
3

 chapter 1

 Introduction: How UNIX Gave
Birth to Linux, and a New
Software Paradigm

 Lawyers and businesspeople who are fi rst learning about open source
tend to think of it as an entirely new paradigm, or a disruptive technol-

ogy. But open source is easier to understand within its historical context. It
is true that open source software licensing is the biggest sea change in tech-
nology licensing since software licensing began. But the more things change,
the more they stay the same. This chapter outlines the historical background
for the free software movement and the later open source movement, and
explains why and how they arose.

 In the Beginning Was the Word, and
the Word Was UNIX

 The term “ open source ” refers primarily to a type of outbound licensing
paradigm, but also to a method of software development. Although media
attention to both of these aspects of open source has burgeoned in the
last decade, both the licensing paradigm and the development method
have been in use ever since modern software was developed.

 Although there are many software applications and utilities licensed
under open source schemes, the “ killer app ” of open source is the Linux

c01.indd 3c01.indd 3 11/16/07 1:57:10 PM11/16/07 1:57:10 PM

CO
PYRIG

HTED
 M

ATERIA
L

4 chapter 1 introduction: how unix gave birth to linux

operating system. 1 Understanding the free software movement of the
1990s without understanding UNIX is a little like trying to understand
Martin Luther without knowing who the pope is — you may learn the
doctrines of Protestantism, but they will seem arbitrary if you do not know
their historical context. The philosophical tenets of open source can seem
 arbitrary out of context, and many lawyers and businesspeople struggle
with them for this reason: Those who grew up in the age of Windows do
not know much about an operating system, like UNIX, that they have
never used.

 The company that came up with the fi rst modern computer operating
system was not a software company but a telephone company. UNIX
was developed by AT & T Bell Laboratories back when AT & T was a
much - feared corporate monopoly. As a result, the company was operat-
ing under a consent decree from the Department of Justice that required
AT & T not to engage in commercial activities outside the fi eld of tele-
phone service. AT & T had enormous research and development resources,
and boasted among its ranks some of the best and brightest computer
engineers of the day. AT & T set its engineers loose to develop technology
within the corporate context of a not - for - profi t subsidiary called AT & T
Bell Laboratories.

 In the 1970s, two scientists at Bell Labs, Ken Thompson and Dennis
Ritchie, not only came up with UNIX, but invented a computer pro-
gramming language in which to write it. That language was called C.
The origin of the name UNIX may be apocryphal, but it was allegedly a
pun on the word “ eunuchs ” ; it is a quasi - acronym for Uniplexed Infor-
mation and Computing System, and a successor to the earlier Multiplexed
Information and Computing Service (MULTICS), but with more focused
functionality. UNIX and C were tremendously innovative. UNIX was
written to operate the computers of the day: large mainframes whose use
was limited to huge corporations, such as banks and utilities, government,
and academia. C was an extraordinarily fl exible and powerful program-
ming language. Many of the languages today, C�� and Java, for instance,
are heavily based on the syntax of C.

1This is more completely called the GNU/Linux operating system, a distinction
to be explained later in this chapter.

c01.indd 4c01.indd 4 11/16/07 1:57:10 PM11/16/07 1:57:10 PM

 Because of the consent decree, AT & T was not allowed to exploit
UNIX as a commercial product. So it licensed copies of UNIX to
 universities and others all over the world for one dollar. It soon became
common practice for computer scientists to share their improvements and
innovations for UNIX freely — no one tried to exploit the modifi cations,
because there was no serious market for the product. Computers were still
in use by relatively few organizations, all software was custom - written
and had to be confi gured and installed individually, and there was no
consumer computer industry.

 Eventually, the consent decree was lifted. By this time, UNIX was in
wide use by academics who were accustomed to treating it like a scholarly
research project, not as a commercial product. UNIX was being used in at
least two ways: to run computers to support other academic projects, such
as statistical analyses and scientifi c calculations, and as a device for teaching
students the nuts and bolts of operating system design. After the decree was
lifted, AT & T started granting commercial licenses for UNIX, under original
equipment manufacture (OEM) – type commercial licensing terms. 2 Once
this happened, the many UNIX licensees no longer shared their modifi ca-
tions, which caused what is called forking: the development of many incom-
patible versions. Each vendor — IBM, Sun, and even Microsoft — developed
its own “ fl avor ” of UNIX licensed in object code form only.

 The free software movement was a direct reaction to the privatiza-
tion of UNIX. Computer scientists, particularly academics, thought oper-
ating systems needed to be freely available in source code form. Thus,
 “ free software ” refers to free availability of source code, not price. (As
the Free Software Foundation pithily says, “ Think free speech, not free
beer. ”) This free availability was important because an operating system
is a fundamental tool, and if it works improperly, slowly, or badly, all
users suffer. Thus, free software became a political movement, based on a
normative idea that the forking and inaccessibility of UNIX should never
happen again. It is no accident that the computer science luminaries who

2This term is not used consistently in the industry; here I use it to mean a source
code license allowing the OEM to make modifi cations but to distribute object
code only, where the source code is designated a trade secret.

in the beginning was the word 5

c01.indd 5c01.indd 5 11/16/07 1:57:10 PM11/16/07 1:57:10 PM

6 chapter 1 introduction: how unix gave birth to linux

initiated the movement were men who started their careers using UNIX
and struggled with the problems that its privatization engendered.

 Along Comes Linux

 Now, a few factors dovetailed to make Linux the vehicle of the free
software movement.

 In the late 1980s, computer science was undergoing a revolution.
UNIX was no longer the most common operating system. This period
saw the rise and fall of the fi rst microcomputers: the Apple II, the TRS - 80,
and, of course, the personal computer. UNIX did not run on those
boxes. There was no UNIX - like operating system for the new, cheap,
Intel - type processors that were beginning to dominate the desktop mar-
ket. These processors ran on DOS and later the Windows operating sys-
tem, both products of Microsoft.

 Several people tried to write smaller, more nimble operating systems
that would be useful alternatives to UNIX. Such systems had to be com-
patible with UNIX programs, but free of the intellectual property rights of
AT & T. Most notably, systems emerged based on the then - current UNIX
interface specifi cation. UNIX compatibility was essential so UNIX appli-
cations could run on those systems. One was a scholarly project called MINIX,
written by Andrew Tanenbaum to help him teach operating systems and
software at Vrije University in Amsterdam; it fi lled the academic void that the
privatization of UNIX left behind. The other, to become far more famous,
was Linux, the fi rst version of which was written by a teenage computer
programmer in Helsinki named Linus Torvalds. Torvalds released the fi rst
version of Linux in 1991.

 Meanwhile, the GNU Project had developed into a major project to
build a free alternative to UNIX. (GNU is a recursive acronym for “ GNU ’ s
not UNIX. ”) By the early 1990s, this project had been in operation for
many years. The mission of the GNU Project was to build an entire operat-
ing system, whereas Linux was only a kernel. An operating system includes
not only a kernel, but development tools like compilers, debuggers, text edi-
tors, user interfaces, and administrative tools. The GNU Project was strug-
gling with kernel development, and Linux arrived in time to provide the
fi nal piece of the puzzle. In tandem with the GNU Project, Richard Stallman
of the GNU Project pioneered free software by developing the GNU

c01.indd 6c01.indd 6 11/16/07 1:57:11 PM11/16/07 1:57:11 PM

 General Public License. The Free Software Foundation (FSF), a not - for -
 profi t organization that supports the GNU Project, became the publisher and
steward of that license. The FSF convinced Torvalds to make his kernel
available under free software licensing terms, and the rest is history. The
GNU/Linux operating system is what most people call Linux.

 Finally, the last element of serendipity occurred: the economic reces-
sion of the early 2000s. A nosediving technology industry was desperate
to cut costs and keep innovation alive, and lots of programmers were out of
work and looking for something to do to keep embarrassing gaps out
of their resumes. This was the perfect environment for open source to
blossom. Blossom it did. Statistics on adoption of Linux are hard to come
by, but most agree that it is gaining exponentially in popularity, particu-
larly outside the United States.

 Now, What Is Open Source?

 To understand open source, you must understand what source code is and
why access to it is important. Most computer users today use desktop
computers with Windows operating systems. When you run a program on
your desktop computer, such as a word processing program or an e - mail
program, the fi le on your computer that contains the program is called,
for instance, myprogram.exe. The “ exe ” stands for “ executable. ” The fi le
you are accessing is an executable fi le, or a fi le containing instructions that
the computer can read and perform.

 Programmers do not write executable code, they write source code.
Programmers and corporate lawyers are a lot alike, in that they rarely
write anything from scratch. When we write a contract, we rarely sit
down to a blank page to begin. We use a model or form agreement, and
add provisions from our libraries of provisions, which we have developed
or collected over the years. Programmers work in exactly this way. If a
programmer were writing a word processing program, he or she would
need to include a way to save a fi le to a disk drive. But it would not be
effi cient — or even advisable — for the programmer to write it from scratch.
Rather, he or she would use a prewritten component, or “ library rou-
tine, ” to accomplish this. By using a prewritten routine, programmers
make their coding more effi cient, and they have more assurance that the

now, what is open source? 7

c01.indd 7c01.indd 7 11/16/07 1:57:11 PM11/16/07 1:57:11 PM

8 chapter 1 introduction: how unix gave birth to linux

code will be free of bugs and interoperable with the platform on which
the program will run.

 Lawyers writing contracts reuse provisions informally and idiosyn-
cratically, but in programming, this process is highly formal. If you are
writing a program and want to use a routine to write a fi le to disk, for
example, the development language you are using will include a library
routine called something like “ writefi le. ” That routine will need some
information, such as where the fi le will be written, the name of the fi le,
the information to be written, and how many bytes will be required.
The documentation for the “ writefi le ” routine will specify what infor-
mation needs to be communicated to the routine when it is executed.
Lawyers should think of this as similar to conforming an arbitration
provision in a contract with the rest of the agreement: Defi nitions of
 “ parties ” and “ business days ” should not confl ict. When writing con-
tracts, lawyers do this by making global changes to the text. Those
who have never written a contract might consider instead the example
of writing a slew of thank - you letters. The letter might say: “ Dear _______.
Thank you for the lovely _______. ” Part of the letter is the same every
time, and other parts vary. The parts that are the same are dictated by
custom and manners.

 In programming, this reuse is done formally and systematically. Pro-
grammers write their program in a text processor (or development envi-
ronment). The code looks like cryptic English, and comprises a series of
instructions telling the computer ’ s processor what to do. Any skilled
 programmer can read this code, which is called source code. But the
computer cannot execute this code as it is written. Once programmers
have all the code written, and have included references to the library
routines they need in that code, they run a large, complex program called
a compiler. The compiler translates the source code into object code — a
set of binary instructions that the computer ’ s processor can execute. A
related program, called a linker, then links the resulting object code to the
referenced library routines, making sure information will be passed prop-
erly between the components, and produces a program that can be exe-
cuted by the computer: an “ executable ” fi le, which usually contains many
object code fi les. It is important to understand that programmers do not
necessarily need access to the source code for the library routines. They
only need to know what information to send to the routines and what

c01.indd 8c01.indd 8 11/16/07 1:57:11 PM11/16/07 1:57:11 PM

information they will send back. The routines are usually “ black boxes ”
to programmers: They do not need to know what is inside the box, just
what goes in and what comes out.

 To use another example that lawyers and businesspeople may recognize,
a compiler is a lot like a redlining program. It runs in “ batch ” mode; in
other words, once you enter some information (such as identifying the cur-
rent and prior version and how you want the deletions to look) and press
 “ go, ” the program runs without user interaction. The end product is a fi le
that you do not edit. If you discover a mistake in the redline, you must go
back to fi x the document, then rerun the redlining program. Similarly, if
there is a bug in a computer program, you do not edit the object or exe-
cutable fi le. You must correct the source code and recompile the program.
This is why access to source code is crucial. Without source code, you can-
not fi x errors, and must rely on the program vendor to do so.

 And This Is Just the Beginning

 Open source, then, is not exactly new. Many of its tenets and practices
are almost as old as the software industry. However, open source has
come to be a focus of legal discussion as a result of having transformed
from a set of informal industry practices to a political movement, with
attendant intellectual property licensing practices.

 Open source software licensing is a very complex topic. Some legal issues
related to it are quite thorny and undecided. Also, formulating best practices in
open source development requires familiarity with a complex set of facts
and industry practices as well as the political, business, and legal principles at
work. Best practices in this area change quickly and sometimes unexpect-
edly. This book, therefore, is not intended to give you all the answers.
Instead, it is intended to provide you with the background and tools to
understand this area of law and develop your own conclusions and best
practices, to better leverage opportunities and manage risk.

and this is just the beginning 9

c01.indd 9c01.indd 9 11/16/07 1:57:11 PM11/16/07 1:57:11 PM

c01.indd 10c01.indd 10 11/16/07 1:57:12 PM11/16/07 1:57:12 PM

