Re-creating the
World: An Overview

In this chapter, I introduce some of the main
themes that come up throughout the book, and
give a brief description of what you can expect
in later chapters. Then I move on to some
important general-purpose tools in Blender that
can be of great use in modeling and animating
certain physical phenomena. Some of the fea-
tures covered here, such as node-based materi-
als, are things you will use in conjunction with
advanced physical simulations. Other features
will come in handy when full-fledged physical
simulations would be unnecessary or inappro-
priate. Some of the techniques I describe here
use common tools such as textures and modi-

fiers in ways you might not have thought of.

Chapter Contents

Re-creating the physical world with Blender
Using materials and textures

Faking physics with general-purpose tools

MATAYIAQ NY :dTIO X dHL ONILVIYOD-dY W =

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW B N

Re-creating the Physical World with Blender

If you’re reading this book, you probably already know that Blender is a powerful tool
for creating 3D imagery and animation. You probably also know that it can be difficult
to find good documentation on a lot of Blender’s advanced functionality. There is of
course the official Blender wiki, which is an invaluable resource, and numerous excel-
lent online tutorials. Nevertheless, getting good, thorough information about many of
these features can be a challenge. Unfortunately, this means that many of Blender’s most
exciting features tend to be underused; artists want to create, not spend their time
searching for tutorials and documentation.

I’d like to change that with this book, by giving a complete introduction to
Blender’s intermediate to advanced functionality. I hope that this book will help artists
become familiar enough with this functionality to comfortably incorporate these fea-
tures into their creative workflow. Unlike in my previous book, Introducing Character
Animation with Blender (Sybex, 2007), which has readers model, rig, and animate a
character over the course of the book, there’s no single, overarching goal here. This
book, like the physical world it aims to simulate, is a bit of a hodgepodge. Each chap-
ter addresses a specific aspect of Blender’s functionality. There’s not much dependence
between chapters, so you don’t need to read the chapters in strict order. Regardless of
the order you choose to approach it in, I hope that this book helps unlock some of the
mysteries of Blender’s advanced functionality and gives Blender artists some powerful
new tools to create their worlds.

Blender’s Physical Simulation Functionality

Blender has a variety of tools for simulating physical phenomena. For Blender users
who have not yet had the opportunity to study these tools closely, some of them can be
a bit confusing. Not all the effects discussed in this book are located in the same place
in Blender, and not all are activated in the same way. Getting them to interact in the
ways you want them to requires a certain degree of understanding what’s going on. In
particular, this book is geared toward animators who want to incorporate physics simu-
lations into actual animated scenes. This is not at all difficult to do, but it may some-
times require stepping out of your comfort zone. For example, although the Blender
game engine and its integrated Bullet physics engine is widely used by Blender game
creators, that area of Blender’s functionality remains unexplored by many animators.
One of the things you will learn in this book is how to access the various physics-
related tools in Blender and put them to work to create the animations you are after.

The main focus of this book is on the features found in the Physics Buttons
area (Figure 1.1) and the Particles Buttons area (Figure 1.2), and on the Bullet physics
engine, which is accessed through the Blender game engine. The parameters for the
game engine are set mostly in the Logic Buttons area (Figure 1.3).

Figure 1.1 The Physics Buttons area

Figure 1.2 The Particles Buttons area

Figure 1.3 The Logic Buttons area

MAANATd HLIA ATIOM TVOISAHd dHL ONILVIYO-4Y W w

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®m &

The simulation features available in the Physics Buttons area are the following;:
Particles Particles are used to simulate very small real-world objects whose collective
behavior can be calculated by the simulator. Particles are often used to simulate smoke
and fire, by assigning translucent halo materials to each particle. Particles can also be
used to simulate swarm behavior—for example, in the case of insects—and Blender 3D
objects can be treated as constituents of a particle system by use of the Duplivert tool.
Parameters relating to the speed, direction, life span, and other traits of particles can be
set. Using “static” particles, the trajectory of each particle from the emitter is also mod-
eled in the 3D space, to simulate strandlike real-world objects such as hair. Numerous
options exist for controlling the behavior and appearance of static particles. In this book,
both ordinary and static particles are covered.

Soft Body This simulates the behavior of materials that are flexible, and are visibly
deformed by the forces acting on them, such as friction, gravity, and others. In Blender,
soft bodies’ vertices can move relative to each other, but their underlying structure does
not change. Depending on settings, soft body simulation may be appropriate for model-
ing rubber, gelatin, sheet metal, cloth, and other materials. As you will see in Chapter 4,
soft bodies can also be used with static particles to control hair, which also exhibits soft
body behavior.

Fields and Deflection These settings are pertinent to both particles and to soft body
simulation. Fields are options for external forces that can be made to act on other objects
that have soft body properties or particle systems active. Among the fields available are
curve guide fields, wind, vortex, and spherical fields. Each of these field options is dis-
cussed throughout the course of this book.

Fluid Simulation The Fluid Simulation panel contains settings pertinent to fluid simula-
tion, and any objects that will play a roll in the fluid simulation, including any obstacles,
inflow or outflow objects, and the object that acts as the domain for the simulation and
marks off the spatial area in which the simulation will take place.

These features are all in some way connected to the internal structure of objects.
In soft body simulation, the mesh structure is affected; in fluid simulation completely
new meshes are constructed on the fly; and in particle simulation mesh structure is
bypassed entirely in favor of a different approach to calculating the location and rela-
tionship between points.

For forces that operate on objects and enable rigid bodies to interact as they
would in nature, with mass, gravity, friction, and collisions accurately modeled, it is
necessary to use the Bullet physics engine, a component of Blender’s game engine.

In this book, I show examples of all of Blender’s various physical simulation
functionalities, and give examples that I hope will encourage you to come up with
creative and innovative approaches to using the simulators to get the effects you want.
Particles, soft bodies, fluids, and rigid bodies are all included, as are the various deflec-
tion properties and forces that enable other objects to interact with these simulations.
These topics make up the lion’s share of what this book is about. Although numerous
tutorials and examples can be found online for most of this functionality, these features
have not been well documented in book form until now, and I hope to provide a coherent

overview of all of Blender’s physical simulation functionality. To take advantage of
Blender’s rigid body physics capabilities, it is necessary to do some work in the game
engine environment. Because this book is written primarily with animators in mind, I
don’t assume that you have experience with that, and include a brief overview of how
to get what you need out of the game engine.

The Science of Simulation

The main objective of this book is to give CG animators a complete understanding of
the various physical simulation tools available in Blender, to enable them to realize
their creative ideas. For this reason, the book is “artist-oriented” and is intended to be
only as technical as is necessary for artists to understand what is possible and how to
achieve it with the available tools. Nevertheless, Blender being an open source project
as it is, there is another audience I would like to reach with this book, and that is the
audience of technically-oriented readers who may be inspired to take an interest in the
area of physics-based animation research or, if already engaged in such research, may
be motivated to use Blender in their work or to contribute to Blender’s code base. For
those people, I hope that this book can serve as a way to become quickly familiar with
the Blender approach to physical simulation, and as a demonstration of what Blender is
capable of at present. People who are aware of recent developments in physical simula-
tion will quickly identify numerous areas in which Blender could be extended and
improved.

Physical simulation for 3D animation is an active field of research. Although it is
a subfield of general physics simulation, the requirements and objectives of 3D anima-
tion are different from those for other kinds of physics simulation. Simulations used for
engineering purposes, for example, must be able to compute real-world effects of physi-
cal situations with great accuracy, and they don’t have to be especially fast. When plan-
ners of a skyscraper use fluid simulations to evaluate how the structure will hold up to
wind, it is worth a considerable amount of time and money to ensure that the results
in terms of forces and stress are as physically accurate as possible down to very small
details, and at the same time the visual aspect of this simulation is likely not to be of
interest at all. An example of a powerful open source package for computing these kinds
of simulations is the OpenFOAM tools from OpenCFD. On the other hand, simulations
for animation must be visually convincing, and computationally efficient enough to be
carried out in a reasonable time frame on an appropriate budget, whereas very little
depends on precise accuracy.

As Kenny Erleben and his coauthors amusingly observe in Physics-Based Anima-
tion, another difference is that the “artists and creative people” who use these simula-
tions have “very little respect for the real world.” Animators are constantly creating
situations that would be impossible or highly improbable in the physical world, and it’s
important that the tools they use offer them the ability to create what they want to cre-
ate, regardless of its physical authenticity. This is why CG armatures for character ani-
mation are so different from human skeletons; in Blender it’s possible to stretch, bend,
and swivel bones into any kind of position you like. A physically accurate representation

MIANITI HLIA dTIOMA TVOISAHd dHL ONLLVAYOD-4Y W w

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW B o

of a human would not allow this. In the area of physical simulation for CG animation,
the line between flexibility and robustness on the one hand and verisimilitude on the
other is a key consideration. As in other areas of Blender, very high levels of accuracy
are not the objective. In the same way that Blender’s modeling functionality is not ori-
ented toward advanced computer-assisted design (CAD) work, the approaches taken to
physical simulations are intended to be useful to artists, not aeronautics engineers. Not
to say that CG animators are not rocket scientists, but indeed, their needs in terms of
fluid dynamics simulations are quite distinct!

If you’re interested in the technical underpinnings of the physical simulations
described in this book, a good place to start reading more is the home page for the
Bullet Physics Library, at www.bulletphysics.com. In the forum area of that website
you’ll find a special area dedicated to links, research papers, libraries, demos, and dis-
cussions of Bullet and other physics software. For technically inclined readers, the
previously mentioned book, Physics-Based Animation by Kenny Erleben, Jon Sporring,
Knud Henriksen, and Henrik Dohlmann (Charles River Media, 2005), provides an
excellent overview of many of the main methodologies used in physics simulation for
CG. The book goes into considerable detail about kinematics, interaction of multiple
rigid bodies, soft body and fluid simulations, and collision detection, among other
subjects.

Nonsimulation Tools and Techniques

As you’ll see throughout this book, there are cases when physical simulation can be
demanding in terms of time and computing resources, and cases when the results are
not exactly what you have in mind for your effect. For these reasons, it is important
to have a solid understanding of your other options for creating physical effects. Even
without dipping into sophisticated simulation methods, you’ll find that there is an
awful lot in the toolbox of Blender’s standard features. A good understanding of mate-
rials, textures, and modifiers will enable you to think creatively and to approach each
simulation challenge with freedom and flexibility. The remainder of this chapter is a
tour of tools and techniques that have not been covered in much depth in print in the
past. None of the techniques touched on in this chapter are crucial to understanding
the rest of this book, but I think that people who want to get the most out of Blender
will find them well worth checking out.

Using Materials and Textures

This book is about approaches to simulating physical phenomena. To do this, you can
use a variety of tools to calculate the internal and external forces that are acting on
objects and that determine the movements and the structural behaviors of the objects.
But modeling the movement and deformations is not the whole story. No matter how
realistically the objects in your scene collide, and no matter how convincingly the liquid
in your fluid simulation flows and splashes, no one will be convinced if everything is
the same opaque, dull, gray material. Blender has a powerful system of materials and

textures that can be used to create stunning effects such as the mountain in Figure 1.4.
Because this book is for intermediate to advanced users of Blender, it’s assumed that
you know the basics of using materials and textures, but there are a few techniques and
functions that are either relatively new in Blender, or else are specific enough in use to

be worth describing here in detail.

v Ll

Figure 1.4 Mount Reckon by Robert J. Tiess is an excellent example of the potential of Blender’s procedural textures.

Hot Lava with Material Nodes

The nodes system greatly increases Blender’s power and flexibility in creating materials.
By using nodes, it is possible to mix materials with different qualities in a wide variety
of ways. In this example, I demonstrate how to use the system to combine two materi-
als to achieve a simple but effective lava effect.

A notable feature of flowing lava is that it is composed of two very different main
“materials” (of course, in reality, the material is the same, just in a different state). There

SHYNLXIL ANV STVIMILVIN ONISN W N

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW H o

is the flowing, molten part of the lava, which is liquid and glows from heat, and

there is the portion of the lava that has been exposed to cold air and hardened,

which is a dark-colored rocky crust. In Blender, it is possible to create these two

materials separately and then combine them by using nodes. To create this material,

follow these steps:

1.

2.

Delete the default cube and add a UV sphere with default values (32 segments,
32 rings, radius 1). Set it to have an active material called Material.

Select Nodes in the Links And Pipeline tab of Material, as shown in Figure 1.5.
This makes Material a node material. If you are not used to working with node
materials, it is easy to get confused, so it helps to keep track of which materials
need to be node materials and which materials do not need to be. In most cases,
materials that you use as inputs into node materials should not be node materi-
als themselves. You can always tell which materials are node based and which
are the basic kind in the material list, because each node material has an N before
its name. Open a nodes window now and you will see the setup in Figure 1.6.
What you’re looking at are two nodes: an Input material node and an Output
node. The Output node represents the final appearance that Material will take
on. At present, the Input node is not linked to any material, as indicated by the
red Add New button. Click Add New to create a new material node. The node’s
header bar will now read MatNode.

Halo offs- 0,00

Ful 0sa
Raio oniycast Tracea Shadbut

Figure 1.5 Activating Nodes on Material

Add a second material node to the node setup. Do this by pressing the spacebar
while in the Nodes Editor window and choosing Add > Input > Material, and
then selecting Add New from the highlighted drop-down list on the node. The
new node will be connected to the previous node by default. Hold the left
mouse button (LMB) and drag your mouse across this connection to sever it,
as shown in Figure 1.7. Rename MatNode and MatNode.001 to Rock and
Magma, respectively, and rename the main node material from Material

to Lava.

¥ Cutput

¥ rdairlode.00

Figure 1.7 Two new input materials

4.

Select the Rock material node and set its material values by using the Material

buttons as you would for any ordinary non-node material, as shown in Figure 1.8.

Note that when you select an input material node in the Nodes Editor, the set-
tings for that material appear in the Material buttons window. Add a Clouds
texture set at a very small noise size, as shown in Figure 1.9, and map the tex-
ture to Nor on the Map To tab as a bump map to give roughness to the surface
of the rock. Then select the Magma material node and edit the material settings
as shown in Figure 1.10. Note the high Emit value for the glow. For the orange
color texture, use a soft Clouds texture with default parameter settings.

SHYNLXAL ANV STVIMILVIN ONISN W ©

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW H 2

Wil Light Mol Paint

Mo Mist

Mat

Figure 1.9 Roughness texture for the rock

Radin

Sha
Trashadow

Bias
R BT

5.

Cal Hor Csp Chnlr Ret Spec m

Hard Rayhdir Alpha Emit TransLu

 stnci | teg | o AGo

¥ aterial

mb 1 5 Tangent ¥
el

WiCal Light WiCol Paint TexFace Shadeless
2 TraShadoe
Flo Mist Env Shad A 1.000 »
OnlyShad

IR AT

e HSY 2

Figure 1.10 Material settings for Magma

You now have the two basic materials completed in your node setup. What
remains is to mix them. To do this, add a Mix node by pressing the spacebar
while in the Nodes Editor and choosing Add > Color > Mix. Create connections
between nodes by LMB-dragging your mouse from one node’s socket to another
socket. To mix the two materials, draw a connection between Rock and the
Color1 socket on the Mix node, and a connection between Magma and the
Color2 socket. Draw a connection between the Color sockets on the Mix node
and the Output node, as shown in Figure 1.11. As you can see, the output mate-
rial is now a mixture of the two input materials. The mix factor of the Mix
node is 0.50, which means that the two materials are mixed at a uniform level
of 50/50 across the entire object. It is necessary to input a mix factor that will
give a more-appropriate mix effect.

Add a new Input node in the same way you did for the previous two material
nodes, except this time select Texture instead of Material for the node type. In
the drop-down menu on the node, select Add New to create a new texture, and
name the texture Mix. Make this texture a hard Clouds texture with the values
set as shown in Figure 1.12. This texture will provide a pattern of black-and-
white (that is, 0.0 and 1.0) to replace the uniform 0.50 that’s the default for the
Mix node.

-
—y

STYNLXAL ANV STVIIILVIN ONISN W

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW H

7.

1 Add Mode | ® ¥

Default Color Soft noise Hard noise

Figure 1.12 A hard Clouds texture for Mix

Add an RGB Curves node by pressing the spacebar and choosing Add > Color >
RGB Curves. This will enable you to tweak the contrast and brightness of the
factor value going into the Mix node. Connect the Mix node to the RGB Curves
node, and the RGB Curves node to the Fac connection point on the Mix node,
as shown in Figure 1.13. All that remains is to tweak the RGB curve to yield the

mix pattern that looks best. To get the correct black-and-white pattern, reverse
the direction of the RGB curve so that it goes from upper left to lower right, and
then edit the shape of the curve itself. The more gentle the curve, the smoother
the transition between the two materials will be. Points can be added on the curve
simply by clicking the LMB, and deleted by clicking the button on the node itself
marked with an x.

Finally, add a Displace modifier to the object with the settings shown in Fig-
ure 1.14. Type Mix in the Texture field to use the texture you just created to
determine the displacement. After you’ve done this, set up your lights and take a
render. The finished material should look something like Figure 1.15.

If you have trouble getting the object lit the way you see it here, check the file
lava.blend on the CD for the book to see how I've done the lighting.

W Cuiput

< [raanoc | 2]
it Spec

Figure 1.13 Finished node setup for lava

Figure 1.14 Displace modifier

-
w

STYNLXAL ANV STVIIILVIN ONISN W

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW B 3

Figure 1.15 Finished render

As you can see, being able to mix different materials and textures in this way is
a powerful way to create complex materials that more faithfully represent the complex-
ity of nature.

Transparency and Subsurface Scattering

In Blender, there are three kinds of transparency: Z transparency, ray transparency, and
the environment (Env) material setting. In fact, only the first two are true transparencies
in terms of the Blender 3D environment. The Env setting creates an area of alpha 0
transparency in the rendered image itself and is used primarily for compositing. In Fig-
ure 1.16, you can see an example of the three types of transparency together. The knight
piece on the left has the Env option selected, as shown in Figure 1.17, and the area
defined by its outline is alpha 0, with the world background visible in the render. This
material does not have any transparency option selected, and its true material alpha
value is 1. The Env option is not gradated in any way; if it’s on, the object and every-
thing behind it will be cut out of the final render. Note that things that are in front of
the object are not cut out, such as the middle horse’s nose in the image. This option is
useful for compositing.

The middle knight uses Z transparency, with the settings shown in Figure 1.18.
Z transparency takes two values into consideration: the material’s alpha value and the
Z values of the points in the scene. The alpha value of a material is a measure of how
opaque the material is. A 0 (zero) alpha means the material is completely invisible; a 1
alpha means that the material is entirely opaque. The Z value is the distance of a point
in space along the camera’s local Z axis; that is, the distance from the camera. Z trans-
parency works very much like layer transparency in a 2D image-manipulation program,
using the Z value to determine the ordering of the layers. In the image, the middle
knight’s alpha value is set to 0.2.

Figure 1.16 The knight piece on the left has the material setting Env selected. The piece in the middle has
LTransp selected, and the one on the right has RayTransp selected.
= Panals (][] *

¥ rreview ¥V tdaterial
]
v

WCol Light WCol Paint TexFace Shadeless

=
-
&)
(O

Figure 1.17 The Env option

The knight on the right also has an alpha value of 0.2, but with ray trans-
parency, with values shown in Figure 1.19. As you can see, the effect is very different
from the middle knight. Whereas the middle knight looks ghostly, the third knight
looks like it is made of a real-world transparent material. The difference, as you can
see, is mainly in the way the light from the background is distorted as it passes
through the object, as it would be in real life. This distortion depends on the index of
refraction (IOR) of the material. Denser materials have higher IORs. Air has an IOR of
approximately 1 (1 is the IOR of a perfect vacuum), water has an IOR of about 1.3,
glass has an IOR of somewhat higher, between 1.5 and 1.8, and diamond has an IOR
of about 2.4.

ey
(]

SHYNLXAL ANV STVIMILVIN ONISN W

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW H &

MCal Light MCal Paint TerFace Shadeless

Ha Mist Env Shad & 1.000

0
-
@
EY
G
®

¥ Links and Pipsiine

Figure 1.18 Z transparency values

To represent a material’s IOR, it is necessary to use ray tracing to follow the
path of the light. Using ray tracing will make render times longer, but in cases like these
it is necessary. The Depth value on the Ray Transp panel is set at 2 by default. This
means that the ray calculation will pass through two surfaces. If there are more than
two transparent surfaces for the light to pass through, the subsequent surfaces will
appear black. To calculate ray information passing through more surfaces than this,
you must raise the Depth value. Again, this will increase render times, so it should be
done only when necessary.

kdirn

Ray Mirror

Figure 1.19
Ray Transp values

Transparent Shadows
Ray shadows cast by transparent objects are transparent. However, in order for them

to appear as they should, the material on which they are cast needs to be set to take

transparent shadows. This setting is found on the shaders tab, as shown in Figure 1.20.
You can see how this affects the shadow that falls on the checkerboard material in Fig-
ure 1.21.

A

Spectstn mem——

Hard:50

Figure 1.20 TraShadow option for receiving transparent shadows

Figure 1.21 In the firstimage, the black- and- white checkerboard materials are set to take

transparent shadows; in the second, they are not.

-
~N

SHYNLXAL ANV STVIMILVIN ONISN W

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW H gz

If you want to avoid ray tracing, transparent shadows can also be produced by
using a spotlight with the Irregular shadow buffer type and setting a <1 value for Shad
A in the shadowing object’s Material tab. In upcoming versions of Blender, the new
Deep Shadow Maps functionality coded by Joe Eagar as part of the Google Summer of
Code will offer significant speed and quality benefits, as well as transparence, to non-
raytraced shadows.

Subsurface Scattering

When light strikes an object, it can be reflected in a variety of ways. Mostly, the way it
reflects depends on qualities of the surface of the object. In Blender, the diffuse and
specular shader settings determine how a material reflects light (other settings, such as
ray mirroring, may also play a part). With some materials, however, calculating how
light behaves on the surface only is not enough. For materials such as wax, skin, most
vegetation, jade, milk, and many others, a very small amount of surface translucency
influences the way light reflects. Although most of the light reflects back from the sur-
face, some of the light penetrates the surface of the material and is reflected back through
the material in a scattered state, diffusing some of the light. Although this effect is subtle,
it is present on many of the things that humans are best at recognizing, such as food,
animals, and other people. For this reason, a lack of subsurface scattering can be a
dead giveaway that an image is CG. When used well, it can enable you to achieve
extremely realistic organic materials, as in Enrico Cerica’s image in Figure 1.22.

Figure 1.22 Enrico Cerice used subsurface scattering to achieve photorealism in this image.

To enable subsurface scattering, click the Subsurface Scattering button on the
Subsurface Scattering (SSS) tab in the materials buttons area, shown in Figure 1.23.
There are a handful of preset materials: skin (two different ones), marble, whole milk,
skim milk, potato, ketchup, cream, apple, and chicken. (I guess the developer who set

up the presets was eager to get to lunch!) You can select one of these and then modify
the values to create a Custom setup.

The settings for subsurface scattering are as follows:
Scale indicates the scale of the objects that the material is applied to. It is used to cal-
culate the size of the blurring radius for the material. To calculate the scale you should
use, divide 1 by the number of millimeters you want a single Blender unit (BU) to rep-
resent. If you want a Blender unit (BU) to represent a meter, the Scale value should be
1/1000 = 0.001. If you want a BU t to represent 2 centimeters, the scale is 1/20 = 0.05.
If a BU is a millimeter, the scale is 1.0. It is important to pay attention to this, because
correct scale is the most important factor in getting your materials with SSS to look
realistic.
Radius R, G, and B are the blurring radii for Red, Green, and Blue. These values
determine the distance that different colored light scatters under the surface of the
material. If you’ve ever shone a flashlight through your hand in the dark, you have seen
that the red in your hand scatters more than the other colors.
IOR is the index of refraction, or the degree to which light is bent when it travels
through the material. As mentioned in the previous section, higher IOR values indicate
higher density. In the case of subsurface scattering, the effect is subtle, because no actual
rays pass through the material. In most cases, you can get away with setting the IOR to
approximately the value of water, 1.3.
Error controls the precision of sampling. Higher error values will speed up rendering
but can result in visible artifacts. You can set it as low as 0.02.
Col determines how much the base color of the material is affected by the diffuse color
set in the color picker above the Col field.
Tex controls the degree to which textures on the material are also blurred. 0 will leave
the textures unaffected by the scattering.
Front is the weighting factor for front scattering. Front here means pointing toward
the camera. Front scattering shows as diffusing of the light and blurring of shadows on
the surface of the material.
Back is the weighting factor for back scattering. Back scattering shows up as light pass-
ing through from behind the material.

Sharlers Mirror Transp

Subsurface Scattering

Figure 1.23 The SSS panel

-
©

SHYNLXAL ANV STVIMILVIN ONISN W

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW m 8

Figure 1.24 shows three objects with materials that differ only in their subsur-
face scattering. The knight on the left has no SSS, the knight in the middle has strong
front SSS with weaker back SSS, and the knight on the right has strong back SSS with
weak front SSS. Of course, for more-convincing materials, you would also want to
adjust the shader values appropriately; wax has a different specularity from jade. This
example is mainly to highlight the differences in the subsurface scattering effect itself.

Figure 1.24 Three materials: no SSS, strong front SSS, strong back SSS

The algorithm used in Blender for subsurface scattering was originally presented
at SIGGRAPH 02 in the paper “A Rapid Hierarchical Rendering Technique for Translu-
cent Materials” by Henrik Jensen and Juan Buhler. You can find the original paper at
http://graphics.ucsd.edu/~henrik/papers/fast_bssrdf.

Sky Maps

If you want to make outdoor scenes, you need to create a sky background. There are a
variety of ways to go about modeling clouds and other features of skies. Mostly, though,
it is enough for the sky to be a background, and in this case the simplest and most
common approach to making skies is to use an image texture called a sky map. I won’t
discuss how to make sky maps here. You can make them by taking photographs, or by
using sky and landscape creation software such as Terragen. Blender user M@dcow
has created a fantastic repository of free sky maps at http://blenderartists.org/forum/
showthread.php?t=24038 that you can use in any way you like. The sky maps used in
the various examples in this book were taken from that resource.
The two sky maps shown in Figure 1.25 are included on the CD accompanying

this book as files angmap12.jpg and sky_twilight.jpg. As you can see in the figure,

sky maps can come in several forms, which require different mapping methods to accu-
rately fit into a scene. The rectangular sky map shown in the figure is intended to be
mapped onto the top half of a sphere. Angular maps appear as highly distorted sphere-
shaped reflections, and represent the entire visible background in all directions.

Figure 1.25 A sphere map and an angular map

Using these sky maps is simple. The sky map is added as an image texture to
the world in the same way that an image texture is added to a material. The texture
buttons panel should look something like Figure 1.26. The world buttons should look
like Figure 1.27. Make sure the options Hori, Real, and AngMap are selected. Hori is
the option for mapping the image with respect to the horizon. Real means that the
actual 3D space horizon is used, as opposed to the center of the camera’s current view.
Selecting this option ensures that the view of the sky will shift correctly as the camera
moves or rotates. AngMap maps the coordinates of this specific type of image to the
3D world. When you use a spherically mapped image, select the Sphere mapping
option, as shown in Figure 1.28.

N
-

SHYNLXAL ANV STVIMILVIN ONISN W

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® N

Note that in the case of the Sphere mapped image, only the top half of the back-
ground space is mapped with the image. The remainder is the default blue. The spheri-
cal mapping describes a hemisphere extending from the horizon to the zenith in the 3D
space. Because this map is all sky, it is assumed to end at the horizon. If you use this
mapping, you must set up your world to include or conceal the horizon, just as in real
life. If you want to have the horizon in view, it may be better to map the sky image
onto a mesh dome or tube, so that you have more control over where the horizon is in
the camera view. It is also possible to turn the camera’s clipping value up very high and
extend a plane so that it nearly meets the horizon, and then to match the gap of back-
ground color to the color of the plane. The AngMap option is necessary if you want
the entire background, ground and all, to be included in the sky map. For example, if
you are animating an airplane dogfight, you want your camera to be able to move
freely and have an accurately mapped image background visible from any angle. It
should be noted that the motion of the “ground” part of the image will not necessarily
match up with the motion of real 3D objects on the ground if the camera is moving,
making them appear to slide across the terrain, so this is most useful as a backdrop for
flying objects. As with everything, remember that different shots may have different
setup requirements.

¥ image

sl

% D

Image : size 50 00, RGE byte

rus | ou |

Figure 1.26 Texture buttons for a sky map image texture

Testure and Input

7

ara

OB:

Figure 1.28 World buttons for a sphere sky map

Faking Physics with General Tools

In this section, I describe techniques I’ve come across for achieving various physical
effects without using actual simulations. Some of these techniques are based on meth-
ods that can be found in some form or another on personal websites or in threads on
BlenderArtists.org, but they are all approaches that I think deserve a wider audience.
Not only are the methods themselves useful, but the tools you’ll use to set them up are
generally applicable.

N
w

STOOL TVYANID HLIA SOISAHd ONIMVI

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW m ¥

Robert J. Tiess

The artist who created Haiku and Mount Reckon, Robert J Tiess has been a Blender user since he
discovered the software in 2003, and has gained a reputation in the Blender community for his
stunning, thought-provoking images. His lush, richly textured character illustrations were featured
in Introducing Character Animation with Blender. His
work covers a wide variety of styles, and he is con-
stantly exploring new ways to use Blender to the
fullest in expressing his own artistic vision. His
enthusiasm for Blender comes through clearly in his
comments about the software and its community.
He writes,“Blender’s thriving community, amazing
artists, gifted and generous coders, supporters,
forum moderators, and documentation writers, all
make it so much less a piece of a software and far
more of a generally positive and empowering phe-
nomenon that is truly global in scope and as uni-
versal in appeal, adaptability, and usability as it
gets in the technology world.”

Modeling Bodies of Water by Using Modifiers and Textures

In Chapter 5, “Making a Splash with Fluids,” you’ll see how to work with the Blender
fluid simulator. It is a common misconception that this is the best way to represent
water and liquids, and in many cases this is not the most direct way to get the effect
you want. Other methods for creating fluid effects include displacement textures, as
used in Figure 1.29 to excellent effect.

In this section, I show you an approach for representing the behavior of large
bodies of water in a way that animates convincingly. I also show a simple way to
make the surface of the water interact with an object floating in the water. The meth-
ods I present here draw on several methods described in Colin Litster’s excellent ocean
tutorials, which you can find at his web page, at www.cogfilms.com. The method I
present here is somewhat simplified, but it will give you a good sense of the main
ideas of the approach. I highly recommend a visit to Colin’s website to see the rest of
his tutorials.

To create this effect, follow these steps:

1. Delete the default cube and add a plane in the top view (NUM?7). Scale the plane
to 30. Press the W key, select Subdivide Multi, and subdivide by 70 subdivisions.

The result is a subdivided plane, as in Figure 1.30. With the whole mesh selected,

click Set Smooth in the Links And Materials tab.

View Saleci Mas

Figure 1.30 A subdivided plane will be the ocean surface.

N
%]

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® §

3.

Give the plane a material, as in Figure 1.31. Choose a base color for the water
similar to the one shown, and increase the specularity slightly from the default.
Set up your lights and camera along the lines shown in Figure 1.32. The camera
view should be filled by the water surface. I have one lamp placed off to the
left of the camera and one placed over the far corner of the plane in front of
the camera. Place your lamps in similar positions. Turn off shadows for the
lamps.

With the plane selected, add two Wave modifiers, with the settings shown in
Figure 1.33. The first wave will move along the Y axis, from one edge of the
plane to the other. The other wave will move along the Z normal of the plane,
creating a swelling effect. Using the two Wave modifiers together will help make
the motion less obviously regular. Note that each modifier can be set to display
in render, 3D, and edit mode view. For now set the modifiers to display in ren-
der and 3D views. Throughout the tutorial, I've switched the 3D view display on
and off. Also, add a Subsurf modifier with the settings of Levels: 2, Render Lev-
els: 3. Make sure that the Subsurf modifier is at the bottom of the modifier
stack. The Wave modifiers should be acting on the subsurfaced mesh, not the
other way around. I’ve set the start time for the waves at =200, so that the
waves will be in full effect by frame 1.

ol Light Y Col Paint TexFace Shadeless

Mo hist Env Shad A 1,000 b

Figure 1.31 A base material for the water

Figure 1.32 Camera and lights setup

4.

¥ nodifiers

Figure 1.33
The modifier stack

Everything else to be done for the ocean surface effect from here on involves
adding textures and texture effects. First, add an Empty object at the center of
the plane. Snap the cursor to the plane by pressing Shift+S and selecting Cursor
To Selected. Add the empty by pressing the spacebar and choosing Add > Empty,
and then press Alt+R to clear the rotation of the empty (this is not necessary if
you add the empty in top view). Create the first texture for your ocean surface
material and map it by using the Empty object. Make the texture a soft noise
Clouds texture with settings as in Figure 1.34 and name it Displacement. Map it
to Nor and Disp with the values shown in Figure 1.35, and set the Disp value in
the texture to 0.3. This will add one more level of displacement waves to make
the movement of the surface even more uneven. Scale the Empty up a factor of 3
by pressing the S key and 3. Run a test render and make sure your surface looks
something like Figure 1.36. If not, back up a bit and figure out where yours is
different.

N
N

STOOL TVYANID HLIA SOISAHd ONIMVI

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® §

Figure 1.34 Displacement texture

¥ Teure

¥ tdap Input

Mar Czp i Ref Spec m

Hard Rayhir Alpha Emit TransLu Disp

[swncn | neg | o ra]

Mor Ref

Fram Cuspli

Figure 1.35 Texture mapping settings for the Displacement texture

Figure 1.36 Test render

5. These texture-based waves will be animated by keying the movement of the empty.
Key two points for the empty and set the empty’s Ipos as shown in Figure 1.37.
Select the curves, and choose Curve > Extend Mode > Extrapolation in the header
menu to make steady slopes. The empty should move along X and Y axes only,
and be sure to keep the slopes gradual so that the empty doesn’t move too fast.

6. Make a texture to represent the small wavelets on the surface of the water, and call
it Small-waves. This texture will be a hard noise texture, as shown in Figure 1.38.
The mapping values for the texture are shown in Figure 1.39. Note that Size is
set to 10.0 for all dimensions, to make these wavelets small. The Map To value
is Nor. Change the Nor value in the Map To panel to 3.0. When you take a test
render, you should see something like Figure 1.40. Once again, the placement of
the lights will make a lot of difference in exactly how your render turns out.
Experiment a bit with this.

If you find yourself having difficulty getting things to look as I have them, study
the lighting setup in the corresponding file ocean.blend on the CD.

Mdarker Curve [

Figure 1.37 Ipos for animating the empty’s movement

N
-

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®m &

| coor | sonnose |

Figure 1.38 Small-waves texture

Haurd

- Colorband

Figure 1.39 Small-waves texture mapping

Figure 1.40 Test render

For the foam on the waves, use the same texture as you used for the displacement.
Do this by selecting channel 0 (the top channel) and pressing the Copy To Clip-
board button (the left-hand button of the two highlighted buttons in Figure 1.41).
Then select channel 5 (the sixth one down, as shown in the figure) and press the
Copy From Clipboard button. Map this texture to color, and make sure the R, G,
and B values are turned to white. A test render yields something like Figure 1.42.

Fanels

¥ Tesdurs

Digplacems
Small=vave

Digplacams

v Map Input

Dhject Ob-Empty
Stick Win Mar Red

o e

E
g

2
a!

Figure 1.41 Using the Displacement texture as a color map

Cmir

Ref

Spec

Amb

Rayhiir Alpha

ey

Emit

TransLu

Dizp

w
-

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®m ¥

Figure 1.42 Test render

Following the same procedure as step 7, copy the Displacement texture from
channel 5 to channel 6. With channel 6 selected, go into the texture buttons. This
time, you will create a separate texture by pressing the 3 highlighted in Figure 1.43
to make this texture a single- user texture. The 3 represents the number of “users”
of the texture, which in this case means the number of channels that the texture
is associated with. Clicking this button separates the texture you are working
with from the texture associated with the other channels, creating a new, identi-
cal texture. You can edit this texture now without affecting the other channels.
Rename this texture Crests and adjust the brightness, contrast, and colorband as
shown in Figure 1.44. Map this with the Empty object also, but select Emit as
the Map To value. Set DVar to about 0.359, as shown in Figure 1.45. This tex-
ture channel will give a faked translucency to higher points of the textured dis-
placement.

¥ Tedue

QT

Displacement
Small=wavas

Displacement Figure 1.43
e Press the button displaying the number
of users to make a single-user copy of

the texture.

hdat

Displacement

e s
Lamp
Brush

Displacement

Alpha

Default m Soft noise Hard naise

Figure 1.44 Crests texture

Cmir | Ref | Spac

Rayblic | alpha Emit

 sinci | Neo |_Noace)

Figure 1.45 (rests texture mapping

w
w

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW m §

9. Select channel 4 in the Texture tab of the Material buttons and click Add New
to add a new texture. Name this texture Stencil and set its values as shown in
Figure 1.46. Select Stencil in the Map To tab. This will prevent the foam and
crest textures from matching the displacement too perfectly. A test render should
look like Figure 1.47.

Tesdurs

Displacament
Small=waves

Slancil

Displacement
Crasts

¥ colors

Figure 1.46 Stencil texture

Figure 1.47 Test render

10.

1.

Key the movement for the small waves as shown in Figure 1.48. Note that this is
a Material Ipo and that the index of the Ipo to the right of the drop-down must
match the channel of the texture, counting from top to bottom and beginning
at 0. The second channel down, therefore, is channel 1. This wraps up the water
itself. If you like, render out a few seconds of animation to see how the move-
ment looks. You might want to do this without oversampling by deselecting the
OSA button and at a small size, such as 25 percent, to make it quicker.

Figure 1.48 Keying the offset for channel 1

When you’re satisfied with the water, set the modifiers on the plane not to dis-
play in the 3D view mode, as shown in Figure 1.49, so that the plane appears
perfectly flat. Snap the cursor to the plane again, go into top view, and add a
torus by pressing spacebar and choosing Add > Mesh > Torus. The default set-
tings and size are just fine as they are. Add a white and a red material to the
object, as shown in Figure 1.50, to make a simple life ring.

Figure 1.49 Modifiers set to display only when rendered

w
(V]

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®H &

12.

Figure 1.50 A lifering

In Object mode, move the torus up slightly, as shown in Figure 1.51. With the
torus selected, Shift-select the plane and enter Edit mode with Tab. Select three
vertices in the plane in places that correspond to points on the ring, as shown in
Figure 1.52. Press Ctrl+P to make the vertex parent. Set the modifiers on the
plane to display in the 3D view again and preview the animation by pressing
Alt+A. The life ring should follow the motion of the displaced surface, floating
gently on the waves.

elect Object

Figure 1.51 The life ring’s basis floating position

13.

Figure 1.52 Three vertices selected for vertex parenting

Run another test render. This time you should see something like Figure 1.53.
The water and the ring look okay individually, but the point where they meet is
not convincing at all. The line is too abrupt, and there is no sign that the ring is
having any effect on the water. Water should deform slightly at the points where
it touches an object, as a result of surface tension.

Figure 1.53 Test render of the life ring

w
~N

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® §

14.

Add another texture in channel 2 called Tube. The Tube texture will be a Sphere
Blend type texture. You will also need to add an extra index to the colorband by
clicking Add. Make the new color black with alpha 0 and arrange the colorband
as shown in Figure 1.54. Set the Map Input value to Object and type Torus in
the field, as shown in Figure 1.55. This will make this texture follow the move-
ment of the life ring object. Also, adjust the size values in the Map Input tab to
0.50 in all dimensions. In the Map To tab, select color and RayMir. Push the R,
G, and B values up to make white. Setting the texture to map to RayMir will
enable ray mirroring on the surface of the water, but only in the area directly
around the life ring. Using ray tracing will slow down your renders, so you can
disable this if you want to speed things up, but it looks good. To enable the ray
mirroring, be sure to select Ray Mirror in the Mirror Transp tab, but leave its
RayMir slider value at 0.00.

-4
Ia

Displacement

Small-wavas
Tube

Slencil
Displacement

¥ Eiend

[[ows]| e

Diay Sphere Halo

Figure 1.54 The Tube texture

¥ dapin Pt

o T

i

E3E
<

i
-

Figure 1.55 The Tube texture Map Input tab

15.

Finally, create the displacement texture for the surface tension on the life ring.
Duplicate the Tube texture and place the copy in texture channel 3 by using the
Copy To and Copy From Clipboard buttons as you did previously. In the Tex-
ture buttons, click the 2 next to the TE drop-down to make the texture a new
single-user texture, and rename the texture TubeDisp. Set the values as shown in
Figure 1.56. Set the mapping values as shown in Figure 1.57. The Map Input
values are the same as they were for Tube.

rdat

Small-wavas

¥ Giens

Fip 7

Diag Sphare Radial

Figure 1.56 The TubeDisp texture

¥ Tesure ¥ sdap Inpul

Figure 1.57 The TubeDisp texture mapping

w
1]

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® §

16.

To see what’s happening to the surface of the water, try a test render with the
torus placed on a separate layer, out of view. You should see results along the lines
of Figure 1.58. Placing the life ring back in the picture where it belongs will give
you a final rendered effect like that in Figure 1.59. Render out an animation to

see the effect in motion.

Figure 1.58 Surface tension displacement without the life ring

Figure 1.59 The full effect with surface tension and reflection

Faking a Cloth Flag by Using a Displacement Modifier

In Chapter 3, “Getting Flexible with Soft Bodies and Cloth,” you’ll see how to use soft

bodies and how to achieve convincing cloth effects. For animating a flag waving in the

wind, there is a simple approach that does not require any actual simulation, but rather

uses Blender’s displacement modifier. To create the effect, follow these steps:

1.

Model the flag and the flagpole. The flagpole can be a simple cylinder scaled
appropriately. The flag is a plane, scaled to the appropriate dimensions and sub-
divided to about the level shown in Figure 1.60. You can press the W key, select
Subdivide Multi, and set a factor of 45 to get a good level of subdivision. Acti-
vate a Subsurf modifier and click Set Smooth. Create materials for the pole and
flag and set the material settings for color and specularity to whatever you think
looks good.

Figure 1.60 The subdivided flag mesh

In the Texture panel of the Material buttons, click Add New to add a new mate-
rial. This will create a new texture in the topmost texture channel in that panel.
As I mentioned previously, this is channel 0.

Add an image texture with the logo image (logo.png) from the CD, as shown
in Figure 1.61. You need to UV-map this texture to the flag, or else the texture

will not behave correctly when the surface of the flag displaces. To do this,

access UV Face Select mode with the flag selected, select all faces by pressing the

A key, and then open a UV/Image Editor window and unwrap the flag by press-

ing the E key. Open the logo image in the UV/Image Editor and position the flag

and logo appropriately, as shown in Figure 1.62. Map the texture to the Col

value in Map To, and in Map Input make sure that UV is selected.

»
s

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® §

Mzt

bienaer_iago
blend-stencil
Larp woad-ripple

Brush

Y oimage

Usedlpha CalcAlpha Meghlpha

Z ©

Imag

| ciecure

|

Figure 1.61 The blender-logo texture

@~

(Clmisgooniyong %) (@) (4) £ 4[«) (a)

Figure 1.62 UV Mapping the blender-logo texture

3.

Create a vertex group for the flag mesh by clicking New in the VertexGroups
buttons, and name the vertex group PoleDamp. In a moment, you’ll use this ver-
tex group to determine the intensity of the displacement modifier that will pro-
duce the flag’s ripples. Because the flag should be fixed at the pole, the intensity
of the ripples will be zero at the pole. You can assign the vertex group weights by
hand in Edit mode, or you can do this by weight painting, as shown in Figure 1.63.
The part of the flag that meets the pole should be weighted 0, and most of the
flag should be weighted 1. The yellow and green transition area in the figure
indicates where the weight should be gradated.

5.

6.

Figure 1.63
Weighting the vertex group

Create the texture that will be used to displace the ripples in the flag. Select
channel 2 (the next channel down, below the channel with blender-logo) and
click Add New. Name the texture wood-ripple. This texture will not be used
directly on the material, but will be used to control a Displace modifier, so make
it inactive on the material by deselecting the channel as shown in Figure 1.64.
For the ripple pattern, select a Wood texture type and set the values shown in
Figure 1.65.

v

blander-la

B oo |

Figure 1.64
Deselect the second texture channel

The Displace modifier will be animated by means of an empty. Snap the cursor
to the Flag object and add the empty. Clear the rotation on the empty by press-
ing Alt+R and scale the empty up by a factor of 3.5, so that it looks as shown in
Figure 1.66.

Now it’s time to add the Displace modifier for the flag mesh in the Modifiers
tab, with the settings shown in Figure 1.67. For VGroup, type the name of the
vertex group you set up in step 3, and select Object from the texture coordinates
drop-down menu at the bottom of the panel. Type the name of the empty from
step S in the Ob field. Leave Midlevel at 0.5, and set the Strength at around 0.2.
You can see the effect of the modifier in the 3D window.

»
w

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®m §

Figure 1.65 The ripple texture

Figure 1.67 The Displace modifier

RingMolse

Hard nilse

¥ Testure
ple

7. The last thing that needs to be done is to add motion by animating the empty.
Add a LocRot keyframe at frame 0 with the empty at its original position by
pressing the I key. Advance 50 frames and translate the empty along its X axis to
about the edge of the flag (it doesn’t need to be perfect), and then add another
LocRot keyframe. Select the LocX Ipo in the Ipo Editor and change its Extend
mode to Extrapolation by choosing Curve > Extend Mode > Extrapolation in the
header menu. The Ipos should look as shown in Figure 1.68.

8. If you render a still now, it should look something like Figure 1.69. (As you can
see, 've added a sky map for the background here, as discussed previously in
this chapter.) Render a test animation to make sure that the level of displacement
is right and the speed looks as you want it. If you need to adjust the speed of the

flapping, adjust the LocX Ipo for the empty.

Figure 1.69 Flag with displacement texture

S
]

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW B &

Creating a Poseable Spring by Using an Array Modifier, Shape Keys, and PyDrivers

A recurring concept in the area of physical simulation is the behavior of springs. Springs
are designed to be flexible and to extend a certain distance relatively easily. As a spring
extends, internal forces build up that compel the spring to compress. Eventually (assum-
ing the extending force does not break the spring), the spring bounces back into a com-
pressed position. A spring has a natural point of equilibrium, and if it is pushed by an
external force in either direction out of this position, its internal forces will push back
and forth with decreasing energy until the spring returns to its position of equilibrium.
Many physical forces can be well described as behaving analogously to springs.

Several of Blender’s various simulators model something like spring behavior,
and later in the book I discuss how this results in the physical effects that you use in
your animations. But what about an actual spring? Aside from the issue of simulating
the internal forces of a spring, there is the question of how to model, rig, and deform
the 3D object itself. It is not entirely trivial to do this, and the approach I describe
takes advantage of a variety of useful features of Blender and shows how these can be
used together to achieve a simple and elegant solution for a rigged spring. First, I show
how to model the spring itself by using the Array modifier in conjunction with driven
shape keys (thanks to Blender user mexicoxico for his post on BlenderArtists.org, out-
lining this approach). Next, I'll show how a simple armature can be added that uses a
PyDriver to control the deformation of the spring in an intuitive way.

Later, in Chapter 3, this spring will also come in handy as a nice example of the
basic mechanics of soft bodies and one of the ways they can be used to control the
movements of non-soft- body objects.

Modeling the Spring Mesh

Begin in front view (NUM1). Make sure the cursor is exactly in the center. To do this,
first select the default cube, press Shift+S, and select Cursor To Selected. Then delete the
default cube, add a plane by choosing Add > Plane, and subdivide once, as in Figure 1.70.

Figure 1.70 Subdivided plane

Select the leftmost and lowermost vertices as in Figure 1.71 and delete them, to
result in a square exactly one Blender Unit high, as in Figure 1.72. In Edit mode, select
all by pressing the A key, and move the square 3 Blender Units in the positive direction
along the X axis (that is, to your right). You can do this by pressing the G key followed
by the X key, and holding Ctrl while you move the square. Looking at the situation
from top view (NUM?7), it will look like Figure 1.73. It’s important to do this in Edit
mode, so that the object center remains where it is.

Press the period key to toggle the rotation pivot to the 3D cursor (you can toggle
it back to the median point by pressing Shift+comma). In top view with all the vertices
selected, press the E key and select Region to extrude the face, followed by the R key to
rotate the extruded face. Press the Z key once to force rotation around the global Z axis,
and input the value =30 so that the extruded face rotates as in Figure 1.74.

Figure 1.71 Select and delete these vertices.

Figure 1.72 A one-BU-high square, in front view

S
]

STOOL TVYANID HLIA SOISAHd ONIMVI

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® §

Figure 1.73 Moving the square in Edit mode, top view

Figure 1.74 Extrude and rotate the face —30 degrees, top view.

Enter Face Select mode either by using the header menu or by pressing Ctrl+Tab+3.
Press Z to go into transparent view and select and delete the faces shown in Figure 1.75.

Figure 1.75 Delete the end faces.

In top view, enter Object mode and once again ensure that the cursor is on the
center of the object. Press the spacebar to add an empty. Select the mesh, and press
Ctrl+A to apply the current scale and rotation to the object, as in Figure 1.76.

Figure 1.76 Add an empty and apply the scale and rotation to
the mesh object.

Now things begin to get interesting. With the mesh selected, in Object mode, go
to the Modifiers panel in the Edit buttons and select an Array modifier. The Array
modifier creates a sequence of copies of the original object that can be manipulated in
various ways. One of the ways to manipulate the array is to use an object to determine
how the coordinates of each instance of the object in the array differs from the previ-
ous instance. To do this, deselect Relative Offset and instead select Object Offset. This
will make the offset between instances of the array dependent on a separate object. The
object to use for this is the empty, so fill in the Object Offset Ob field with the name of
the empty, which is Empty, as in Figure 1.77.

Constant Offsst Relative Offset

[Mee | Fiton

Figure 1.77 Array modifier

Select the empty in top view, rotate it by pressing the R key, and input the value
-30 degrees. Rotating in this way means that each subsequent instance in the array will
be offset from the previous instance by a —=30 degree rotation. At the moment, because
Count is set at 2 by default, there are only two instances in the array, so you should be
seeing something like Figure 1.78.

'S
©

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®m &

Oibject

Figure 1.78 Rotating the empty

Setting Up the Shape Keys

This offset will account for the shape of the spring around its central axis. However,

the spring also needs to be offset upward in the direction of the axis. Furthermore,

simply offsetting the mesh with the Array modifier will not result in an unbroken coil,

but in a lot of small chunks stair-stepping around the axis, which is not right for a

spring. In addition to this, the deformation of the spring along the Z axis must be

possible to animate.

In Blender, deformations that can be animated as increasing and decreasing lin-

early in intensity are easy to achieve with shape keys. To set up the necessary shape

keys, follow these steps:

1.

4.

By pressing the G key and then the Z key, and holding Ctrl to constrain the
movement to discrete increments, translate the empty exactly one Blender Unit
up along the Z axis. This will cause the second instance of the array-modified
mesh to offset upward along the Z axis also, as shown in Figure 1.79.

With the mesh object selected, go to the Shapes tab in the Edit buttons, and click
Add Shape Key. This creates the basis shape key. Click Add Shape Key one more
time to create a deform shape key called Key 1.

With Key 1 selected in the panel, enter Edit mode. The idea is to create a shape
key such that the end of one array instance meets the beginning of the next, cre-
ating an unbroken coil. To do this, it is necessary to select only the vertices
shown in Figure 1.80, and translate them directly upward along the Z axis one
Blender Unit (hold Ctrl while translating, to constrain the movement), as shown
in Figure 1.81.

In the Modifiers tab, toggle Merge on in the Array modifier panel, select Set
Smooth on the mesh, and add a Subsurf modifier set to Levels: 2 and Render
Levels: 3. As you can see in Figure 1.82, the spring is taking shape.

Figure 1.79 Translating the empty one BU up along the Z axis offsets the array.

Figure 1.80 These vertices will be edited to create the shape key.

Figure 1.81

Translate the vertices straight up to meet
the bottom vertices of the array-modified
instance.

%]
ey

STOOL TVYANID HLIA SOISAHd ONIMVI

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®

Figure 1.82 Adding a Subsurf modifier

5.

6.

7.

The shape will be driven by the location of the empty. To set up the shape key
driver, open an Ipo Editor window with the mesh selected and choose Shape
from the header drop-down list. Press Ctrl+LMB to create an Ipo curve, and
then again to add another vertex on the Ipo, along the lines of Figure 1.83. It
doesn’t really matter where the vertices are located; you’ll be adjusting them
manually in a moment.

Figure 1.83 Placing vertices on the Ipo

Press the N key to bring up the Transform Properties dialog box in the Ipo Edi-
tor. Click Add Driver and type Empty in the OB field. In the drop-downs to the
right of this field, select Object and LocZ. In Edit mode, select the control points
on the curve one by one and make sure that they are set at Vertex X: 0, Vertex
Y: 0, and at Vertex X: 1, Vertex Y: 1, as shown in Figure 1.84.

Tab out of Edit mode, and from the header menu choose Curve > Extend Mode >
Extrapolation. This results in the Ipo becoming a straight diagonal line.

8. Go back to the Array modifier on the mesh. Set Count to 250. Your spring is now
fully formed, and you can control its degree of extension by translating the empty
along the Z axis, as shown in Figure 1.85. The most natural range is to have
the empty between the 0.1 and 1 points on the Z axis. You can see and set the

Transform Properties for the empty in the 3D viewport by pressing the N key.

Figure 1.84 Ipo transform properties

X ¥ Transfom Fropetias

EE i

AR AR A AR AL

B EED EEE

SRRRRTRRRRRERRRRRLL

Figure 1.85
The extension of the spring is controlled
by translating the empty.

(Y]
w

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®m §

Rigging the Spring

Although it is now possible to control the position of the spring by using a combina-
tion of object transforms on the spring itself and on the empty that is driving its defor-
mation, doing so would be unnecessarily complicated. Intuitively, for a spring like this,
it is desirable to simply have two control points, one at each end of the spring, that can
be used to pose the spring directly. This can be done by using a simple armature to con-
trol the position and rotation of the objects, and to drive the movement of the empty
by means of a PyDriver.

To create the armature, once again go into Object mode and ensure that the cur-
sor is snapped to the location of the original mesh’s center, which should also be the
location of the empty. Press the spacebar to add an armature. Select X-Ray in the Edit-
ing Options area in the Armature tab of the Edit buttons. Press the G key and the Z key
and hold Ctrl to move the tip of the bone directly up the Z axis 25 Blender Units, as
shown in Figure 1.86. Extrude by pressing the E key and draw the tip of the second
bone another 25 Blender Units up along the Z axis, as in Figure 1.87. With this bone
selected, press Alt+P and select Clear Parent.

-—
-
==
-
-

Figure 1.86 Adjusting the size of the first bone

Go into Pose mode. Select the top bone, whose name is Bone.001, and then
Shift-select the bottom bone, called Bone. Press Ctrl+I to add an inverse kinematics (IK)
constraint to the selected bone. The bottom bone, Bone, should turn yellow.

Now bone-parent both the spring mesh object and the empty to Bone. To
do this, select the mesh, Shift-select the empty, and then select the armature,
which will appear in Pose mode. Select Bone, press Ctrl+P, and select Make Parent
To Bone.

To make the armature’s appearance more intuitive, it will be useful to create a
custom bone shape to represent the ends of the springs. I used an extruded 12-vertex

circle for this.

Figure 1.87 The second bone

With the armature selected in Pose mode, go into the Armature Bones tab in the
Edit buttons and type Circle into the OB field for each bone. Then go to the Draw tab
in the Object buttons and select the Wire draw type.

You’ll want to adjust the size of the Circle object so it displays sensibly. When
you change the size or rotation of the object, press Ctrl+A to apply the scale and rota-
tion, to have the object display with the new values in the armature. Your rig should
look something like Figure 1.88.

AR AR AARARARGAY

—
—_—
—
—
-

Figure 1.88
The rig so far

(Y]
(V]

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ® &

The Circle object itself you can hide in the Outliner by toggling the visible, selec-
table, and renderable icons off, as in Figure 1.89.

Figure 1.89 Controlling visibility, selectability, and renderability in
the Outliner

Setting Up a PyDriver

You can now pose the armature, and the spring and empty will rotate around to follow
the endpoints of the armature as they ought to. However, the spring does not extend to
follow the endpoints, because the empty is not being translated along its Z axis.

You might consider using a stretch bone in some way, but this is likely to add
undesirable side effects of distorting the mesh. Using some combination of copy loca-
tion constraints with very small or precisely adjusted influence values may also be pos-
sible, but it is not practical in this case. The most simple and straightforward approach
is to use a PyDriver to drive the Z location of the empty as a small fraction of the vec-
tor distance between the two bones’ roots.

If you have some experience with Python scripting in Blender, you will find
PyDrivers straightforward. If not, it is probably best to study some Python program-
ming and familiarize yourself with the basics of Python scripting in Blender before div-
ing into PyDrivers. The remainder of this section assumes that you have some basic
knowledge of this. Unfortunately, it’s beyond the scope of this book to go into depth on
this background information. The information I present here won’t be crucial to any-
thing else in the book, though, so feel free to skip it if you don’t feel ready for it.

Unlike with ordinary scripts, you are limited to a single line of code. Also,
PyDrivers can use a shorthand form that is not available for ordinary scripting to
access several common data types. These shorthand forms are as follows:

o ob(‘name’) to access the object named name
° me(‘name’) to access the mesh named name
° ma(‘name’) to access the material named name

In this case, the values we’re interested in are found in the Armature object, so
the first of these shorthand forms will come in handy to access that object.

An object of class Armature has a Pose object associated with it, accessed by the
.getPose() method, which in turn has a set of PoseBones corresponding to the bones of
the armature. The .bones attribute of the Pose is a dictionary keyed on the name of the

bone, which returns a PoseBone object. These PoseBone objects, intuitively, represent
the bones of the armature when it is being posed. The location of the PoseBone is the
location of the bone in Pose mode. Furthermore, each PoseBone has an attribute head
and a tail, and each has a set of coordinates associated with it. The location of the base
of the bone is the head, so this is the value of interest here.

Python in Blender has access to a math utilities library that enables it to do vec-
tor math simply, so finding the distance between two 3D points is simply a matter of
subtracting one from the other.

Finally, because the rest position of the spring has the empty at location 0.1 BU
and the distance between the bones at 25 BUs, and the empty’s location should change
proportionately to the distance between the bones, it is possible to calculate the posi-
tion of the empty as the distance between the two bones, divided by 250.

Putting all that together yields a single line of code that will serve as the PyDriver
for the local Z axis location of the empty:

(ob('Armature').getPose().bones['Bone.001'].head-

ob('Armature').getPose().bones['Bone'].head).length/250

Setting up the driver is simple. Select the empty and select Object from the
header drop-down in the Ipo Editor. Select LocZ from the list of Ipos along the right
side of the Ipo Editor window. Press N to show the Transform Properties dialog box.
Click Add Driver, and then click the Python snake icon to the left of the OB field. In
the new field that appears, type the preceding code in a single unbroken line, as shown
in Figure 1.90.

Figure 1.90 PyDriver

After this is done, the spring is fully rigged. You can play around with posing it
by moving either end of the armature and seeing how it behaves, as in Figure 1.91. In
Chapter 3, you’ll revisit this rigged spring to see how a simple soft body simulation can
be used to control the spring’s behavior.

(Y]
~N

STOOL TVIANTD HLIA SOISAHd ONIMVI |

CHAPTER 1: RE-CREATING THE WORLD: AN OVERVIEW ®H §

PyDrivers

Blender uses the Python language for scripting, and a great deal of additional functionality can be
implemented by using Python scripts. Another way that Blender uses Python is in PyDrivers, which
enable an Ipo curve to be driven by any value that can be expressed in a single line of Python code
with access to the Blender Python applications programming interface (API). This means that rather
than having a one-to-one correspondence with the value of another Ipo, as ordinary Ipo drivers do,
an Ipo can be driven by much more sophisticated operations on multiple input values. In the example
in the text, an Ipo is driven by an operation on the vector distance between two bones.

It is beyond the scope of this book to give a thorough introduction to Python or to object-oriented
programming (O0P), but people who have some experience with the ideas behind 00P will find
PyDrivers fairly easy to pick up after a bit of studying the Blender Python API.

Accessing an object’s attributes or calling class methods on an object is done by appending the name
of the attribute or the method to the end of the name of the object, separated by a period. In the
case of calling a method, the method call ends with a set of parentheses enclosing the arguments.
If there are no arguments, as in the case of most getter methods, the parentheses are empty.

Figure 1.91 The finished, poseable spring

In this chapter, you saw several interesting ways to use general-purpose tools in
Blender to represent various physical phenomena. Some of the tools you may have
already been familiar with, but I hope that you’ve had your imagination stimulated to
think of new and creative ways to use these tools to achieve the effects you want. In the
next chapter, you’ll look at Blender’s powerful new particle system, and the discussion
of physical simulation will begin in earnest.

