” > Log In < /a > < /p >

 < ?php

 $GLOBALS[‘TEMPLATE’][‘content’] = ob_get_clean();

 include ‘../templates/template-page.php’;

 exit();

}

? >

 The 401 response is shown in Figure 1 - 5 . The primary responsibility of the script is to send an authorization
error to the browser and redirect the user back to the login form (the response code for an HTTP
authorization error is 401). Because session_start() is called and $_SESSION[‘access’] is checked,
the error is only sent if the user hasn ’ t been authenticated. To protect any page you only need to include
this file at the top of the document. If the user has logged in then he or she will see the intended content.

(continued)

c01.indd 24c01.indd 24 3/29/08 10:31:44 AM3/29/08 10:31:44 AM

Chapter 1: User Registration

25

 There are different ways to perform a client - side redirect for a user. Here I ’ ve mixed a little bit of
JavaScript code in with the script ’ s output to count down 10 seconds (1,000 microseconds) — enough
time for the user to see he or she is being denied access — and actively updates the time remaining until
it performs the redirect by setting the window.location property. Another way to redirect the client is
by outputting an HTML meta element:

 < meta http-equiv=”refresh”

 content=”10;URL=http://www.example.com/login.php” / >

 Regardless of the method you choose to employ, you should always provide a link in case the browser
doesn ’ t redirect the user properly.

 Changing Information
 People may want to change their names, passwords, and e-mail addresses and it makes sense to allow
this in your applications. I ’ ve already shown you an example of changing a user record earlier when
I first discussed the User class. It ’ s the same process here — simply set the object ’ s properties to new
values and call the save() method.

 I ’ ve saved this code as main.php for the simple fact that login.php redirects the user to main.php
after a successful login. In your own implementation, you may want to name it something like
 editmember.php and have main.php offer some interesting content instead. Either way, the form is
shown in Figure 1 - 6 .

 Figure 1 - 5

c01.indd 25c01.indd 25 3/29/08 10:31:44 AM3/29/08 10:31:44 AM

Chapter 1: User Registration

26

 < ?php

// include shared code

include ‘../lib/common.php’;

include ‘../lib/db.php’;

include ‘../lib/functions.php’;

include ‘../lib/User.php’;

// 401 file referenced since user should be logged in to view this page

include ‘401.php’;

// generate user information form

$user = User::getById($_SESSION[‘userId’]);

ob_start();

? >

 < form action=” < ?php echo htmlspecialchars($_SERVER[‘PHP_SELF’]); ? > ”

 method=”post” >

 < table >

 < tr >

 < td > < label > Username < /label > < /td >

 < td > < input type=”text” name=”username” disabled=”disabled”

 readonly=”readonly”value=” < ?php echo $user- > username; ? > ”/ > < /td >

 < /tr > < tr >

 < td > < label for=”email” > Email Address < /label > < /td >

 < td > < input type=”text” name=”email” id=”email”

 value=” < ?php echo (isset($_POST[‘email’]))? htmlspecialchars(

$_POST[‘email’]) : $user- > emailAddr; ? > ”/ > < /td >

 < /tr > < tr >

 Figure 1 - 6

c01.indd 26c01.indd 26 3/29/08 10:31:45 AM3/29/08 10:31:45 AM

Chapter 1: User Registration

27

 < td > < label for=”password” > New Password < /label > < /td >

 < td > < input type=”password” name=”password1” id=”password1”/ > < /td >

 < /tr > < tr >

 < td > < label for=”password2” > Password Again < /label > < /td >

 < td > < input type=”password” name=”password2” id=”password2”/ > < /td >

 < /tr > < tr >

 < td > < /td >

 < td > < input type=”submit” value=”Save”/ > < /td >

 < td > < input type=”hidden” name=”submitted” value=”1”/ > < /td >

 < /tr > < tr >

 < /table >

 < /form >

 < ?php

$form = ob_get_clean();

// show the form if this is the first time the page is viewed

if (!isset($_POST[‘submitted’]))

{

 $GLOBALS[‘TEMPLATE’][‘content’] = $form;

}

// otherwise process incoming data

else

{

 // validate password

 $password1 = (isset($_POST[‘password1’]) & & $_POST[‘password1’]) ?

 sha1($_POST[‘password1’]) : $user- > password;

 $password2 = (isset($_POST[‘password2’]) & & $_POST[‘password2’]) ?

 sha1($_POST[‘password2’]) : $user- > password;

 $password = ($password1 == $password2) ? $password1 : ‘’;

 // update the record if the input validates

 if (User::validateEmailAddr($_POST[‘email’]) & & $password)

 {

 $user- > emailAddr = $_POST[‘email’];

 $user- > password = $password;

 $user- > save();

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Information ‘ .

 ‘in your record has been updated. < /strong > < /p > ’;

 }

 // there was invalid data

 else

 {

 $GLOBALS[‘TEMPLATE’][‘content’] .= ‘ < p > < strong > You provided some ‘ .

 ‘invalid data. < /strong > < /p > ’;

 $GLOBALS[‘TEMPLATE’][‘content’] .= $form;

 }

}

// display the page

include ‘../templates/template-page.php’;

? >

c01.indd 27c01.indd 27 3/29/08 10:31:45 AM3/29/08 10:31:45 AM

Chapter 1: User Registration

28

 You may want to modify the code to verify the user ’ s password before processing any changes to his or
her user record. It ’ s also common to set the account inactive and re verify the e-mail address if the user
updates it.

 Forgotten Passwords
 Sometimes users will forget their passwords and not be able to log in. Since the actual password is never
stored, there ’ s no way to retrieve it for them. Instead, a new password must be generated and sent to the
user ’ s e-mail address on file. Code to accomplish this can be saved as forgotpass.php :

 < ?php

// include shared code

include ‘../lib/common.php’;

include ‘../lib/db.php’;

include ‘../lib/functions.php’;

include ‘../lib/User.php’;

// construct password request form HTML

ob_start();

? >

 < form action=” < ?php echo htmlspecialchars($_SEVER[‘PHP_SELF’]); ? > ”

 method=”post” >

 < p > Enter your username. A new password will be sent to the email address on

 file. < /p >

 < table >

 < tr >

 < td > < label for=”username” > Username < /label > < /td >

 < td > < input type=”text” name=”username” id=”username”

 value=” < ?php if (isset($_POST[‘username’]))

 echo htmlspecialchars($_POST[‘username’]); ? > ”/ > < /td >

 < /tr > < tr >

 < td > < /td >

 < td > < input type=”submit” value=”Submit”/ > < /td >

 < td > < input type=”hidden” name=”submitted” value=”1”/ > < /td >

 < /tr > < tr >

 < /table >

 < /form >

 < ?php

$form = ob_get_clean();

// show the form if this is the first time the page is viewed

if (!isset($_POST[‘submitted’]))

{

 $GLOBALS[‘TEMPLATE’][‘content’] = $form;

}

// otherwise process incoming data

c01.indd 28c01.indd 28 3/29/08 10:31:46 AM3/29/08 10:31:46 AM

Chapter 1: User Registration

29

else

{

 // validate username

 if (User::validateUsername($_POST[‘username’]))

 {

 $user = User::getByUsername($_POST[‘username’]);

 if (!$user- > userId)

 {

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > Sorry, that ‘ .

 ‘account does not exist. < /strong > < /p > < p > Please try a ‘ .

 ‘different username. < /p > ’;

 $GLOBALS[‘TEMPLATE’][‘content’] .= $form;

 }

 else

 {

 // generate new password

 $password = random_text(8);

 // send the new password to the email address on record

 $message = ‘Your new password is: ‘ . $password;

 mail($user- > emailAddr, ‘New password’, $message);

 $GLOBALS[‘TEMPLATE’][‘content’] = ‘ < p > < strong > A new ‘ .

 ‘password has been emailed to you. < /strong > < /p > ’;

 // store the new password

 $user- > password = $password;

 $user- > save();

 }

 }

 // there was invalid data

 else

 {

 $GLOBALS[‘TEMPLATE’][‘content’] .= ‘ < p > < strong > You did not ‘ .

 ‘provide a valid username. < /strong > < /p > < p > Please try ‘ .

 ‘again. < /p > ’;

 $GLOBALS[‘TEMPLATE’][‘content’] .= $form;

 }

}

// display the page

include ‘../templates/template-page.php’;

? >

 Figure 1 - 6 shows the page viewed in a web browser.

c01.indd 29c01.indd 29 3/29/08 10:31:46 AM3/29/08 10:31:46 AM

Chapter 1: User Registration

30

 Summary
 Voil à ! You now have a basic user-registration framework to extend anyway you like. Perhaps you want
to collect more information from your users, such as their cell phone numbers for SMS messaging,
mailing addresses, or even internet messenger screen names.

 You ’ ve also learned how to establish a well - organized directory structure for your applications and seen
some of the benefits of writing reusable code. The directory layout and many of the support files will be
used throughout the rest of this book.

 In the next chapter you ’ ll build upon what you ’ ve written so far and program a basic community
bulletin board, more commonly known as a forum .

 Figure 1 - 7

c01.indd 30c01.indd 30 3/29/08 10:31:46 AM3/29/08 10:31:46 AM

