
1
A SURVEY OF COMPUTATIONAL
APPROACHES TO RECONSTRUCT AND
PARTITION BIOLOGICAL NETWORKS

Lipi Acharya, Thair Judeh, and Dongxiao Zhu

“Everything is deeply intertwingled”
Theodor Holm Nelson

1.1 INTRODUCTION

The above quote by Theodor Holm Nelson, the pioneer of information technology,
states a deep interconnectedness among the myriad topics of this world. The
biological systems are no exceptions, which comprise of a complex web of biomolec-
ular interactions and regulation processes. In particular, the field of computational
systems biology aims to arrive at a theory that reveals complicated interaction pat-
terns in the living organisms, which result in various biological phenomenon. Recog-
nition of such patterns can provide insights into the biomolecular activities, which
pose several challenges to biology and genetics. However, complexity of biologi-
cal systems and often an insufficient amount of data used to capture these activities
make a reliable inference of the underlying network topology as well as characteri-
zation of various patterns underlying these topologies, very difficult. As a result, two
problems that have received a considerable amount of attention among researchers
are (1) reverse engineering of biological networks from genome-wide measurements
and (2) inference of functional units in large biological networks (Fig 1.1).
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2 A SURVEY OF COMPUTATIONAL APPROACHES

FIGURE 1.1 Approaches addressing two fundamental problems in computational systems
biology (1) reconstruction of biological networks from two complementary forms of data
resources, gene expression data and gene sets and (2) partitioning of large biological networks
to extract functional units. Two classes of problems in network partitioning are graph clustering
and community detection.

Rapid advances in high-throughput technologies have brought about a revolution
in our understanding of biomolecular interaction mechanisms. A reliable inference
of these mechanisms directly relates to the measurements used in the inference pro-
cedure. High throughput molecular profiling technologies, such as microarrays and
second-generation sequencing, have enabled a systematic study of biomolecular ac-
tivities by generating an enormous amount of genome-wide measurements, which
continue to accumulate in numerous databases. Indeed, simultaneous profiling of
expression levels of tens of thousands of genes allows for large-scale quantitative
experiments. This has resulted in substantial interest among researchers in the devel-
opment of novel algorithms to reliably infer the underlying network topology using
gene expression data. However, gaining biological insights from large-scale gene
expression data is very challenging due to the curse of dimensionality. Correspond-
ingly, a number of computational and experimental methods have been developed to
arrange genes in various groups or clusters, on the basis of certain similarity crite-
rion. Thus, an initial characterization of large-scale gene expression data as well as
conclusions derived from biological experiments result in the identification of several
smaller components comprising of genes sharing similar biological properties. We
refer to these components as gene sets. Availability of effective computational and
experimental strategies have led to the emergence of gene sets as a completely new
form of data for the reverse engineering of gene regulatory relationships. Gene set
based approaches have gained more attention for their inherent ability to incorporate
higher-order interaction mechanisms as opposed to individual genes.
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There has been a sequence of computational efforts addressing the problem of
network reconstruction from gene expression data and gene sets. Gaussian graphi-
cal models (GGMs) [1–3], probabilistic Boolean networks (PBNs) [4–7], Bayesian
networks (BNs) [8,9], differential equation based [10,11] and mutual information net-
works such as relevance networks (RNs) [12,13], ARACNE [14], CLR [15], MRNET
[16] are viable approaches capitalizing on the use of gene expression data, whereas
collaborative graph model (cGraph) [17], frequency method (FM) [18], and network
inference from cooccurrences (NICO) [19,20] are suitable for the reverse engineering
of biological networks from gene sets.

After a biological network is reconstructed, it may be too broad or abstract of
a representation for a particular biological process of interest. For example, given
a specific signal transduction, only a part of the underlying network is activated as
opposed to the entire network. A finer level of detail is needed. Furthermore, these
parts may represent the functional units of a biological network. Thus, partitioning
a biological network into different clusters or communities is of paramount
importance.

Network partitioning is often associated with several challenges, which make the
problem NP-hard [21]. Finding the optimal partitions of a given network is only feasi-
ble for small networks. Most algorithms heuristically attempt to find a good partition-
ing based on some chosen criteria. Algorithms are often suited to a specific problem
domain. Two major classes of algorithms in network partitioning find their roots in
computer science and sociology, respectively [22]. To avoid confusion, we will refer
to the first class of algorithms as graph clustering algorithms and the second class of
algorithms as community detection algorithms. For graph clustering algorithms, the
relevant applications include very large-scale integration (VLSI) and distributing jobs
on a parallel machine. The most famous algorithm in this domain is the Kernighan–Lin
algorithm [23], which still finds use as a subroutine for various other algorithms. Other
graph clustering algorithms include techniques based on spectral clustering [24]. Orig-
inally community detection algorithms focused on social networks in sociology. They
now cover networks of interest to biologists, mathematicians, and physicists. Some
popular community detection algorithms include Girvan–Newman algorithm [25],
Newman’s eigenvector method [21,22], clique percolation algorithm [26], and In-
fomap [27]. Additional community detection algorithms include methods based on
spin models [28,29], mixture models [30], and label propagation [31].

Intuitively, reconstruction and partitioning of biological networks appear to be two
completely opposite problems in that the former leads to an increase, whereas the lat-
ter results in a decrease of the dimension of a given structure. In fact, these problems
are closely related and one leads to the foundation of the other. For instance, presence
of hypothetical gene regulatory relationships in a reconstructed network provides a
motivation for the detection of biologically meaningful functional modules of the
network. On the other hand, prior to apply gene set based network reconstruction al-
gorithms, a computational or experimental analysis is first needed to derive gene sets.
In this chapter, we present a number of computational approaches to reconstruct bio-
logical networks from genome-wide measurements, and to partition large biological
networks into subnetworks. We begin with an overview of directed and undirected
networks, which naturally arise in biological systems. Next, we discuss about two
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complementary forms of genome-wide data, gene expression data and gene sets, both
of which can be accommodated by existing network reconstruction algorithms. We
describe the principal aspects of various approaches to reconstruct biological networks
using gene expression data and gene sets, and discuss the pros and cons associated
with each of them. Finally, we present some popular clustering and community al-
gorithms used in network partitioning. The material on network reconstruction and
partition is largely based on Refs. [2,3,6–8,13,17–20,32] and [21–23,25–27,33–36],
respectively.

1.2 BIOLOGICAL NETWORKS

A network is a graph G(V, E) defined in terms of a set of vertices V and a set of
edges E. In case of biological networks, a vertex v ∈ V is either a gene or protein
encoded by an organism, and an edge e ∈ E joining two vertices v1, v2 ∈ V in the
network represents biological properties connecting v1 and v2. A biological network
can be directed or undirected depending on the biological relationship that used to
join the pairs of vertices in the network. Both directed and undirected networks occur
naturally in biological systems. Inference of these networks is a major challenge in
systems biology. We briefly review two kinds of biological networks in the following
sections.

1.2.1 Directed Networks

In directed networks, each edge is identified as an ordered pair of vertices. Accord-
ing to the Central Dogma of Molecular Biology, genetic information is encoded
in double-stranded DNA. The information stored in DNA is transferred to single-
stranded messenger RNA (mRNA) to direct protein synthesis [42]. Signal transduc-
tion is the primary mean to control the passage of biological information from DNA to
mRNA with mRNA directing the synthesis of proteins. A signal transduction event is
usually triggered by the binding of external ligands (e.g., cytokine and chemokine) to
the transmembrane receptors. This binding results in a sequential activation of signal
molecules, such as cytoplasmic protein kinase and nuclear transcription factors (TFs),
to lead to a biological end-point function [42]. A signaling pathway is composed of
a web of gene regulatory wiring in response to different extracellular stimulus. Thus,
signaling pathways can be viewed as directed networks containing all genes (or pro-
teins) of an organism as vertices. A directed edge represents the flow of information
from one gene to another gene.

1.2.2 Undirected Networks

Undirected networks differ from directed networks in that the edges in such networks
are undirected. In other words, an undirected network can be viewed as a directed
network by considering an undirected pair of vertices (v1, v2) as two directed pairs
(v1, v2) and (v2, v1). Some biological networks are better suited for an undirected
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representation. Protein–protein interaction (PPI) network is an undirected network,
where each protein is considered as a vertex and the physical interaction between a
pair of proteins is represented as an edge [43].

The past decade has witnessed a significant progress in the computational inference
of biological networks. A variety of approaches in the form of network models and
novel algorithms have been proposed to understand the structure of biological net-
works at both global and local level. While the grand challenge in a global approach is
to provide an integrated view of the underlying biomolecular interaction mechanisms,
a local approach focuses on identifying fundamental domains representing functional
units of a biological network.

Both directed and undirected network models have been developed to reliably infer
the biomolecular activities at a global level. As discussed above, directed networks
represent an abstraction of gene regulatory mechanisms, while the physical interac-
tions of genes are suitably modeled as undirected networks. Focus has also been on the
computational inference of biomolecular activities by accommodating genome-wide
data in diverse formats. In particular, gene set based approaches have gained attention
in recent bioinformatics analysis [44,45]. Availability of a wide range of experimen-
tal and computational methods have identified coherent gene set compendiums [46].
Sophisticated tools now exist to statistically verify the biological significance of a par-
ticular gene set of interest [46–48]. An emerging trend in this field is to reconstruct
signaling pathways by inferring the order of genes in gene sets [19,20]. There are sev-
eral unique features associated with gene set based network inference approaches. In
particular, such approaches do not rely on gene expression data for the reconstruction
of underlying network.

The algorithms to understand biomolecular activities at the level of subnetworks
have evolved over time. Community detection algorithms, in particular, originated
with hierarchical partitioning algorithms that include the Girvan–Newman algorithm.
Since these algorithms tend to produce a dendrogram as their final result, it is necessary
to be able to rank the different partitions represented by the dendrogram. Modularity
was introduced by Newman and Girvan to address this issue. Many methods have
resulted with modularity at the core. More recently, though, it has been shown that
modularity suffers from some drawbacks. While there have been some attempts to
address these issues, newer methods continued to emerge such as Infomap. Research
has also expanded to incorporate different types of biological networks and commu-
nities. Initially, only undirected and unweighted networks were the focus of study.
Methods are now capable of dealing with both directed and weighted networks. More-
over, previous studies only concentrated on distinct communities that did not allow
overlap. With the advent of the clique percolation method and other similar methods,
overlapping communities are becoming increasingly popular. The aforementioned
approaches have been used to identify the structural organization of a variety of bi-
ological networks including metabolic networks, PPI networks, and protein domain
networks. Such networks have a power–law degree distribution and the quantitative
signature of scale-free networks [49]. PPI networks, in particular, have been the sub-
ject of intense study in both bioinformatics and biology as protein interactions are
fundamental for cellular processes [50].
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FIGURE 1.2 (a) Example of a directed network. The figure shows Escherichia coli gold stan-
dard network from the DREAM3 Network Challenges [37–39]. (b) Example of an undirected
network. The figure shows an in silico gold standard network from the DREAM2 Network
Challenges [40,41].

A common problem associated with the computational inference of a biological
network is to assess the performance of the approach used in the inference procedure.
It is quite assess as the structure of the true underlying biological network is unknown.
As a result, one relies on biologically plausible simulated networks and data generated
from such networks. A variety of in silico benchmark directed and undirected net-
works are provided by the dialogue for reverse engineering assessments and methods
(DREAM) initiative to systematically evaluate the performance of reverse engineer-
ing methods, for example Refs. [37–41]. Figures 1.2 and 1.7 illustrate gold standard
directed network, undirected network, and a network with community structure from
the in silico network challenges in DREAM initiative.

1.3 GENOME-WIDE MEASUREMENTS

In this section, we present an overview of two complementary forms of data resources
(Fig. 1.3), both of which have been utilized by the existing network reconstruction
algorithms. The first resource is gene expression data, which is represented as matrix
of gene expression levels. The second data resource is a gene set compendium. Each
gene set in a compendium stands for a set of genes and the corresponding gene
expression levels may or may not be available.

1.3.1 Gene Expression Data

Gene expression data is the most common form of data used in the computational
inference of biological networks. It is represented as a matrix of numerical values,
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FIGURE 1.3 Two complementary forms of data accommodated by the existing network
reconstruction algorithms. (a) Gene expression data generated from high-throughput platforms,
for example, microarray. (b) Gene sets often resulted from explorative analysis of large-scale
gene expression data, for example, cluster analysis.

where each row corresponds to a gene, each column represents an experiment and
each entry in the matrix stands for gene expression level. Gene expression profil-
ing enables the measurement of expression levels of thousands of genes simulta-
neously and thus allows for a systematic study of biomolecular interaction mecha-
nisms on genome scale. In the experimental procedure for gene expression profiling
using microarray, typically a glass slide is spotted with oligonucleotides that cor-
respond to specific gene coding regions. Purified RNA is labeled and hybridized
to the slide. After washing, gene expression data is obtained by laser scanning. A
wide range of microarray platforms have been developed to accomplish the goal of
gene expression profiling. The measurements can be obtained either from conven-
tional hybridization-based microarrays [51–53] or contemporary deep sequencing
experiments [54,55]. Affymetrix GeneChip (www.affymetrix.com), Agilent Microar-
ray (www.genomics.agilent.com), and Illumina BeadArray (www.illumina.com) are
representative microarray platforms. Gene-expression data are accessible from sev-
eral databases, for example, National Center for Biological Technology (NCBI) Gene
Expression Omnibus (GEO) [56] and the European Molecular Biology Lab (EMBL)
ArrayExpress [57].

1.3.2 Gene Sets

Gene sets are defined as sets of genes sharing biological similarities. Gene sets
provide a rich source of data to infer underlying gene regulatory mechanisms as they
are indicative of genes participating in the same biological process. It is impractical
to collect a large number of samples from high-throughput platforms to accurately
reflect the activities of thousands of genes. This poses challenges in gaining deep
biological insights from genome-wide gene expression data. Consequently,
experimental and computational methods are adopted to reduce the dimension of
the space of variables [58]. Such characterizations lead to the discovery of clusters
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of genes or gene sets, consisting of genes which share similar biological functions.
Some of the recent gene set based bioinformatics analyses include gene set enrich-
ment analysis [46–48] and gene set based classification [44,45]. The major advantage
of working with gene sets is their ability to naturally incorporate higher-order in-
teraction patterns. In comparison to gene expression data, gene sets are more robust
to noise and facilitate data integration from multiple sources. Computational infer-
ence of signaling pathways from gene sets, without assuming the availability of the
corresponding gene expression levels, is an emerging area of research [17–20].

1.4 RECONSTRUCTION OF BIOLOGICAL NETWORKS

In this section, we describe some existing approaches to reconstruct directed and
undirected biological networks from gene expression data and gene sets. To recon-
struct directed networks from gene expression data, we present Boolean network,
probabilistic Boolean network, and Bayesian network models. We discuss cGraph,
frequency method and NICO approaches for network reconstruction using gene sets
(Fig 1.4). Next, we present relevance networks and graphical Gaussian models for the
reconstruction of undirected biological networks from gene expression data (Fig 1.5).

FIGURE 1.4 (a) Representation of inputs and Boolean data in the frequency method from
Ref. [18]. (b) Network inference from PAK pathway [67] using NICO, in the presence of a
prior known end points in each path [68]. (c) The building block of cGraph from Ref. [17].
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The review of models in case of directed and undirected networks is largely based on
Refs. [6–8,17–20] and [2,3,13,32], respectively.

Although the aforementioned approaches for the reconstruction of directed
networks have been developed for specific type of genome-wide measurements, they
can be unified in case of binary discrete data. For instance, prior to infer a Boolean
network, gene expression data is first discretized, for example, by assuming binary
labels for each gene. Many Bayesian network approaches also assume the avail-
ability of gene expression data in a discretized form. On the other hand, a gene set
compendium naturally corresponds to a binary discrete data set and is obtained by
considering the presence or absence of genes in a gene set.

1.4.1 Reconstruction of Directed Networks

1.4.1.1 Boolean Networks
Boolean networks [4–6], present a simple model to reconstruct biological networks
from gene expression data. In the model, a Boolean variable is associated with the state
of a gene (ON or OFF). As a result, gene expression data is first discretized using
binary labels. Boolean networks represent directed graphs, where gene regulatory
relationships are inferred using boolean functions (AND, OR, NOT, NOR, NAND).

Mathematically, a Boolean network G(V, F ) is defined by a set of nodes V =
{x1, . . . , xn} with each node representing a gene, and a set of logical Boolean functions
F = {f1, . . . , fn} defining transition rules. We write xi = 1 to denote that the ith gene
is ON or expressed, whereas xi = 0 means that it is OFF or not expressed. Boolean
function fi updates the state of xi at time t + 1 using the binary states of other nodes
at time t. States of all the genes are updated in a synchronous manner based on the
transition rules associated with them, and this process is repeated.

Considering the complicated dynamics of biological networks, Boolean networks
are inherently simple models which have been developed to study these dynam-
ics. This is achieved by assigning Boolean states to each gene and employing
Boolean functions to model rule-based dependencies between genes. By assuming
only Boolean states for a gene, emphasis is given to the qualitative behavior of the
network rather than quantitative information. The use of Boolean functions in mod-
eling gene regulatory mechanisms leads to computational tractability even for a large
network, which is often an issue associated with network reconstruction algorithms.
Many biological phenomena, for example, cellular state dynamics, stability, and hys-
teresis, naturally fit into the framework of Boolean network models [59]. However, a
major disadvantage of Boolean networks is their deterministic nature, resulting from
a single Boolean function associated with a node. Moreover, the assumption of bi-
nary states for each gene may correspond to an oversimplification of gene regulatory
mechanisms. Thus, Boolean networks are not a choice when the gene expression
levels vary in a smooth continuous manner rather than two extreme levels, that is,
“very high expression” and “very low expression.” The transition rules in Boolean
network models are derived from gene expression data. As gene expression data are
noisy and often contain a larger number of genes than the number of samples, the
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inferred rules may not be reliable. This further contributes to an inaccurate inference
of gene regulatory relationships.

1.4.1.2 Probabilistic Boolean Networks
To overcome the pitfalls associated with Boolean networks, probabilistic Boolean
networks (PBNs) were introduced in Ref. [7] as their probabilistic generalization.
PBNs extend Boolean networks by allowing for more than one possible Boolean
function corresponding to each node, and offer a more flexible and enhanced network
modeling framework.

In the underlying model presented in Ref. [7], every gene xi is associated with a
set of l(i) functions

Fi =
{

f
(i)
1 , . . . , f

(i)
l(i)

}
, (1.1)

where each f
(i)
j corresponds to a possible Boolean function determining the value of

xi, i = 1, . . . , n. Clearly, Boolean networks follow as a particular case when l(i) = 1,
for each i = 1, . . . , n. The kth realization of PBN at a given time is defined in terms
of vector functions belonging to F1 × . . . × Fn as

fk =
(
f

(1)
k1

, . . . , f
(n)
kn

)
, (1.2)

where 1 ≤ ki ≤ l(i), f
(i)
ki

∈ Fi and i = 1, . . . , n. For a given f = (f (1), . . . , f (n)) ∈
F1 × . . . × Fn, the probability that jth function f

(i)
j from Fi is employed in predicting

the value of xi, is given by

c
(i)
j = Pr{f (i) = f

(i)
j } =

∑
k:f (i)

ki
=f

(i)
j

Pr{f = fk}, (1.3)

where j = 1, . . . , l(i) and
∑l(i)

j=1 c
(i)
j = 1. The basic building block of a PBN is pre-

sented in Figure 1.6. We refer to Ref. [7] for an extended study on PBNs.
It is clear that PBNs offer a more flexible setting to describe the transition rules

in comparison to Boolean networks. This flexibility is achieved by associating a set
of Boolean functions with each node, as opposed to a single Boolean function. In
addition to inferring the rule-based dependencies as in the case of Boolean networks,
PBNs also model for uncertainties by utilizing the probabilistic setting of Markov
chains. By assigning multiple Boolean functions to a node, the risk associated with
an inaccurate inference of a single Boolean function from gene expression data is
greatly reduced. The design of PBNs facilitates the incorporation of prior knowledge.
Although the complexity in case of PBNs increases from Boolean networks, PBNs
are often associated with a manageable computational load. However, this is achieved
at the cost of oversimplifying gene regulation mechanisms. As in the case of Boolean
networks, PBNs may not be suitable to model gene regulations from smooth and
continuous gene expression data. Discretization of such data sets may result in a
significant amount of information loss.
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FIGURE 1.6 Network reconstruction from gene expression data. (a) Example of a Boolean
network with three genes from Ref. [60]. The figure displays the network as a graph, Boolean
rules for state transitions and a table with all input and output states. (b) The basic building
block of a probabilistic Boolean network from Ref. [7]. (c) A Bayesian network consisting of
four nodes.

1.4.1.3 Bayesian Networks
Bayesian networks [8,9] are graphical models which represent probabilistic relation-
ships between nodes. The structure of BNs embeds conditional dependencies and
independencies, and efficiently encodes the joint probability distribution of all the
nodes in the network. The relationships between nodes are modeled by a directed
acyclic graph (DAG) in which vertices correspond to variables and directed edges
between vertices represent their dependencies.

A BN is defined as a pair (G, �), where G represents a DAG whose nodes
X1, X2, . . . , Xn are random variables, and � denotes the set of parameters that en-
code for each node in the network its conditional probability distribution (CPD), given
that its parents are in the DAG. Thus, � comprises of the parameters

θxi|Pa(xi) = Pr{xi|Pa(xi)}, (1.4)

for each realization xi of Xi conditioned on the set of parents Pa(xi) of xi in G.
The joint probability of all the variables is expressed as a product of conditional
probabilities

Pr{x1, . . . , xn} =
n∏

i=1

Pr{xi|Pa(xi)}. (1.5)
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The problem of learning a BN is to determine the BN structure B that best fits a
given data set D. The fitting of a BN structure is measured by employing a scoring
function. For instance, Bayesian scoring is used to find the optimal BN structure
which maximizes the posterior probability distribution

P(B|D) = P(B, D)

P(D)
. (1.6)

Here, we define two Bayesian score functions Bayesian Dirichlet (BD) score from
Ref. [61] and K2 score presented in Ref. [62].

BD score is defined as [61]

P(B, D) = P(B)
n∏

i=1

qi∏
j=1

�(N ′
ij)

�(Nij + N ′
ij)

ri∏
k=1

�(Nijk + N ′
ijk)

�(N ′
ijk)

, (1.7)

where ri represents the number of states of xi, qi = ∏
xj∈Pa(xi) rj , Nijk is the number

of times xi is in kth state and members in Pa(xi) are in jth state, Nij = ∑ri
k=1 Nijk,

Nik = ∑qi

j=1 Nijk, N ′
ijk are the parameters of Dirichlet prior distribution, P(B) stands

for the prior probability of the structure B and �() represents the Gamma function.

The K2 score is given by [62]

P(B, D) = P(B)
n∏

i=1

qi∏
j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏
k=1

Nijk! (1.8)

We refer to Ref. [61,62] for further readings on Bayesian score functions.
BNs present an appealing probabilistic modeling approach to learn causal rela-

tionships and have been found to be useful for a significant number of applications.
They can be considered as the best approach available for reasoning under uncertainty
from noisy measurements, which prevent the over-fitting of data. The design of the
underlying model facilitates the incorporation of prior knowledge and allows for an
understanding of future events. However, a major disadvantage associated with BN
modeling is that it requires large computational efforts to learn the underlying network
structure. In many formulations learning a BN is an NP-hard problem, regardless of
data size [63]. The number of different structures for a BN with n nodes, is given by
the recursive formula

s(n) =
n∑

i=1

(−1)i+1
(

n

i

)
2i(n−i)s(n − i) = n2O(n)

(1.9)

[62,64]. As s(n) grows exponentially with n, learning the network structure by exhaus-
tively searching over the space of all possible structures is infeasible even when n is
small. Moreover, existence of equivalent networks presents obstacles in the inference
of an optimal structure. BNs are inherently static in nature with no directed cycles.
As a result, dynamic Bayesian networks (DBNs) have been developed to analyze
time series data, which further pose computational challenges in structure learning.
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Thus, a tractable inference via BNs relies on suboptimal heuristic search algorithms.
Some of the popular approaches include K2 [62] and MCMC [65], which have been
implemented in the Bayes Net Tool Box [66].

1.4.1.4 Collaborative Graph Model
As opposed to gene expression data, the collaborative graph or cGraph model [17]
utilizes gene sets to reconstruct the underlying network structure. It presents a simple
model by employing a directed weighted graph to infer gene regulatory mechanisms.

Let V denote the set of all distinct genes among gene sets. In the underlying model
for cGraph [17], the weight Wxy of an edge from a gene x to another gene y satisfies

0 ≤ Wxy ≤ 1 (1.10)

and ∑
y∈V,y /= x

Wxy = 1. (1.11)

Correspondingly, the weight matrix W can be interpreted as a transition probability
matrix used in the theory of Markov chains. For network reconstruction, cGraph uses
weighted counts of every pair of genes that appear among gene sets to approximate the
weights of edges. Weight Wxy can be interpreted as P(y|x), which is the probability
of randomly selecting a gene set S containing gene x followed by randomly choosing
y as a second gene in the set. Assuming that both, the gene set containing gene x and
y were chosen uniformly, weights are approximated as

Wxy = P̂(y|x) =
∑

S:{x,y}⊂S( 1
|S|−1 )∑

S:x∈S 1
. (1.12)

Overall, cGraph is an inherently simple model, where a weighted edge measures the
strength of a gene’s connection with other genes. It is easy to understand, achievable
at a manageable computational cost and appropriate for modeling pair wise relation-
ships. However, cGraph adds a weighted edge between every pair of genes that appear
together in some gene set and so the networks inferred by cGraph typically contain a
large number of false positives and many interpretable functional modules.

1.4.1.5 Frequency Method
The frequency method presented in Ref. [18] reconstructs a directed network from a
list of unordered gene sets. It estimates an ordering for each gene set by assuming

• tree structures in the paths corresponding to gene sets
• a prior availability of source and destination nodes in each gene set
• a prior availability of directed edges used to form a tree in each gene set, but

not the order in which these edges appear in the tree.
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Following the approach presented in Ref. [18], let us denote the set of source nodes,
target nodes, and the collection of all directed edges involved in the network by S,
T , and E, respectively. Each l ∈ S ∪ T ∪ E can be associated with a binary vector of
length N by considering xl(j) = 1, if l is involved with the jth gene set, where N is
the total number of gene sets. Let sj be the source and dj be the destination node in
the jth gene set. To estimate the order of genes in the jth gene set, FM identifies e∗
satisfying

e∗ = arg max
e∈E

λj(e), (1.13)

where the score λj(e) is defined as

λj(e) = xT
sj

xe − xT
dj

xe, (1.14)

for each e ∈ E with xe(j) = 1. Note that λj(e) determines whether e is closer to sj
than it is to dj . The edge e∗ is placed closest to sj . The edge corresponding to the next
largest score follows e∗. The procedure is repeated until all edges are in order [18].

FM is computationally efficient and leads to a unique solution of the network
inference problem. However, the model makes strong assumptions of the availability
of source and target genes in each gene set as well as directed edges involved in the
corresponding path. Considering the real-world scenarios, it is not practical to assume
the availability of such gene set compendiums. The underlying assumptions in FM
make it inherently deterministic in nature. Moreover, FM is subject to failure in the
presence of multiple paths between the same pair of genes.

1.4.1.6 EM-Based Inference from Gene Sets
We now describe a more general approach from Refs. [19,20] to network reconstruc-
tion from gene sets. It is termed as network inference from co-occurrences or NICO.
Developed under the expectation–maximization (EM) framework, NICO infers the
structure of the underlying network topology by assuming the order of genes in each
gene set as missing information.

In NICO [19,20], signaling pathways are viewed as a collection of T -independent
samples of first-order Markov chain, denoted as

Y = {
y(1), . . . , y(T )}. (1.15)

It is well known that Markov chain depends on an initial probability vector π and
a transition matrix A. NICO treats the unobserved permutations {τ(1), . . . , τ(T )} of
{y(1), . . . , y(T )} as hidden variables and computes the maximum-likelihood estimates
of the parameters π and A via an EM algorithm. The E-step estimates expected
permutations for each path conditioned on the current estimate of parameters, and the
M-step updates the parameter estimates.

Let x(m) denote a path with Nm elements. NICO models rm as a random permutation
matrix drawn uniformly from the collection �Nm of all permutations of Nm elements.
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In particular, the E-step computes the sufficient statistics

α
(m)
t′, t′′ = E

[
Nm∑
t=2

r
(m)
t,t′ r

(m)
t−1, t′′ |x(m), Â, π̂

]
=

∑
r∈�Nm

rt,t′rt−1, t′′P
[
x(m)|r, Â, π̂

]∑
r∈�Nm

P
[
x(m)|r, Â, π̂

]
(1.16)

and

r
(m)
1, t′ = E[

r
(m)
1,t′ |x(m), Â, π̂

] =
∑

r∈�Nm
r1, t′P

[
x(m)|r, Â, π̂

]∑
r∈�Nm

P
[
x(m)|r, Â, π̂

] , (1.17)

where P[x(m)|r, Â, π̂] is computed as

P
[
x(m)|r, Â, π̂

] = P
[
y(m)|τ, Â, π̂

] = π̂
y

(m)
τ1

Nm∏
t=2

Â
y

(m)
τt−1

y
(m)
τt

. (1.18)

The M-step updates the parameters using the closed form expressions

(Âi, j)new =
∑T

m=1
∑Nm

t′,t′′=1 α
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j∑|S|

j=1
∑T

m=1
∑Nm

t′,t′′=1 α
(m)
t′,t′′x

(m)
t′′,ix

(m)
t′,j

(1.19)

and

(π̂i)new =
∑T

m=1
∑Nm

t′=1 r
(m)
1,t′x

(m)
t′,i∑|S|

i=1
∑T

m=1
∑Nm

t′=1 r
(m)
1,t′x

(m)
t′,i

, (1.20)

where |S| is the total number of distinct genes among gene sets. We refer to Refs.
[19,20], for additional theoretical details.

NICO presents an appealing approach to reconstruct the most likely signaling
pathway from unordered gene sets. The mature EM framework provides a theoretical
foundation for NICO. It is well known that gene expression data are often noisy and
expensive. In order to infer the network topology, NICO purely relies on gene sets
and does not require the corresponding gene expression measurements. As opposed
to a single gene or a pair of genes, gene sets more naturally capture the higher-
order interactions. These advantages make NICO a unique approach to infer signaling
pathways directly from gene sets. However, NICO has a nontrivial computational
complexity. For large networks, the combinatorial nature of the E-step makes the
exact computation infeasible. Thus, an important sampling based approximation of
the E-step has been proposed [19,20]. Moreover, NICO assumes a linear arrangement
of genes in each gene set without any feedback loops and so it is not applicable in
real-world scenarios where signaling pathways are interconnected and regulated via
feedback loops.
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1.4.2 Reconstruction of Undirected Networks

1.4.2.1 Relevance Networks
Relevance networks [13] are based on measuring the strength of pairwise associations
among genes from gene expression data. The pairwise association is measured in terms
of Pearson’s correlation coefficient. Given two genes x and y, Pearson’s correlation
coefficient is defined as

ρ̂(x, y) =
∑N

i=1(ai − a)(bi − b)√∑N
i=1(ai − a)2

√∑N
i=1(bi − b)2

, (1.21)

where x = (a1, . . . , aN ) and y = (b1, . . . , bN ) represent the N-dimensional observa-
tions for x and y with means a and b, respectively. There also exists an information
theoretic version of RN’s, where correlation is replaced with mutual information (MI)
for each pair of genes. MI between x and y is defined as [12]

MI(x, y) = E(x) + E(y) − E(x, y), (1.22)

where E stands for the entropy of a gene expression pattern and is given by

E(x) = −
n∑

i=1

p(ai) log2(p(ai)). (1.23)

For further readings on RN’s, tools for their inference and comparison with other
mutual information network inference approaches, we refer to Refs. [12,69–71].

In order to detect truly coexpressed gene pairs in an ad-hoc way, the calculated cor-
relation values are compared with a predefined correlation cut-off value. If a calculated
correlation value exceeds the cut-off value, the corresponding genes are connected
by an undirected edge. We now present a more reliable two-stage approach from
Ref. [32], which simultaneously controls the statistical and biological significance of
the inferred network. We only consider the case of Pearson’s correlation, however,
the method can be extended to the case of Kendall correlation coefficient and partial
correlation coefficients [32]. Assuming a total of M genes, we simultaneously test
� = (

M
2

)
pairs of two-sided hypotheses

H0 : Sxi,xj ≤ cormin versus Hα : Sxi,xj > cormin, (1.24)

for each i, j = 1, . . . , M and i /= j. Here, S is the measure of strength of co-expression
(Pearson’s correlation in this case) between gene pairs and cormin is the minimum
acceptable strength of coexpression. The sample correlation coefficient Ŝ (ρ̂ in this
case) serves as a decision statistic to decide the pairwise dependency of two genes.
For large sample size N, the per comparison error rate (PCER) p-values for pairwise
correlation is computed as

pρ(xi,xj) = 2

(
1 − �

(
tanh−1 ρ̂(xi, xj)

(N − 3)−1/2

))
, (1.25)
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where � is the cumulative density function of a standard Gaussian random variable.
The above expression is derived from an asymptotic Gaussian approximations to
ρ̂(xi, xj). Note that the PCER p-value refers to the probability of type I error rate which
is incurred in hypothesis testing for one pair of gene at a time. To simultaneously test
a total of � hypotheses, the following FDR-based procedure is used. It guarantees
that FDR associated with hypotheses testing is not larger than α.

For a fixed FDR level α and cormin, the procedure consists of the following two
stages.

• In Stage I, the null hypothesis

H0 : Sxi,xj = 0 versus Hα : Sxi,xj /= 0 (1.26)

is tested at FDR level α. This employs the step-down procedure of Benjamini
and Hochberg [72].

• Let us assume a total of �1 gene pairs cross Stage I. In Stage II, asymptotic PCER
confidence intervals Iλ(α) are constructed for each value of S corresponding to
�1 pairs. These intervals are then converted into FDR confidence intervals using
the formula Iλ(α) → Iλ(�1α/�) [73]. For the case of Pearson’s correlation,
let z = tanh−1(ρ̂). Then the intervals Iλ(α), for �1 true Pearson’s correlation
coefficients ρ, are given by Ref. [32]

tanh

(
z − zα/2

(N − 3)1/2

)
≤ ρ ≤

(
z + zα/2

(N − 3)1/2

)
, (1.27)

where P(N(0, 1) > zα/2) = α/2. A gene pair is declared to be both statistically
and biologically significant if the corresponding FDR confidence interval and
the interval [−cormin, cormin] do not intersect.

RNs offer a simple and computationally efficient approach to infer undirected
biological networks. However, RNs only infer a possible functional relevancy between
gene pairs and not necessarily their direct association. A high correlation value may
result from an indirect association, for example, regulation of a pair of genes by
another gene. Thus, RNs are often dense with many interpretable functional modules.
Limitations of RNs have been studied in Refs. [69,71].

1.4.2.2 Graphical Gaussian Models
To overcome the shortcomings of RNs, Gaussian graphical models [1–3] were in-
troduced to measure the strength of direct pairwise associations. In GGMs, gene
associations are quantified in terms of partial correlations. Indeed, marginal correla-
tion measures a composite correlation between a pair of genes that includes the effects
of all other genes in the network, whereas partial correlation measures the strength
of direct correlation excluding the effects of all other genes.

In GGMs [1,2], it is assumed that data are drawn from a multivariate normal
distribution N(μ, ). The partial correlation matrix � is computed from the inverse



RECONSTRUCTION OF BIOLOGICAL NETWORKS 19

� = (ωij) = −1 of the covariance matrix as

πij = −ωij/
√

ωiiωjj. (1.28)

Calculation of partial correlation matrix is followed by statistical tests, which deter-
mine the strength of partial correlation computed for every pair of genes. Significantly
nonzero entries in the estimated partial correlation matrix are used to reconstruct the
underlying network.

However, the above method is applicable only if the sample size (N) is larger than
the number of genes (p) in the given data set, for otherwise the sample covariance
matrix cannot be inverted. To tackle the case of small N and large p, a shrinkage co-
variance estimator has been developed [3], which guarantees the positive definiteness
of the estimated covariance matrix and thus leads to its invertibility. The shrinkage
estimator ̂ is written as a convex combination of the following two estimators:

• unconstrained estimator ̂U of the covariance matrix, which often has a high
variance

• constrained estimator ̂C of the covariance matrix, which has a certain bias but
a low variance.

This is expressed as

̂ = (1 − λ)̂U + λ̂C, (1.29)

where λ ∈ [0 1] represents the shrinkage parameter. The Ledoit–Wolf lemma [74] is
used to estimate an optimal value of λ which minimizes the expected value of mean
square error. Let A = [aij] and B = [bij] denote empirical covariance and correlation
matrices, respectively. Then ̂ is given by [3]

̂ij =
{

aii, if i=j

b̂ij
√

aiiajj, otherwise
(1.30)

where

b̂ij =
{

1, if i=j

bij min(1, max(0, 1 − λ̂∗)), otherwise
(1.31)

and

λ̂∗ =
∑

i,j,i /=j V̂ar(bij)∑
i,j,i /=j b2

ij

. (1.32)

For the list of constrained estimators and computation of V̂ar(bij), we refer to
Ref. [3]. Overall, GGM is an appealing approach for the reverse engineering of undi-
rected biological networks. It is theoretically sound, easy to understand and compu-
tationally efficient. GGM is particularly suitable to tackle low throughput data, where
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the number of samples is much larger than the number of variables. For high through-
put molecular profiling data, the distribution-free shrinkage estimator guarantees to
estimate an invertible covariance matrix. However, an edge in a network reconstructed
via GGM only represents a possible functional relationship between corresponding
genes without any indication of gene regulatory mechanisms.

Reconstruction of biological networks is fundamental in understanding the origin
of various biological phenomenon. The computational approaches presented above
play a crucial role in achieving this goal. However, the complexity arising due to
a large number of variables and many hypothetical connections introduces further
challenges in gaining biological insights from a reconstructed network. It is neces-
sary to uncover the structural arrangement of a large biological network by identifying
tightly connected zones of the network representing functional modules. In the follow-
ing section, we present some popular network partitioning algorithms, which allow
us to infer the biomolecular mechanisms at the level of subnetworks.

1.5 PARTITIONING BIOLOGICAL NETWORKS

Often a reconstructed network is too broad of a representation for a specific biologi-
cal process. The partitioning of biological networks allows for the careful analysis of
hypothesized biological functional units. Users may choose to partition high fidelity
biological networks obtainable from a variety of sources such as the Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) database [75]. There is no universal definition
for partitions, clusters, and especially communities. However, in this chapter we de-
fine a partition as a subnetwork (subgraph) of the given network (graph) such that
(1) the internal connections of the partition from node to node are strong and (2) the
external connections between other partitions are weak.

There are two major classes of partitioning algorithms called graph clustering
algorithms and community detection algorithms [22]. Graph clustering algorithms
originated from computer science and other closely related fields. Community detec-
tion algorithms have their origin in sociology, which now encompass applications in
applied mathematics, physics, and biology.

For graph clustering algorithms, the number of clusters is a user-specified parame-
ter. A graph clustering algorithm must always return the specified number of clusters
regardless of whether the clusters are structurally meaningful in the underlying graph.
These algorithms were developed for specific applications, such as placing the parts
of an electronic circuit onto printed circuit cards or improving the paging properties
of programs [23]. For other applications such as finding the communities of a bio-
logical network, specifying a number of clusters beforehand may be arbitrary and
could result in an incorrect reflection of the underlying network topology. However,
many techniques found in graph clustering algorithms have been modified to fulfill the
needs of community detection algorithms rendering knowledge of graph clustering
algorithms to be quite useful.

Community detection algorithms assume that the network itself divides into par-
titions or communities. The goal of a researcher is to find these communities. If the
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given network does not have any communities, this result is quite acceptable and yields
valuable information about the network’s topology. Community detection algorithms
do not forcibly divide the network into partitions as opposed to graph clustering al-
gorithms. On the contrary, community detection algorithms treat the communities as
a network property similar to the degree distribution of a network.

The partitioning of biological networks is better served via community detection
algorithms. Since there are instances where community detection algorithms adopt
techniques from graph clustering algorithms, the study of graph clustering algorithms
in and of itself is quite fruitful. We will provide a brief overview of the Kernighan–
Lin algorithm [23] which is considered as one of the best clustering algorithms. The
remainder of this chapter will then focus on community detection algorithms.

1.5.1 Directed and Undirected Networks

Most algorithms for network partitioning take an undirected network as input. In
particular, the focus of community detection algorithms on undirected networks may
have originated from the nature of social networks, which depict relationships between
individuals that are by nature undirected. Often times, it is not trivial to extend an
algorithm to handle both directed and undirected networks [21]. Many users simply
ignore edge direction when using an undirected algorithm. However, vital information
is often lost when ignoring the direction of edges as in the case of signaling pathways
in biological systems. Ignoring edge direction causes the E. coli network to have six
communities as opposed to none as seen in Figure 1.7.

1.5.2 Partitioning Undirected Networks

There are many algorithms that take undirected networks as input. For the purposes
of this chapter, we will mainly focus on community detection algorithms. For graph
clustering algorithms, we will explore the well-known Kernighan–Lin algorithm [23].

FIGURE 1.7 The E. coli network from the DREAM Initiative [39]. (a) The E. coli network
is partitioned into six communities by ignoring edge direction. (b) The same E. coli network
does not divide into any communities when edge direction is used. The disparity between the
results is a strong indicator of the significance of edge direction. In both cases the appropriate
version of Infomap was run for 100,000 iterations with a seed number of 1.
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We will present the Girvan–Newman algorithm [25], Newman’s eigenvector method,
Infomap [27], and the clique percolation method [26].

To compare different algorithms, it is very helpful to have some gold standard
networks whose true community divisions are known. A variety of different bench-
marks are mentioned by Fortunato [21]. We choose a small gold standard network
as a benchmark to illustrate the results of the algorithms presented. In particular, we
select Zachary’s karate club [76] as illustrated in Figure 1.8. For a period of 2 years,
Zachary studied 34 karate club members. During this period, a disagreement arose
between the club’s instructor and the club’s administrator. The club’s instructor then
left taking approximately half of the original club members. Zachary constructed a
weighted network of their friendships, but we will use an unweighted network for
our algorithm illustrations. Many community algorithms often use Zachary’s network
as a gold standard where they illustrate how accurate their algorithms could predict
the eventual split of the club. Results for the Girvan–Newman algorithm, Newman’s
eigenvector method, Infomap, and the clique percolation method are presented in
Figures 1.8 and 1.9.

1.5.2.1 Kernighan–Lin Algorithm
The Kernighan–Lin algorithm [23] is a famous algorithm used for network clustering.
Developed in 1970, the Kernighan–Lin algorithm is still used often as a subroutine
for more complex algorithms. The Kernighan–Lin algorithm was initially developed
in order to partition electronic circuits on boards. Connections between these circuits
are expensive so minimizing the number of connections is key. More formally, the
Kernighan–Lin algorithm is a heuristic method that deals with the following combina-
torics problem: given a weighted graph G, divide the |V | vertices into k partitions no
larger than a user-specified size m such that the total weight of the edges connecting
the k partitions is minimized [23].

The major approach behind the algorithm is to divide the undirected graph G of
|V | = n1 + n2 vertices into two subgraphs X and Y , |X| = n1 and |Y | = n2. Let cij

be the cost from vertex i to vertex j. All cii equal zero (no self-loops are allowed in G)
and cij = cji. The goal is to minimize the cost C of the edges connecting subgraphs
X and Y , where for x ∈ X and y ∈ Y

C =
∑
X×Y

cxy. (1.33)

For each node x ∈ X, let

Dx =
∑
yεY

cxy −
∑
zεX

cxz (1.34)

be the difference between the intracluster costs between vertex x and all vertices y,
and the intercluster costs between vertex x and all other vertices in X. Dy is defined
in a similar manner. Let

g = Dx + Dy − 2cxy (1.35)
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FIGURE 1.9 The partitioning of Zachary’s karate club using CFinder [78]. There are one
5-community, three 4-communities, and three 3-communities. The 3-communities represent
the most nodes with the exception of nodes 10 and 12. It also inaccurately places most of the
opposing karate club members in a single community where the rival leaders represented by
nodes 34 and 1 are in the same community.

be the gain for swapping two nodes x and y between their respective clusters. Let X

and Y be the initial partitions of the graph G with |X| = n1, |Y | = n2, the number of
vertices |V | = n1 + n2 and n1 ≤ n2. The algorithm is as follows:

Algorithm 1.1

Kernighan–Lin Algorithm

Input: An undirected network G and initial guesses for
subnetworks X and Y.

Output: Two subnetworks X and Y such that cost C is minimized.
do {

Calculate D values for all xεX, yεY

Let X
′ = X, Y

′ = Y

For i = 1 to n1 {
Select xεX

′
and yεY

′
such that gi is maximized.

Let x′
i = x and y′

i = y.
Remove x from X

′
and y from Y

′
.

Update the D values of the remaining elements.
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}

Select k such that G =
k∑

i=1

gi is maximized.

if G 
 0
swap the 1 to k x

′
i’s and y

′
i’s between X and Y

} until G ≤ 0

The Kernighan–Lin algorithm has complexity O
(|V |2 log |V |). It should be noted

that the Kernighan–Lin algorithm is very sensitive to the initial guesses for the sub-
networks X and Y . A random choice for initialization may yield a poor partition. It
is often the case that a different algorithm provides an initial X and Y whereas the
Kernighan–Lin algorithm improves upon the given X and Y . From the standpoint
of biological networks, it may be highly unlikely to find a good guess for the ini-
tial partitions X and Y , especially if prior knowledge is lacking. Furthermore, the
Kernighan–Lin algorithm by its nature imposes a minimum number of clusters. If a
biological network does not possess any partitions, it should not be forced to have
artificial partitions. Nevertheless, the Kernighan–Lin algorithm provides inspiration
for a postprocessing method of communities introduced by Newman [22]. This post-
processing method can be used for different community algorithms as long as they
optimize a quality function F . Newman uses modularity as his quality function, which
will be introduced in Section 1.5.2.3.

Algorithm 1.2

Community Optimization

Input: An undirected network G and initial guesses for
subnetworks X and Y.

Output: Two subnetworks X and Y such that the quality
function F is maximized.

do {
For i = 1 to |V | {

Move the vertex v from X to Y or Y to X such that
the increase in F is maximized. If no such v exists,
then select v such that the decrease in F is
minimized.

Remove the vertex v from any further consideration.
Store the intermediate partitioning results of the graph

G into subnetworks Xi and Yi as Pi.
}
Select the partition Pi that maximizes the increase in F.
Let X = Xi and Y = Yi

} until F can no longer be improved.

1.5.2.2 Girvan–Newman Algorithm
The Girvan–Newman algorithm [25] is one of the most well-known algorithms
available for hierarchical clustering. These machine-learning algorithms are very
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popular and provide users with partitions of many different sizes. There are two
major flavors in hierarchical clustering algorithms: agglomerative clustering and
divisive clustering.

The Girvan–Newman algorithm [25] follows the spirit of divisive clustering al-
gorithms. The Girvan–Newman algorithm departs from previous approaches by fo-
cusing on edges that serve as “bridges” between different communities. These edges
have a high value for edge betweenness, which is an extension of vertex betweenness
initially proposed by Freeman [77]. The authors defined three versions of edge be-
tweenness: shortest-path betweenness, current-flow betweenness, and random-walk
betweenness.

Agglomerative clustering is a bottom-up approach. Each node starts in its own
cluster. Using a user-specified distance metric, the two most similar partitions are
joined. This process continues until all nodes end up in a single partition. Agglom-
erative clustering algorithms are strong at finding the core of different communities
but are weak in finding the outer layers of a community. Agglomerative clustering
has also been shown to produce incorrect results for networks whose communities
are known [33]. Divisive clustering algorithms, on the other hand, use a top-down
approach. Such algorithms begin with the entire network as their input and recursively
split the network into subnetworks. This process continues until every node is in its
own partition as seen in Figure 1.10.

The focus for this section will be shortest-path betweenness as it provides the
best combination of performance and accuracy [33]. In practice, it is also the most
frequently used form of edge betweenness. To calculate shortest-path betweenness,
all shortest paths between all pairs of vertices are calculated. For a given edge e, its
betweenness score is a measure of how many shortest-paths possess edge e as a link.
The authors provide a O

(|V ||E|) algorithm to calculate the shortest-path betweenness,
where |V | is the number of vertices and |E| is the number of edges [33]. Overall, the
Girvan–Newman algorithm has complexity O

(|V ||E|2). The algorithm is as follows:

FIGURE 1.10 A dendrogram typically created by a divisive algorithm. The circles at the
bottom represent the nodes of the graph. Using a top-down approach, the original graph is split
until each node belongs in its own partition. The resulting number of partitions depends on where
the dendrogram is cut . At the given cut line, there are two partitions colored white and black,
respectively. Determining the proper cut line for a dendrogram is an active area of research.
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Algorithm 1.3

Girvan–Newman Algorithm

Input: An undirected, unweighted network G.
Output: A hierarchy of different communities. The final number of

communities is determined by where the dendrogram is cut.
For all edges in the graph, compute the shortest-path betweenness

scores.
For i = 1 to |E| {

Remove the edge whose shortest-path betweenness score is
maximal.

Recompute the shortest-path betweenness scores for all edges
affected by the removal.

}

The most important step in the Girvan–Newman algorithm is to recalculate the
shortest-path betweenness scores. Once an edge is removed, the underlying network
topology changes and so do the shortest paths of the network. In some cases an edge
that had minimum shortest-path betweenness score in one iteration possesses the
maximum score the very next iteration. Figure 1.11 illustrates the Girvan–Newman
algorithm for a simple network.

The Girvan–Newman algorithm is very intuitive in that edges with a high edge-
betweenness score serve as connections between different communities. It returns a
varying number of communities based on where one cuts the dendrogram allowing for
a more detailed analysis. It focuses on the flow of information in a network as shortest
paths are one way to model the information flow of a network [21]. For biological
networks this allows a researcher to examine a number of hypothesized functional
biological units. There may be different biological insights by examining a larger
community and its subcommunities. However, it is often the case that a researcher
only seeks the best partitioning available among all candidate partitions. This leads to
a major drawback concerning the Girvan–Newman algorithm as identifying where to
cut the dendrogram to retrieve the final communities is an open question, especially if
the number of communities is not known a priori. To remedy this situation, the authors
introduced the concept of modularity, which will be discussed in more detail in Section
1.5.2.3. Another potential drawback associated with the Girvan–Newman algorithm
is the lack of overlapping communities. In the case of biological networks, the lack

FIGURE 1.11 (a) The original graph consisting of six nodes and two communities. The
central edge has the highest shortest-path betweenness score. (b) The network is divided into
two communities after removal of the central edge.
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of such a feature may be unreasonable as a gene may simultaneously participate in
many different biological processes.

1.5.2.3 Newman’s Eigenvector Method
In the preceding section, Newman and Girvan [33] introduced a new quality function
called modularity in which a quality function assigns a score to a partitioning of a graph
[21]. Whereas the Girvan–Newman algorithm used modularity to determine where
to cut the dendrogram, there are many methods that optimize modularity directly
including greedy techniques, simulated annealing, extremal optimization, and spectral
optimization [21].

A major driving force behind modularity is that random graphs do not possess
community structure [21]. Newman and Girvan proposed a model in which the orig-
inal edges of the graph are randomly moved, but the overall expected degree of each
node matches its degree in the original graph. In other words, modularity quantifies
the difference of the number of edges falling within communities and the expected
number of edges for an equivalent random network [22]. Modularity can be either
negative or positive. High positive values of modularity indicate the presence of com-
munities, and one can search for good divisions of a network by looking for partitions
that have a high value for modularity. There are various modifications and formulas
for modularity, but the focus for this section will be the modularity introduced by
Newman [22].

For Newman’s eigenvector method, Newman reformulates the problem by defin-
ing modularity in terms of the spectral attributes of the given graph. The eventual
algorithm is very similar to a classical graph clustering algorithm called Spectral Bi-
section [21]. Suppose the graph G contains n vertices. Given a particular bipartition
of the graph G, let si = 1 if vertex i belongs to the first community. If vertex i belongs
to the second community, then si = −1. Let Aij denote the elements of the adjacency
matrix of G. Normally, Aij is either 0 or 1, but it may vary for graphs where multiple
edges are present. Placing edges at random in the network yields a number of expected
edges kikj/2m between two vertices i and j, where ki and kj are the degrees of their
respective vertices. The number of undirected edges in the network is m = ∑

ij Aij/2.
The modularity Q is then defined as

Q = 1

4m

∑
ij

(
Aij − kikj

2m

)
sisj. (1.36)

As evident from Equation 1.36, a single term in the summation of modularity
equals zero if vertices i and j belong to different communities. The modularity Q can
be written in condensed form as

Q = 1

4m
sT B s, (1.37)
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where the column vector s has elements si. Here, B is a symmetric matrix called the
modularity matrix with entries equal to

Bij = Aij − kikj

2m
. (1.38)

The modularity matrix B has special properties akin to the graph Laplacian [22]. Each
row and column sums to zero yielding an automatic eigenvector of (1, 1, . . .) with
eigenvalue 0. Modularity can now be rewritten as

Q = 1

4m

n∑
i=1

(uT
i · s)2βi, (1.39)

where ui is a normalized eigenvector of B with eigenvalue βi. Let uM denote the
eigenvector with the largest eigenvalue βM . Modularity can thus be maximized by
choosing the values of s, where siε{−1, 1}, that maximize the dot product uT

M · s. This
occurs by setting si to 1 when the corresponding element uMi 
 0 and −1 otherwise.
Newman’s eigenvector method is as follows:

Algorithm 1.4

Newman’s Eigenvector Method

Input: An undirected network G.
Output: Two partitions of graph G such that the modularity Q is

maximized.
Find the eigenvector uM corresponding to the largest eigenvalue

βM of the modularity matrix B.
Let si = 1 if uMi


 0 and −1 otherwise.
Return two partitions X and Y. X consists of all nodes whose

corresponding si equal to 1. Y consists of all nodes whose
corresponding si equal to −1.

Additional communities can be found by recursively applying Algorithm 1.4 to the
discovered communities after a modification to Q [22]. Using the power method to
find uM , Newman’s eigenvector method has complexity O

(|V |2 log |V |), where |V | is
the number of vertices in the graph [21]. Newman’s eigenvector method excels in its
speed. Another useful property of Newman’s eigenvector method involves the values
of uM . The value |uMi | corresponds directly to the strength of node i’s membership in
its cluster. Newman’s eigenvector method also possesses a built-in stopping criterion.
For a given graph G, if there are no positive eigenvalues, then G is a community in and
of itself. Its major drawback is the same as spectral bisection where the algorithm gives
the best results for the initial bisection of the graph [21]. Another major drawback
involves the use of modularity as a quality function.

Fortunato [21] lists three major flaws for modularity. First, there are random graphs
that may have partitions with high modularity, which undermines the very concept
behind modularity. Second, modularity-based methods may suffer from a resolution
limit. In other words, meaningful communities that are small with respect to the overall
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graph may be subsumed by larger communities. Finally, it has been shown that there
exists an exponential number of partitions that have a high modularity, especially for
networks possessing a strong hierarchical structure as most real networks do. Finding
the global maximum may be computationally intractable.

1.5.2.4 Infomap
The inspiration behind Infomap [27] is to identify the partitions of a graph using as
little information as needed to provide a coarse-grain description of the graph. Infomap
uses a random walk to model information flow. A community is defined as a set of
nodes for which the random walker spends a considerable time traversing between
them. If the communities are well-defined, a random walker does not traverse between
different communities often. A two-level description for a partition M is used where
unique names are given to the communities within M, but individual node names
across different communities may be reused. It is akin to map design where states
have unique names but cities across different states may have the same name. The
names for the communities and nodes are generated using a Huffman code. A good
partitioning of the network thus consists of finding an optimal coding for the network.
The map equation simplifies the procedure by providing a theoretical limit of how
concisely a network may be described given a partitioning of the network. Using
the map equation, the actual codes for different partitions do not have to be derived
in order to choose the optimal among them. The objective becomes minimizing the
minimum description length (MDL) of an infinite walk on the network. In other words,
the MDL consists of the Shannon entropy of the random walk between communities
and within communities [21]. The map equation is as follows:

L(M) = qH(Q) +
m∑

i=1

piH(Pi). (1.40)

In the above equation, m is the number of communities. q is defined as

q =
m∑

i=1

qi, (1.41)

where each qi is the probability per step that the random walker exits the ith commu-
nity. H(Q) is the movement entropy between communities and is calculated as

H(Q) =
m∑

i=1

qi∑m
j=1 qj

log
qi∑m

j=1 qj

. (1.42)

The weight of the entropy of movements within the ith community, denoted by pi, is
defined as

pi = qi +
∑
αεi

pα. (1.43)
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Each pα for node α in the ith community is the ergodic node visit frequency, that
is, the average node visit frequencies for a random walk of infinite length. This is
done using the power method. The entropy of movements within the ith community
is calculated as

H(Pi) = qi

qi + ∑
βεi pβ

log
qi

qi + ∑
βεi pβ

+
∑
αεi

pα

qi + ∑
βεi pβ

log
pα

qi + ∑
βεi pβ

.

(1.44)

Algorithm 1.5

Infomap

Input: An undirected network G.
Output: A partition M such that Equation 1.40 is minimized.
Assign each node into its own module.
do {

Visit all of the modules in a random sequential order where at
each module i {
Combine module i to a neighboring module such that the

Equation 1.40 decreases the most.
If no such move exists, leave module i as is.

}
} until no move reduces Equation 1.40 any further.

Algorithm 1.5 is the core of Infomap version presented in [36]. There are two
further subroutines that improve upon the results of the main algorithm listed in [36].
The three routines run for a user-specified number of iterations. The result returned is
the best partition found among all of the iterations. It is important to note that while
modularity focuses on the pairwise relationships between nodes, Infomap focuses on
the flow of information within a network [21]. This underlying difference may often
cause modularity-based methods and Infomap to generate different partitions. As
Infomap uses a stochastic algorithm, it is not known how many iterations are needed
before a good partitioning is found.

1.5.2.5 Clique Percolation Method
The clique percolation method [26] is a community detection algorithm that allows
communities to share nodes. This feature is quite significant in the case of biological
networks as a node in such networks often participates in many different biological
processes. The inspiration behind the clique percolation method is that nodes within
a community are highly connected to one another such that they form a clique. A
clique is a subgraph in which any two nodes are connected by an edge. Between two
different communities, the edges are few.

The authors define a k-clique community as a union of all adjacent k-cliques [26].
A k-clique is a complete subgraph consisting of k nodes such that there exists an edge
between any two nodes in the subgraph. If two k-cliques share k − 1 nodes, they are
said to be adjacent. Thus, a k-clique community is the union of all adjacent k-cliques.
It is also important to define connected components as the final output consists of
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connected components. A graph is said to be connected if between any two vertices
there exists at least one path connecting them [21]. A connected component is a
maximal connected subgraph of a given graph [21]. A key aspect of the algorithm is
building an n × n clique–clique overlap matrix M, where n is the number of maximal
cliques. Each Mij in the matrix represents the number of nodes shared by maximal
clique i and maximal clique j. The algorithm is as follows:

Algorithm 1.6

Clique Percolation Method

Input: An undirected, unweighted network G and the size k of the
k-cliques to find.

Output: A set of k-cliques communities.
Find all of the maximal cliques of the graph G.
Build a n × n clique-clique overlap matrix M.
Set all off-diagonal entries of matrix M less than k − 1 to zero.
Set all diagonal entries of M less than k to zero.
Return the connected components remaining in the matrix M as the

k-clique communities.

The major attraction of the clique percolation method is its ability to find overlap-
ping communities. More importantly, the clique percolation method seems to possess
the quality of making a clear distinction between graphs with community structure
and random graphs [21]. A major drawback of the clique percolation method is that
not all graphs have all of their nodes participating in a k-clique community [21]. It is
often the case that leaf nodes are left out of communities. Another potential drawback
involves the choice of k. One may not know a priori the value of k which yields
meaningful structures, but the structure of the algorithm allows for finding multiple
k-clique communities using the clique–clique overlap matrix M rather easily. Fur-
thermore, finding the maximal cliques of a graph scales exponentially with the size
of the graph. While the complexity of finding maximal cliques is known, there are
additional factors involved for which the scalability of the clique percolation method
cannot be expressed in closed form [21].

1.5.3 Partitioning Directed Networks

Algorithms which can take directed networks as input are often extensions of their
undirected counterparts with additional criteria added to handle directed networks.
Among the algorithms mentioned in the preceding section for undirected networks,
Newman’s eigenvector method, Infomap, and the clique percolation method have
extensions allowing them to accept directed networks as input. Unfortunately, it is
not always the case that the directed version of an algorithm is as rigorously developed
as its undirected counterpart as will be seen below.

1.5.3.1 Newman’s Eigenvector Method
Modularity-based methods have proven to be some of the most popular community de-
tection algorithms. Most previous methods ignored edge direction when encountering
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a directed network. As seen in Figure 1.7, ignoring edge direction could lead to results
that diverge greatly from the potential solution. Leicht and Newman [79] attempted
to fill the gap for modularity-based algorithms by tweaking some key concepts for
Newman’s eigenvector method. Most of the notations used are the same as presented
in Section 1.5.2.3 except where noted otherwise. Leicht and Newman first begin by
modifying Equation 1.37 into

Q = 1

2m
sT B s, (1.45)

where s remains the column vector introduced in Section 1.5.2.3. The modularity
matrix B is tweaked to account for edge direction and is given by

Bij = Aij − kin
i kout

j

m
, (1.46)

where Aij is 1 in the presence of an edge from node j to node i and 0 otherwise. The
term kout

j is the out-degree or the number of edges leaving node j, kin
i is the in-degree

or the number of edges entering node i, and m is the total number of edges in the
adjacency matrix of the graph G.

The modularity matrix B as presented in Equation 1.46 is asymmetrical, which
may cause technical problems later on. To remedy this situation, the matrix B is
replaced in Equation 1.45 with the sum of B and its transpose ensuring symmetry.
Equation 1.45 now becomes

Q = 1

4m
sT (B + BT )s. (1.47)

The algorithm to partition the graph G is essentially the same as Algorithm 1.4
except that the modularity matrix B defined in Equation 1.38 has been replaced with
a symmetrical matrix B + BT , where the latter B is defined in Equation 1.46. An
advantage to this method is that essentially the underlying Newman’s eigenvector
method can be used unchanged except for some minor tweaks to account for edge
direction. However, the given definition of modularity to incorporate edge direction is
fundamentally flawed. Kim et al. [80] illustrated the shortcoming of the new definition
for modularity as seen in Figure 1.12.

FIGURE 1.12 The two networks illustrate the problem with the directed version of modu-
larity introduced by Leicht and Newman [79]. The in-degrees and out-degrees for nodes X and
X′ are the same. The same scenario holds for Y and Y ′. The result is that the directed version
of modularity is unable to distinguish between the two given networks [80].
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FIGURE 1.13 Rosvall and Bergstrom compared the performance of modularity and the map
equation for the network illustrated above. Each method returned four different communities
(two shaded black, one gray, and one white). On the left the network was partitioned by
maximizing modularity. The corresponding value of the map equation is also listed. On the
right the network was partitioned by minimizing Equation 1.40. In both partitions edges labeled
with a 2 weigh twice as much as the unlabeled edges. For this simple network, one may observe
that the map equation models the network’s flow of information better than modularity.

1.5.3.2 Infomap
The extension of Infomap from the undirected case to the directed case is very straight-
forward. In the directed version of Infomap, a “teleportation probability” τ is intro-
duced. With probability τ, the random walker jumps to a random node anywhere in
the graph. This modification changes the undirected random walker into a directed
“random surfer” akin to Google’s PageRank algorithm. The default choice of 0.15 for
τ is also akin to the damping factor d = 0.85 in Google’s PageRank algorithm [27].
While the map equation remains the same, the exit probabilities qi where q = ∑m

i=1 qi

and m equals the number of communities, must be updated to include the contribution
of τ. The underlying algorithm remains the same. For a sample comparison between
the directed versions of modularity and Infomap, please refer to Figure 1.13.

1.5.3.3 Clique Percolation Method
In order to make the Clique percolation method work for directed networks, Palla et
al. [34] extend the notion of k-cliques to directed k-cliques. For a directed acyclic
graph, the edges of a directed k-clique always point from a node with a higher order
to a node with a lower order. Equivalently, all nodes within the specified k-clique have
different orders. The order of a node i within a k-clique is simply the sum of all edges
leaving node i to the other nodes within the given k-clique. Palla et al. [34] illustrated
a directed 4-clique as seen in Figure 1.14.

All other terminologies introduced in Section 1.5.2.5 also apply in this case. For
example, two directed k-cliques are adjacent if they share k − 1 nodes. However,
the directed case is more complicated as there are 3k(k−1)/2 ways in which links
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FIGURE 1.14 (a) A directed 4-clique graph without any cycles. The node labels refer to the
order of the nodes which is the same as the number of edges leaving the node. (b) More than one
node have the same order. The graph is not a directed 4-clique [34]. (c) The 3-communities of
the E. coli network found using CFinder [78]. Many nodes in the E. coli network were left out
of the final partitioning. Such an occurrence may prove problematic for analyzing biological
networks in general.

c

d

f a

h g

e

b c d

a

h g

e

f

b
c

e

g

h

a a

c

e

g

c

a

g

bb

1 2 3 4 5

b

FIGURE 1.15 (1) The underlying network topology. (2) a is selected as the start node. The
in-neighbors of a are placed in a container above a. The out-neighbors are placed in a container
below a. (3) Select a new node from either container. In this case, b is selected. d and f are
removed because they are not neighbors of b. e is placed in its own container as it is between
a and b. (4) c is added. h is removed as it is not a neighbor of c. (5) g is added. Since e is not a
neighbor of g, e is removed [34].

of a complete subgraph of size k can be directed [34]. The algorithm consists of the
following two steps (1) the directed cliques of a given node are found and (2) the node
and its links are removed from the network. Figure 1.15 from Ref. [34] illustrates the
underlying algorithm. For graphs with cycles and a more detailed explanation of the
algorithm, we refer to Ref. [34].

1.6 DISCUSSION

In this chapter, we discussed a number of approaches for the reconstruction and par-
tition of biological networks. We considered the case of both directed and undirected
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biological networks in each of the above classes of problems. Network reconstruc-
tion algorithms presented in this chapter were further categorized based on the type of
measurements used in the inference procedure. The type of measurements which we
considered were gene expression data and symbol data comprising of gene sets. Gene
expression data are numerical matrices containing gene expression levels measured
from different experiments, whereas gene sets are sets of genes and do not assume
the availability of the corresponding gene expression levels.

For the reconstruction of directed networks, we presented six approaches Boolean
networks, probabilistic Boolean networks, Bayesian networks, cGraph, frequency
method, and NICO. Among these approaches Boolean networks, probabilistic
Boolean networks, and Bayesian networks accommodate gene expression data,
whereas cGraph, frequency method, and NICO are suitable to infer the underlying
network topologies from gene sets. For the reconstruction of undirected biological
networks from gene expression data, we presented two approaches relevance net-
works and graphical Gaussian models. Nonetheless, the aforementioned algorithms
for network inference using gene expression data are also applicable when the inputs
are given in the form of gene set compendiums and vice versa. For instance, in or-
der to apply a gene set based approach on gene expression data, an additional data
discretization step can be incorporated to derive gene sets. Indeed, genes expressed
in an experimental sample discretized using binary labels correspond to a gene set.
Similarly, a gene set can be naturally represented as a binary sample by considering
the presence or absence of a gene in the set. This equivalence can be used to infer a
Bayesian network, Boolean network, or probabilistic Boolean network from a gene
set compendium, and to infer mutual information networks, for example, mutual in-
formation version of relevance networks which accommodate discrete measurements.
Similarly, gene sets obtained after discretizing gene expression data can be utilized
to infer a network using NICO or cGraph. Overall, the equivalent representation of a
gene set compendium as binary discrete data makes the network inference approaches
applicable for both the types of input, gene sets or gene expression data. However, the
approaches differ in their output, for example, directed versus undirected networks,
and their computational efficiency. In general, the computational inference of undi-
rected networks, for example, relevance networks and graphical Gaussian models is
more efficient, as such approaches are based on estimating pairwise associations or
similarities. For example, relevance networks measure the strength of pairwise interac-
tion in terms of Pearson’s correlation or mutual information, whereas graphical Gaus-
sian models present a more appealing model by taking only direct interactions into
account and use partial correlations to estimate the strength of pairwise associations.
The two network inference approaches are frequently used in the field of information
theory, pattern analysis and machine learning. In the inference of directed networks,
Boolean networks and probabilistic Boolean networks present computationally effi-
cient and simpler models, in comparison to Bayesian networks. However, the use of
Boolean functions in both Boolean networks and probabilistic Boolean networks may
cause the oversimplification of gene regulatory mechanisms. Nonetheless, Boolean
networks find applications in many fields including biological systems, circuit theory,
and computer science, for example, see Refs. [81,82]. Bayesian networks provide a
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sophisticated probabilistic modeling approach to infer gene regulatory mechanisms.
As Bayesian networks suffer from nontrivial computational complexity, heuristics are
applied to reduce the size of the search space of all possible Bayesian networks defined
for a given number of nodes. Bayesian networks are used in a wide range of fields
including medicine, document classification, information retrieval, image process-
ing, and financial analysis. Among gene set based approaches, cGraph and frequency
method are computationally efficient but they make stringent assumptions in the un-
derlying models. For instance, cGraph adds a weighted edge between every pair of
genes which appear in some gene set, whereas frequency method assumes a prior
availability of the two end nodes in each gene set and directed edges involved in the
corresponding paths. Expectation–maximization based NICO assumes a more gen-
eral case and reconstructs the underlying network by inferring the order information
for each unordered gene set. As the computational complexity of the approach grows
exponentially with increase in the lengths of gene sets, an importance sampling based
approximation of E-step has been proposed, which guarantees a polynomial time con-
vergence of the EM algorithm. The above algorithms find applications in many real-
world scenarios such as sociology, communication networks, and cognitive science.

We reviewed a variety of algorithms for network partitioning. The network parti-
tioning algorithms were categorized as graph clustering algorithms and community
detection algorithms. Graph clustering algorithms are applicable to very large-scale
integration, distributing jobs on a parallel machine, and other applications found in
computer science. Community detection algorithms, on the other hand, are more
applicable to biological and social networks.

For graph clustering algorithms, we reviewed the well-known Kernighan–Lin al-
gorithm. The Kernighan–Lin algorithm has complexity O

(|V |2 log |V |). Although
the Kernighan–Lin algorithm may not be directly applicable to biological networks,
its “descendant,” Algorithm 1.2, is directly applicable as a postprocessing step for
many community detection algorithms [22].

The first community algorithm we presented was the Girvan–Newman algorithm
with complexity O

(|V ||E|2). The essence of the Girvan–Newman algorithm is that
edges between communities have high edge-betweenness scores. By focusing on
edge-betweenness, the Girvan–Newman algorithm focuses on the flow of the network
as opposed to the immediate connection between nodes. Its major drawback is the
lack of a proper criterion to determine the cut line of a dendrogram. Modularity was
used to remedy the situation, but as seen in Section 1.5.2.3, modularity itself has its
own drawbacks. An interesting solution may be replacing modularity as a quality
function with the map equation introduced by Rosvall.

Next, we presented Newman’s eigenvector method. This method is quite interest-
ing as by defining modularity via Equation 1.37, the modularity matrix B defined in
Equation 1.38 takes the position of the graph Laplacian in the spectral bisection algo-
rithm. Newman’s eigenvector method is considered to be quite fast with complexity
O

(|V |2 log |V |). The method focuses on the degrees and connections of immediate
nodes as opposed to the flow of information in a given graph. A more useful as-
pect is that the value of |uMi | for a node i corresponds directly to its participation
strength in its community. The major drawback of Newman’s eigenvector method is
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the same as spectral bisection method in which its core strength lies in finding the
initial bipartition of a graph. There are also drawbacks involved with the choice of
modularity as the quality function as seen in Section 1.5.2.3. Finally, extending Equa-
tion 1.37 to its directed counterpart Equation 1.45 does not incorporate edge direction
correctly.

We then presented Infomap that utilizes information theory to compress good par-
titions and describe them using the least amount of bits possible. While modularity
concentrates on the pairwise relationships between nodes, Infomap focuses on the
flow of information within a network similar to the original Girvan–Newman algo-
rithm. Its implementation for directed networks seems the most rigorous of all of the
implementations presented. Since Infomap uses a stochastic algorithm, the number
of iterations that are needed before a good partitioning is found is unknown.

Finally, we presented the clique percolation method. The clique percolation method
is suitable for partitioning biological networks as it allows for overlap between differ-
ent communities. It has some drawbacks as it may not place all nodes in a community,
especially leaf nodes. The complexity of the clique percolation method cannot be ex-
pressed in closed form. Moreover, for the case of directed networks, the definition for
directed k-clique is rather arbitrary.

Network reconstruction and partitioning are two fundamental problems in compu-
tational systems biology, which aim to provide a view of the underlying biomolecular
activities at a global or local level. In general, the choice of a network reconstruction
approach depends on various factors, for example, type of measurements, number
of variables, sample size, amount of prior knowledge, and the type of interactions
considered in an analysis. Similarly, network partitioning is dependent on the number
of clusters overlapping with different clusters. Nevertheless, the two classes of prob-
lems are inherently related and one provides a foundation for the other. Structurally,
a large biological network is an ensemble of smaller components or subnetworks. As
tightly connected subnetworks often correspond to functional units of a biological
network, network partitioning is essential to extract this finer level of detail. On the
other hand, subnetworks together provide a global view of the underlying biological
processes. In particular, gene set based approaches have recently gained attention in
the computational inference of biological networks, for their natural ability to incor-
porate higher-order gene regulatory relationships. As gene expression data often have
a small sample size and excessive noise, such data sets may not capture a complete
picture of complex biomolecular activities. Network reconstruction and partitioning,
two complementary problems in systems biology, together offer a potential avenue
for future researches in gene set based inference of biological networks.
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