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1.1 INTRODUCTION

Complex-valued signals arise frequently in applications as diverse as communi-
cations, radar, and biomedicine, as most practical modulation formats are of complex
type and applications such as radar and magnetic resonance imaging (MRI) lead to
data that are inherently complex valued. When the processing has to be done in a
transform domain such as Fourier or complex wavelet, again the data are complex
valued. The complex domain not only provides a convenient representation for
these signals but also a natural way to preserve the physical characteristics of the
signals and the transformations they go through, such as the phase and magnitude
distortion a communications signal experiences. In all these cases, the processing
also needs to be carried out in the complex domain in such a way that the complete
information—represented by the interrelationship of the real and imaginary parts or
the magnitude and phase of the signal—can be fully exploited.

In this chapter, we introduce a framework based on Wirtinger calculus that enables
working completely in the complex domain for the derivation and analysis of signal
processing algorithms, and in such a way that all of the computations can be performed
in a straightforward manner, very similarly to the real-valued case. In the derivation of
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adaptive algorithms, we need to evaluate the derivative of a cost function. Since the
cost functions are real valued, hence not differentiable in the complex domain,
traditionally we evaluate derivatives separately for the real and imaginary parts of
the function and then combine them to form the derivative. We show that using
Wirtinger calculus, we can directly evaluate the derivatives without the need to evalu-
ate the real and imaginary parts separately. Beyond offering simple convenience, this
approach makes many signal processing tools developed for the real-valued domain
readily available for complex-valued signal processing as the evaluations become
very similar to the real-valued case and most results from real-valued calculus do
hold and can be directly used. In addition, by keeping the expressions simple, the
approach eliminates the need to make simplifying assumptions in the derivations
and analyses that have become common place for many signal processing algorithms
derived for the complex domain.

It is important to emphasize that the regularity condition for the applicability
of Wirtinger calculus in the evaluations is quite mild, making it a very powerful
tool, and also widely applicable. To reiterate the two points we have made
regarding the main advantages of the approach, first, algorithm derivation and analysis
become much shorter and compact compared to the traditional splitting approach. In
this chapter, this advantage is demonstrated in the derivation of update rules for the
multilayer perceptron and the widely linear filter, and of algorithms for independent
component analysis.

However, the real advantage of the Wirtinger approach is beyond simple conven-
ience in the derivations. Because the traditional splitting approach for the real and
imaginary parts leads to long and complicated expressions, especially when work-
ing with nonlinear functions and/or second-order derivatives, one is often forced to
make certain assumptions to render the evaluations more manageable. One such
assumption that is commonly made is the circularity of signals, which limits the
usefulness of the solutions developed since many practical signals have noncircular
distributions as we discuss in Section 1.2.5. Since with Wirtinger calculus, the
expressions are kept simple, we can avoid such and many other simplifying assump-
tions allowing one to fully exploit the power of complex processing, for example, in
the derivation of independent component analysis (ICA) algorithms as discussed in
Section 1.6.

Besides developing the main results for the application of Wirtinger calculus, in
this chapter, we demonstrate the application of the framework to a number of powerful
solutions proposed recently for the complex-valued domain, and emphasize how the
Wirtinger framework enables taking full advantage of the power of complex-valued
processing and of these solutions in particular. We show that the widely linear filter
is to be preferred when the commonly invoked circularity assumptions on the signal
do not hold, and that the fully complex nonlinear filter allows efficient use of the
available information, and more importantly, show how both solutions can take full
advantage of the power of Wirtinger calculus. We also show that the framework
enables the development and study of a powerful set of algorithms for independent
component analysis of complex-valued data.
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1.1.1 Why Complex-Valued Signal Processing?

Complex domain is the natural home for the representation and processing of many
signals we encounter in practice. There are four main scenarios in which complex
processing is needed.

† The signal can be natively complex, where an in-phase and a quadrature com-
ponent is the natural representation and enables one to fully take the relationship
between the two components into account. Examples include radar and MRI
signal [2] as well as many communication signals such as those using binary
phase shift keying (BPSK), quadrature phase shift keying (QPSK), and quadra-
ture amplitude modulation (QAM) as shown in Figure 1.1. The MRI signal
is acquired as a quadrature signal using two orthogonal detectors as shown
in Figure 1.2 [17]. Hence, the complex k-space representation is the natural
one for the MRI signal, which is typically inverse Fourier-transformed into
the complex image space in reconstruction resulting in complex-valued spatial
domain signal.

† Harmonic analysis, in particular Fourier analysis, has been one of the most
widely used tools in signal processing. More recently, complex wavelet trans-
forms have emerged as attractive tools for signal processing as well, and in all
these instances where the processing has to be performed in a transform
domain, one needs to perform complex-valued signal processing.

† Analytic representation of a real-valued bandpass signal using its complex enve-
lope is commonly used in signal processing, in particular in communications.
The complex envelope representation facilitates the derivation of modula-
tion and demodulation techniques, and the analysis of certain properties of the
signal.

† There are also cases where complex domain is used to capture the relationship
between the magnitude and phase or two channels of real-valued signals.
Examples include wind data where a complex-valued signal is constructed
using the strength and direction of wind data [37] and the magnitude of structural
MRI data where the white and gray matter are combined to form a complex
number to make use of their interdependence in the processing of data [116].

Figure 1.1 Signal constellations for BPSK, QPSK, and QAM signals.
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In all these instances, and in many similar ones, complex domain allows one to fully
take advantage of the complete information in the real and imaginary channels of a
given signal and thus is the natural home for the development of signal processing
algorithms.

In this chapter, our focus is the description of an efficient framework such that
all (or most) of the processing can be performed in the complex domain without
performing transformations to and from the real domain. This point has long been a
topic of debate since equivalent transformations between the two domains can be
easily established, and since the real domain is the one with which we are more fam-
iliar, the question arises as to why not transform the problem into the real domain
and perform all of the evaluations and analyses there. There are a number of reasons
for keeping the computations and analysis in the complex domain rather than using
complex-to-real transformations.

(1) Most typically, when the signal in question is complex, the cost function is also
defined in the complex domain where the signal as well as the transformations
the signal goes through are easily represented. It is thus desirable to keep all of
the computations in the original domain rather than working with transform-
ations to and from the real-valued domain, that is, transformations of the
type: CN 7! R2N .

(2) Even though real-to-complex transformations are always possible using
Jacobians, they are not always very straightforward to obtain, especially when
the function is not invertible. In addition, when nonlinear functions are

K-Space Image-Space

Figure 1.2 MRI signal is acquired as a quadrature signal using two orthogonal
detectors, hence is inherently complex.
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involved, in order to transform the solution back to the complex domain, we
usually have to make additional assumptions such as analyticity of
the function. We give a simple example (Example 1.3) to highlight this
point in Section 1.2.2.

(3) When working in the real-dimensional space with the double dimension, many
quantities assume special forms. Matrices in this space usually have special
block structures which can make further analysis and manipulations more com-
plicated. In fact, these structures have been the primary motivation for invoking
certain simplifying assumptions in the analysis, such as the circularity of
signals. For example, this assumption is made in [13] in the derivation of an
independent component analysis algorithm when computing the Hessian pri-
marily for this reason. Circularity, which implies that the phase of the signal
is uniformly distributed and hence is noninformative, is in most cases an unrea-
listic assumption limiting the usefulness of algorithms. The communications
signals shown in Figure 1.1 as well as a number of other real-world signals
can be shown not to satisfy this property, and are discussed in more detail in
Section 1.2.5.

Thus, even though we can define a transformation C
N
7! R2N , which is isomorphic,

we have to remember that mathematical equivalence does not imply that the optimiz-
ation, analysis, and numerical and computational properties of the algorithms will be
similar in these two domains. We argue that C

N defines a much more desirable domain
for adaptive signal processing in general and give examples to support our point.
Using Wirtinger calculus, most of the processing and analysis in the complex
domain can be performed in a manner very similar to the real-valued case as we
describe in this chapter, thus eliminating the need to consider such transformations
in the first place.

The theory and algorithms using the widely linear and the fully complex filter can
be easily developed using Wirtinger calculus. Both of these filters are powerful tools
for complex-valued signal processing that allow taking advantage of the full proces-
sing power of the complex domain and without having to make limiting assumptions
on the nature of the signal, such as circularity.

1.1.2 Outline of the Chapter

To present the development, we first present preliminaries including a review of basic
results for derivatives and Taylor series expansions, and introduce the main idea
behind Wirtinger calculus that describes an effective approach for complex-valued
signal processing. We define first- and second-order Taylor series expansions in the
complex domain, establish the key relationships that enable efficient derivation of
first- and second-order adaptive algorithms as well as performing analyses such as
local stability using a quadratic approximation within a neighborhood of a local opti-
mum. We also provide a review of complex-valued statistics, again a topic that has
been, for the most part, treated in a limited form in the literature for complex signals.
We carefully define circularity of a signal, the associated properties and complete
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statistical characterization of a complex signal, which play an important role in the
subsequent discussions on widely linear filters and independent component analysis.

Next, we show how Wirtinger calculus enables derivation of effective algorithms
using two filter structures that have been shown to effectively use the complete statisti-
cal information in the complex signal and discuss the properties of these filters. These
are the widely linear and the fully complex nonlinear filters, two attractive solutions for
the next generation signal processing systems. Even though the widely linear filter is
introduced in 1995 [94], its importance in practice has not been noted until recently.
Similarly, the idea of fully complex nonlinear filters is not entirely new, but the theory
that justifies their use has been developed more recently [63], and both solutions hold
much promise for complex-valued signal processing. In Sections 1.4 and 1.5, we pre-
sent the basic theory of widely linear filters and nonlinear filters—in particular multi-
layer perceptrons—with fully complex activation functions using Wirtinger calculus.
Finally in Section 1.6, we show how Wirtinger calculus together with fully complex
nonlinear functions enables derivation of a unified framework for independent
component analysis, a statistical analysis tool that has found wide application in
many signal processing problems.

1.2 PRELIMINARIES

1.2.1 Notation

A complex number z [ C is written as z ¼ zr þ jzi where j ¼
ffiffiffiffiffiffiffi

�1
p

and zr and zi refer
to the real and imaginary parts. In our discussions, when concentrating on a single
variable, we use the notation without subscripts as in z ¼ x þ jy to keep the
expressions simple. The complex conjugate is written as z� ¼ zr � jzi, and vectors
are always assumed to be column vectors, hence z [ CN implies z [ CN�1.

In Table 1.1 we show the six types of derivatives of interest that result in matrix
forms along with our convention for the form of the resulting expression depending
on whether the vector/matrix is in the numerator or the denominator. Our discussions
in the chapter will mostly focus on the derivatives given on the top row of the table,
that is, functions that are scalar valued. The extension to the other three cases given in

Table 1.1 Functions of interest and their derivatives

Scalar Variable:
z [ C

Vector Variable:

z [ C
N

Matrix Variable:

Z [ C
N�M

Scalar Function:
f [ C

@f

@z
[ C

@f

@z
¼

@f

@zk

� �

[ C
N @f

@Z
¼

@f

@Zkl

� �

[ C
N�M

Vector Function:

f [ CL

@f
@z

[ C1�L @f
@z
¼

@fl
@zk

� �

[ C
N�L

Matrix Function:

F [ CL�K

@F
@z

[ C
K�L
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the table is straightforward. The remaining three cases that are omitted from the table
and that do not result in a matrix form can be either handled using the vectorization
operator as in [46], or by using suitable definitions of differentials as in [7]. We intro-
duce the vectorization operator in Section 1.2.3 and give an example of the use of
the differential definition of [7] in Section 1.6.1 to demonstrate how one can alleviate
the need to work with tensor representations.

The matrix notation used in Table 1.1 refers to the elements of the vectors or
matrices. For the gradient vector rz f , we have

rz f ¼
@f

@z
¼

@f

@z1

@f

@z2

..

.

@f

@zN

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

and

rZ f ¼
@f

@Z
¼

@f

@Z1,1

@f

@Z1,2
� � �

@f

@Z1,M

@f

@Z2,1

@f

@Z2,2
� � �

@f

@Z2,M

..

. ..
. ..

. ..
.

@f

@ZN,1

@f

@ZN,2
� � �

@f

@ZN,M

2

6

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

7

5

,

for the matrix gradient rZ f . The N � L Jacobian matrix

Jz f ¼
@f

@z

is also written similarly.
In the development we present in this chapter, we emphasize the use of derivatives

directly in the form given in Table 1.1 rather than splitting the derivatives into real
and imaginary parts and evaluating the two separately, which is the procedure most
typically used in the literature when evaluating derivatives of nonanalytic functions.
Our approach keeps all expressions in the complex domain where they are typically
defined, rather than transforming to and from another domain, which typically is
the real domain.

As such, when evaluating complex derivatives, all conventions and formulas used
in the computation of real-valued derivatives can be directly used for both analytic and
nonanalytic functions. A good reference for the computation of real-valued matrix
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derivatives is [88]. As we show through a number of examples of interest for adaptive
signal processing in Sections 1.4–1.6, these formulas can be used without much
alteration for the complex case.

In the development, we use various representations for a given function f (.), that
is, write it in terms of different arguments. When doing so, we keep the function vari-
able, which is f (.) in this case, the same. It is important to note, however, that even
though these representations are all equivalent, different arguments may result in
quite different forms for the function. A simple example is given below.

B EXAMPLE 1.1

For a given function f (z) ¼ jzj2, where z ¼ x þ jy, we can write

f (z, z�) ¼ zz�

or

f (x, y) ¼ x2 þ y2:

It is also important to note that in some cases, explicitly writing the function in
one of the two forms given above—as f (z, z�) or f (x, y)—is not possible. A simple
example is the magnitude square of a nonlinear function, for example, f (z) ¼
jtanh(z)j2. In such cases, the advantage of the approach we emphasize in this chapter,
that is, directly working in the complex domain, becomes even more evident.

Depending on the application, one might have to work with functions defined to
satisfy certain properties such as boundedness. When referring to such functions,
that is, those that are defined to satisfy a given property, as well as traditional
functions such as trigonometric functions, we use the terminology introduced in
[61] to be able to differentiate among those as given in the next definition.

Definition 1 (Split-complex and fully-complex functions) Functions that are
defined in such a way that the real and imaginary—or the magnitude and the
phase—are processed separately using real-valued functions are referred to as
split-complex functions. An example is

f (z) ¼ tanh xþ j tanh y:

Obviously, the form f (x, y) follows naturally for the given example but the form f (z, z�)
does not.

Complex functions that are naturally defined as f : C 7! C, on the other hand,
are referred to as fully-complex functions. Examples include trigonometric func-
tions and their hyperbolic counterparts such as f (z) ¼ tanh(z). These functions
typically provide better approximation ability and are more efficient in the charac-
terization of the underlying nonlinear problem structure than the split-complex
functions [62].

We define the scalar inner product between two matrices W, V [ V as

hW, Vi ¼ Trace(VHW)
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such that hW, Wi ¼ kWk2 and the superscript in (.)H denotes the transpose of the
complex conjugate. The norm we consider in this chapter is the Frobenius—also
called the Euclidean—norm. For vectors, the definition simplifies to hw, vi ¼ vHw.
The definition of an inner product introduces a well-defined notion of orthogonality
as well as of norm, and provides both computational and conceptual convenience.
Inner product satisfies certain properties.

Properties of inner product:

positivity: hV, Vi . 0 for all V [ V;

definiteness: hV, Vi ¼ 0 if and only if V ¼ 0;

linearity (additivity and homogeneity): ha( UþW), Vi ¼ ahU, Vi þ ahW, Vi
for all W, U, V [ V;

conjugate symmetry: hW, Vi� ¼ hV, Wi for all V, W [ V.

In the definition of the inner product, we assumed linearity in the first argument, which
is more commonly used in engineering texts, though the alternate definition is also
possible. Since our focus in this chapter is the finite-dimensional case, the inner pro-
duct space also defines the Hilbert space.

A complex matrix W [ CN�N is called symmetric if WT ¼W and Hermitian
if WH ¼W. Also, W is orthogonal if WTW ¼ I and unitary if WHW ¼ I where I
is the identity matrix [49].

1.2.2 Efficient Computation of Derivatives in the
Complex Domain

Differentiability and Analyticity Given a complex-valued function

f (z) ¼ u(x, y)þ jv(x, y)

where z ¼ xþ jy, the derivative of f (z) at a point z0 is written similar to the real case as

f 0(z0) ¼ lim
Dz!0

f (z0 þ Dz)� f (z0)
Dz

:

However, different from the real case, due to additional dimensionality in the complex
case, there is the added requirement that the limit should be independent of the
direction of approach. Hence, if we first let Dy ¼ 0 and evaluate f 0(z) by letting
Dx! 0, we have

f 0(z) ¼ ux þ jvx (1:1)

and, similarly, if we first let Dx ¼ 0, and then Dy! 0, we obtain

f 0(z) ¼ vy � juy (1:2)
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where we have defined ux W @u=@x, uy W @u=@y, vx W @v=@x, and vy W @v=@y. For
the existence of f 0(z), we thus require the equality of (1.1) and (1.2) at z ¼ z0 and in
some neighborhood of z0, which leads to the Cauchy–Riemann equations given by

ux ¼ vy and vx ¼ �uy: (1:3)

A similar set of equations can be derived for other coordinate systems as well, such
as polar [1]. The conditions given by (1.3) state the necessary conditions for the
differentiability of f (z). If, in addition, the partial derivatives of u(x, y) and v(x, y)
exist and are continuous, then (1.3) are sufficient conditions as well.

Differentiability refers to the property of the function at a single point, and a func-
tion is called analytic (or holomorphic) if it is differentiable at every point in a given
region. For example, the function f (z) ¼ z� is analytic nowhere and f (z) ¼ 1=z2 is
analytic for all finite z = 0. On the other hand, f (z) ¼ ez is analytic in the entire
finite z plane. Such functions are called entire.

In the study of analytic functions, a very fundamental result is given by Cauchy’s
integral theorem, which states that for a function f (z) that is analytic throughout a
region U, the contour integral of f (z) along any closed path lying inside U is zero.
One of the most important consequences of Cauchy’s integral theorem is a result
stated by Liouville’s theorem [95]:

A bounded entire function must be a constant in the complex plane.

Hence, we cannot identify a function that is both bounded and analytic in the entire
complex domain. Since boundedness is deemed as important for the performance—
in particular stability—of nonlinear signal processing algorithms, a common practice
has been to define functions that do not satisfy the analyticity requirement but are
bounded (see e.g., [9, 36, 45, 67, 103]). This has been the main motivation in the
definition of split- and fully-complex functions given in Definition 1. The solution
provides reasonable approximation ability but is an ad-hoc solution not fully exploit-
ing the efficiency of complex representations, both in terms of parameterization
(number of parameters to estimate) and in terms of learning algorithms to estimate
the parameters as we cannot define true gradients when working with these functions.
In Sections 1.5 and 1.6, we discuss applications of both types of functions, split
nonlinear functions that are proposed to circumvent the boundedness issue, and
solutions that fully exploit the efficiency of complex domain processing.

Singular Points Singularities of a complex function f (z) are defined as points z0

in the domain of the function where f (z) fails to be analytic. Singular points can be
at a single point, that is, isolated, or nonisolated as in branch cuts or boundaries.
Isolated singularities can be classified as removable singularities, poles, and essential
singularities [1].

† A singular point is called a removable singular point if we have f (z0) W
limz!z0 f (z), that is, the limit exists even though the function is not defined at
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that point. In this case, the function can be written as an analytic function by
simply defining the function at z0 as f (z0).

† When we have limz!z0 j f (z)j ! 1 for f (z) analytic in a region centered at z0,
that is, in 0 , jz� z0j , R, we say that z0 is a pole of the function f (z).

† If a singularity is neither a pole nor a removable singularity, it is called an essen-
tial singularity, that is, the limit limz!z0 f (z) does not exist as a complex number
and is not equal to infinity either.

A simple example for a function with removable singularity is the function

f (z) ¼
sin (z� z0)

z� z0

which is not defined at z ¼ z0, but can be made analytic for all z by simply augmenting
the definition of the function by f (z0) ¼ 1.

The function

f (z) ¼
1

(z� z0)N

where N is an integer, is an example for a function with a pole. The pole at z ¼ z0 is
called a simple pole if N ¼ 1 and an Nth order pole if N . 1.

The essential singularity class is an interesting case and the rare example is found in
functions of the form

f (z) ¼ e1=z:

This function has different limiting values for z ¼ 0 depending on the direction of
approach as we have limz!0+j f (z) ¼ 1, limz!0� f (z) ¼ 0, and limz!0þ f (z) ¼ 1. A
powerful property of essential singular points is given by Picard’s theorem, which
states that in any neighborhood of an essential singularity, a function, f (z), assumes
all values, except possibly one of them, an infinite number of times [1].

A very important class of functions that are not analytic anywhere on the complex
plane are functions that are real valued, that is, f : C 7! R and thus have v(x, y) ¼ 0.
Since the cost functions are real valued, their optimization thus poses a challenge,
and is typically achieved using separate evaluations of real and imaginary parts of
the function. As we discuss next, Wirtinger calculus provides a convenient framework
to significantly simplify the evaluations of derivatives in the complex domain.

Wirtinger Derivatives As discussed in Section 1.2.2, differentiability, and
hence analyticity are powerful concepts leading to important results such as the one
summarized by Liouville’s theorem. But—perhaps not surprisingly—their powerful
nature also implies quite stringent conditions that need to be satisfied. When we
look closely at the conditions for differentiability described by the Cauchy–
Riemann equations (1.3), it is quite evident that they impose a strong structure on
u(x, y) and v(x, y), the real and imaginary parts of the function, and consequently on
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f (z), as also discussed in [64]. A simple demonstration of this fact is that, to express
the derivatives of an analytic function, we only need to specify either u(x, y) or
v(x, y), and do not need both.

An elegant approach due to Wirtinger [115], which we explain next, relaxes this
strong requirement for differentiability, and defines a less stringent form for the com-
plex domain. More importantly, it describes how this new definition can be used for
defining complex differential operators that allow computation of derivatives in a very
straightforward manner in the complex domain by simply using real differentiation
results and procedures.

To proceed, we first introduce the notion of real differentiability. In the introduction
of Wirtinger calculus, the commonly used definition of differentiability that leads to
the Cauchy–Riemann equations is identified as complex differentiability, and real
differentiability is defined as a more flexible form.

Definition 2 A function f (z) ¼ u(x, y)þ jv (x, y) is called real differentiable when
u(x, y) and v(x, y) are differentiable as functions of real-valued variables x and y.

Note that this definition is quite flexible in that most nonanalytic as well as analytic
functions satisfy the property as long as they have real and imaginary parts that are
smooth (differentiable) functions of x and y.

To derive the form of the differential operators, we write the two real-variables as

x ¼
zþ z�

2
and y ¼

z� z�

2j
(1:4)

and use the chain rule to derive the form of the two derivative operators for f (z) as

@f

@z
¼
@f

@x

@x

@z
þ
@f

@y

@y

@z
¼
@f

@x

1
2
þ
@f

@y

1
2j

and

@f

@z�
¼
@f

@x

@x

@z�
þ
@f

@y

@y

@z�
¼
@f

@x

1
2
�
@f

@y

1
2j
:

The key point in the derivation given above is to treat the two variables z and z� as
independent from each other, which is also the main trick that allows us to make
use of the elegance of Wirtinger calculus which we introduce next.

We consider a given function f : C 7! C as a function f : R� R 7! C by writing
it as f (z) ¼ f (x, y), and make use of the underlying R2 structure by the following
theorem [15].

Theorem 1.2.1 Let f : R� R! C be a function of real variables x and y such
that f (z, z�) ¼ f (x, y), where z ¼ xþ jy and that f (z, z�) is analytic with respect to
z� and z independently. Then,

12 COMPLEX-VALUED ADAPTIVE SIGNAL PROCESSING



(1) The partial derivatives

@f

@z
¼

1
2
@f

@x
� j

@f

@y

� �

and
@f

@z�
¼

1
2
@f

@x
þ j

@f

@y

� �

(1:5)

can be computed by treating z� and z as a constant in f (z, z�) respectively; and

(2) A necessary and sufficient condition for f to have a stationary point is that
@f =@z ¼ 0. Similarly, @f =@z�¼ 0 is also a necessary and sufficient condition.

Therefore, when evaluating the gradient, we can directly compute the derivatives
with respect to the complex argument, rather than calculating individual real-valued
gradients, that is, by evaluating the right side of the equations in (1.5). To do so,
we write the given function f (z) in the form f (z, z�) and when evaluating the derivative
with respect to z, we treat z� as a constant as done in the computation of multi-variable
function derivatives, and similarly treat z as a constant when evaluating @f =@z�.
The requirement for the analyticity of f (z, z�) with respect to z and z� independently
is equivalent to the condition on real differentiability of f (x, y) since we can move
from one form of the function to the other using the simple linear transformation
given in (1.4) [64, 95]. Even though the condition of real differentiability is easily sat-
isfied, separate evaluations of real and imaginary parts has been the common practice
in the literature (see e.g., [34, 38, 39, 63, 67, 103]).

When f (z) is analytic, that is, when the Cauchy–Riemann conditions hold in a
given open set, f (.) becomes a function of only z, and the two derivatives, the one
given in the theorem and the traditional one coincide [95]. Alternatively put, all ana-
lytic functions are independent of z� and only depend on z. This point can be easily
verified using the definitions given in (1.5) and observing that when the Cauchy–
Riemann equations are satisfied, we do end up with f 0(z) as given in (1.1) and (1.2),
and we have f 0(z�) ¼ 0.

For the application of Wirtinger derivatives for scalar-valued functions, consider
the following two examples.

B EXAMPLE 1.2

Consider the real-valued function f (z) ¼ jzj4 ¼ x4 þ 2x2y2 þ y4. The derivative of
the function can be calculated using (1.5) as

f 0(z) W
@f

@z
¼

1
2
@f

@x
� j

@f

@y

� �

¼ 2x3 þ 2xy2 � 2j(x2yþ y3) (1:6)

or, to make use of Wirtinger derivative, we can write the function as f (z) ¼
f (z, z�) ¼ z2(z�)2 and evaluate the derivative as

@f

@z
¼ 2z(z�)2 (1:7)
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that is, by treating z� as a constant in f when calculating the partial derivative. It can
be easily shown that the two forms, (1.6) and (1.7), are equal.

We usually define functions of interest in terms of z and would like to keep the
expressions in that form, hence typically, one would need to write (1.6) in terms of
z. As this simple example demonstrates, depending on the function in question, this
might not always be a straightforward task.

B EXAMPLE 1.3

As another example, consider evaluation of the conjugate derivative for the real-
valued function f (z) ¼ jg(z)j2 where g(z) is any analytic function. Since, in general
we cannot explicitly write the real and imaginary parts of such a function in terms
of x and y, we write

g(z) ¼ u(x, y)þ jv(x, y)

so that we have

f (z) ¼ u2(x, y)þ v2(x, y):

The derivative can then be evaluated using (1.5) as

@f

@z�
¼

1
2
@f

@x
þ j

@f

@y

� �

¼ uux þ vvx þ j(uuy þ vvy)

¼ g(z)[g0(z)]� (1:8)

where ux, uy, vx, and vy are defined in (1.1) and (1.2), and we used the Cauchy–
Riemann conditions for g(z) when writing the last equality.

Alternatively, we can write the function as

f (z) ¼ g(z)[g(z)]� ¼ g(z)g(z�)

where the last equality follows when we have g�(z)�¼ g(z�). Then, directly using
the Wirtinger derivative we have the same form given in (1.8) for @f =@z�.

The condition in Example 1.3, g�(z) ¼ g(z�) which also implies [g0(z)]� ¼ g0(z�), is
satisfied for a wide class of functions. It is easy to observe that it is true for all real-
valued functions, and also for all functions g(z) that have a Taylor series expansion
with all real coefficients in jzj , R. Hence, all functions that are analytic within a
neighborhood of zero satisfy the equality.

Example 1.3 also underlines another important point we have made earlier in the
chapter regarding the desirability of directly working in the complex domain. When
using the approach that treats real and imaginary parts separately, we needed a certain
relationship between the real and imaginary parts of the function to write the derivative
f 0(z) again in terms of z. The condition in this example was satisfied by analyticity of
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the function as we used the Cauchy–Riemann conditions, that is, a strict relationship
between the real and imaginary parts of the function.

The same approach of treating the variable and its complex conjugate as indepen-
dent variables, can be used when taking derivatives of functions of matrix variables as
well so that expressions given for real-valued matrix derivatives can be directly used as
shown in the next example.

B EXAMPLE 1.4

Let g(Z, Z�) ¼ Trace(ZZH). We can calculate the derivatives of g with respect to
Z and Z� by simply treating one variable as a constant and directly using the results
from real-valued matrix differentiation as

@g

@Z
¼
@Trace[Z(Z�)T ]

@Z
¼ Z�

and

@g

@Z�
¼ Z

A good reference for real-valued matrix derivatives is [88] and a number of
complex-valued matrix derivatives are discussed in detail in [46].

For computing matrix derivatives, a convenient tool is the use of differentials. In
this procedure, first the matrix differential is computed and then it is written in the
canonical form by identifying the term of interest. The differential of a function is
defined as the part of a function f (Zþ DZ)� f (Z) that is linear in Z. For example
when computing the differential of the function f (Z, Z�) ¼ ZZ�, we can first write
the product of the two differentials

(Zþ dZ)(Z� þ dZ�) ¼ ZZ� þ (dZ)Z� þ Z dZ� þ dZ dZ�

and take the first-order term (part of the expansion linear in Z and Z�) to evaluate the
differential of the function as

d(ZZ�) ¼ (dZ)Z� þ ZdZ�

as discussed in [74, 78]. The approach can significantly simplify certain derivations.
We provide an example for the application of the approach in Section 1.6.1.

Integrals of the Function f ðz, z�Þ Though the three representations of a func-
tion we have discussed so far: f (z), f (x, y), and f (z, z�) are all equivalent, certain care
needs to be taken when using each form, especially when using the form f (z, z�). This
is the form that enables us to treat z and z� as independent variables when taking
derivatives and hence provides a very convenient representation (mapping) of a com-
plex function in most evaluations. Obviously, the two variables are not independent
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as knowing z we already know its conjugate. This is an issue that needs special care in
evaluations such as integrals, which is needed for example, when using f (z, z�) to
denote probability density functions and calculating the probabilities with this form.

In the evaluation of integrals, when we consider f (.) as a function of real and ima-
ginary parts, the definition of an integral is well understood as the integral of function
f (x, y) in a region R defined in the (x, y) space as

ð ð

R

f (x, y) dx dy:

However, the integral
Ð Ð

f (z, z�) dz dz� is not meaningful as we cannot vary the two
variables z and z� independently, and cannot define the region corresponding to R
in the complex domain. However, this integral representation serves as an intermediate
step when writing the real-valued integral as a contour integral in the complex domain
using Green’s theorem [1] or Stokes’s theorem [44, 48] as noted in [87]. We can use
Green’s theorem (or Stokes’s theorem) along with the definitions for the complex
derivative given in (1.5) to write

ð ð

R

f (x, y) dx dy ¼ �
j

2

þ

CR

F(z, z�) dz (1:9)

where

@F(z, z�)
@z�

¼ f (z, z�):

Here, we assume that f (x, y) is continuous through the simply connected region R
and CR describes its contour. Note that by transforming the integral defined in the
real domain to a contour integral when the function is written as f (z, z�), the formula
takes into account the dependence of the two variables, z and z� in a natural manner.

In [87], the application of the integral relationship in (1.9) is discussed in detail for
the evaluation of probability masses when f (x, y) defines a probability density func-
tion. Three cases are identified as important and a number of examples are studied
as application of the formula. The three specific cases to consider for evaluation of
the integral in (1.9) are when

† F(z, z�) is an analytic function inside the given contour, that is, it is a function of
z only in which case the integral is zero by Cauchy’s theorem;

† F(z, z�) contains poles inside the contour, which in the case of probability
evaluations will correspond to probability masses inside the given region;

† F(z, z�) is not analytic inside the given contour in which case the value of the
integral will relate to the size of the region R.

We demonstrate the use of the integral formula given in (1.9) in Section 1.6.4 in the
derivation of an efficient representation for the score function for complex maximum
likelihood based independent component analysis.
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It is also worth noting that the dependence in the variables z and z� is different in the
computation of derivatives. In [31], the author discusses polarization of an analytic
identity and notes that complex-valued functions of z and z� have linearly independent
differentials dz and dz�, and hence z and z� are locally functionally independent. Still,
we treat the form f (z, z�) as primarily a notational form that renders computations of
derivatives simple and note the fact that special care must be taken when using the
form to define quantities such as probability density functions.

Derivatives of Cost Functions The functions we typically work with in the
development of signal processing algorithms are cost functions, hence these are real
valued such that f [ R. Since the class of real-valued functions is a special case of
the functions considered in Theorem 1.2.1, we can employ the same procedure for
this case as well and take the derivatives by treating z and z� as independent from
each other. In this chapter, we mainly consider such functions as these are the cost
functions used in the derivation of adaptive signal processing algorithms. However,
in the discussion, we identify the deviation, if any, from the general f : R � R! C

case for completeness. Also note that when f (z) is real valued, we have

@f

@z

� ��

¼
@f

@z�

that is, the derivative and the conjugate derivative are complex conjugates of
each other.

1.2.3 Complex-to-Real and Complex-to-Complex Mappings

In this chapter, we emphasize working in the original space in which the functions are
defined, even when they are not analytic. The approach is attractive for two reasons.
First, it is straightforward and eliminates the need to perform transformations to and
back from another space where the computations are carried out. Second, it does
not increase the dimensionality of the problem. In certain cases though, in particular
for the form of multidimensional transformation defined by van den Bos [110], the
increase in dimensionality might offer advantages. As we discuss in this section, the
CN 7! C2N mapping given by van den Bos provides a smart way of taking advantage
of Wirtinger calculus, and can lead to certain simplifications in the expression. For
completeness, we discuss all major transformations that have been used in the literature
for multivariate complex analysis, especially when working with non-analytic
functions.

Vector-Concatenation Type Mappings The two mappings in this class,
the (�)R and (�)C mappings have very different uses. The most commonly used
mapping C

N
7! R2N takes a very simple form and is written such that

z [ C
N
7! z̄R ¼

zr

zi

� �

[ R2N (1:10)
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and for a matrix A as

A [ C
M�N

7! ĀR ¼
Ar �Ai

Ai Ar

� �

[ R2M�2N : (1:11)

It can be easily shown that (Az)R ¼ ĀRz̄R:
The mapping provides a natural isomorphism between CN and R2N, and thus is a

practical approach for derivations in the complex domain. For example, in [40], the
mapping is used for statistical analysis of multivariate complex Gaussian distribution
and in [20] to derive the relative gradient update rule for independent component
analysis.

Note that the real-vector space defined through the (�) mapping is isomorphic to the
standard real vector space R2N. In fact, we can define an orthogonal decomposition of
the space of 2N� 2N matrices such that a given matrix M [ R2N�2N is written in
terms of four blocks of size N � N as

M ¼
M11 M12

M21 M22

� �

:

Thus, the linear space of 2N � 2N matrices can be decomposed into two orthogonal
spaces: R2N�2N

¼M
þ
�M

� whereMþ (resp.M2) contains any matrix such that
M11 ¼M22 and M12 ¼ 2M21 (resp. M11 ¼ 2M22 and M12 ¼M21). Hence a 2N �
2N real matrix has the orthogonal decomposition M ¼Mþ þM2 where

Mþ ¼
1
2

M11 þM22 M12 �M21

M21 �M12 M11 þM22

� �

[Mþ and

M� ¼
1
2

M11 �M22 M12 þM21

M21 þM12 �M11 þM22

� �

[M�:

(1:12)

Note that the set of invertible matrices of Mþ form a group for the usual multiplication
of matrices and we have ĀR [Mþ, which is defined in (1.11).

The following are some useful properties of this complex-to-real mapping and can
be verified using the isomorphism between the two spaces [20, 33, 40].

Properties of Complex-to-Real Mapping (�): C
N
! R2N Let A, B [

CN�N and z, y [ C
N, then for the mapping (�)R, we have

(1) (AB)R ¼ ĀRB̄R and thus (A�1)R ¼ (ĀR)�1:

(2) jdet(A)j2 ¼ det(ĀR).

(3) A is Hermitian if and only if ĀR is symmetric.

(4) A is nonsingular if and only if ĀR is nonsingular.

(5) A is unitary if and only if ĀR is orthogonal.

(6) A is positive definite if and only if ĀR is positive definite.
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(7) zHAz ¼ z̄T
RĀRz̄:

(8) zyH
R ¼ 2(z̄RȳR)þ where (.)þ is defined in (1.12).

In certain scenarios, for example, when working with probabilistic descriptions, or
when evaluating the derivative of matrix functions, the C

N
7! R2N transformation

can simplify the evaluations and lead to simpler forms (see e.g. [4, 20]).
The second mapping in this class is defined by simple concatenation of the complex

vector and its complex conjugate as

z [ C
N
7! z̄C ¼

z
z�

� �

[ C
2N : (1:13)

This mapping can be useful as an intermediate step when establishing certain relation-
ships as shown in [64] and [71]. More importantly, this vector definition provides
a convenient representation for the widely linear transform, which enables incorpor-
ation of full second-order statistical information into the estimation scheme and
provides significant advantages when the signal is noncircular [94]. We discuss the
approach and present the main results for minimum mean square error filtering
using Wirtinger calculus in Section 1.4.

Element-wise Mappings In the development that leads to the definition of
Wirtinger derivatives, the key observation is the duality of the two spaces: R2 and
C2 through the transformation

(zr, zi), (z, z�):

Hence, if a function is real differentiable as a function of the two real-valued variables
zr and zi, then it satisfies the condition for real differentiability, and the two variables, z
and z� can be treated as independent in C2 to take advantage of Wirtinger calculus. To
extend this idea to the multidimensional case, van den Bos [110] defined the two
mappings ~(�) given in Table 1.2 such that

~zR ¼

zr,1

zi,1

zr,2

zi,2

..

.

zr,N

zi,N

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

, ~zC ¼

z1

z�1
z2

z�2

..

.

zN

z�N

2

6

6

6

6

6

6

6

6

6

4

3

7

7

7

7

7

7

7

7

7

5

(1:14)

where ~zR [ R2N and ~zC [ C
2N . In [110], the whole development is given as an

extension of Brandwood’s work [15] without any reference to Wirtinger calculus
in particular.
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Since the transformation from R2 to C2 is a simple linear invertible mapping, one
can work in either space, depending on the convenience offered by each. In [110], it is
shown that such a transformation allows the definition of a Hessian, hence of a Taylor
series expansion very similar to the one in the real-case, and the Hessian matrix
H defined in this manner is naturally linked to the complex CN�N Hessian matrix.
In the next section, we establish the connections of the results of [110] to CN for
first- and second-order derivatives such that efficient second-order optimization
algorithms can be derived by directly working in the original CN space where the
problems are typically defined.

Relationship Among Mappings It can be easily observed that all four map-
pings defined in Table 1.2 are related to each other through simple linear transform-
ations, thus making it possible to work in one domain and then transfer the solution
to another. Two key transformations are given by z̄C ¼ Uz̄R and ~zC ¼ ~U~zR where

U ¼
I jI
I �jI

� �

and ~U ¼ diag{U2, . . . , U2} where U2 ¼
1 j
1 �j

� �

. It is easy to observe that for the

transformation matrices U defined above, we have UUH ¼ UHU ¼ 2I making it
easy to obtain inverse transformations as we demonstrate in Section 1.3. For trans-

formations between the two mappings, (�) and ~(�), we can use permutation matrices
that are orthogonal, thus allowing simple manipulations.

1.2.4 Series Expansions

Series expansions are a valuable tool in the study of nonlinear functions, and for
analytic functions, that is, functions that are complex differentiable in a given

Table 1.2 Four primary mappings defined for z 5 zr 1 jzi [CN

Complex-to-Real:
CN 7! R 2N

Complex-to-Complex:
CN 7! C 2N

Vector-concatenation type
mappings z̄R ¼

zr

zi

� �

z̄C ¼
z
z�

� �

Element-wise mappings

~zR ¼

zr,1

zi,1

..

.

zr,N

zi,N

2

6

6

6

6

6

4

3

7

7

7

7

7

5

~zC ¼

z1

z�1

..

.

zN

z�N

2

6

6

6

6

6

4

3

7

7

7

7

7

5
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region, the Taylor series expression assumes the same form as in the real case given by

f (z) ¼
X

1

k¼0

f (k)(z0)
k!

(z� z0)k: (1:15)

If f(z) is analytic for jzj � R, then the Taylor series given in (1.15) converges uniformly
in jzj � R1 , R. The notation f (k)(z0) refers to the kth order derivative evaluated
at z0 and when the power series expansion is written for z0 ¼ 0, it is called the
Maclaurin series.

In the development of signal processing algorithms (parameter update rules) and in
stability analyses, the first- and second-order expansions prove to be the most useful.
For an analytic function f (z): CN 7! C, we define Df ¼ f (z) – f (z0) and Dz ¼ z – z0 to
write the second-order approximation to the function in the neighborhood of z0 as

Df � DzTrz f þ
1
2
DzT H(z) Dz

¼ rz f , Dz�
� �

þ
1
2

�

H(z) Dz, Dz�
�

(1:16)

where

rz f ¼
@f (z)
@z

	

	

	

	

z0

is the gradient evaluated at z0 and

r2
z f W H(z) ¼

@2f (z)
@z@zT

	

	

	

	

z0

is the Hessian matrix evaluated at z0. As in the real-valued case, the Hessian matrix in
this case is symmetric and constant if the function is quadratic.

Second-order Taylor series expansions as given in (1.16) help summarize main
results for optimization and local stability analysis. In particular, we can state the
following three important observations for the real-valued case, that is, when the
argument z and the function are real valued, by directly studying the expansion
given in (1.16).

† Point z0 is a local minimum of f (z) when rz f ¼ 0 and H(z) is positive semi-
definite, that is, these are the necessary conditions for a local minimum.

† When H(z) is positive definite and rz f ¼ 0, z0 is guaranteed to be a local
minimum, that is, positive-definiteness and zero gradient, together, define the
sufficient condition.

† Finally, z0 is a locally stable point if, and only if, H(z) is positive definite
and rz f ¼ 0, that is, in this case, the two properties define the sufficient and
necessary conditions.

When deriving complex-valued signal processing algorithms, however, the func-
tions of interest are real valued and have complex arguments z, hence are not analytic
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on the complex plane. In this case, we can use Wirtinger calculus and write the
expansions by treating the function f (z) as a function of two arguments, z and z�. In
this approach, the main idea is treating the two arguments as independent from each
other, when they are obviously dependent on each other as we discussed. When
writing the Taylor series expansion, the idea is the same. We write the series expansion
for a real-differentiable function f (z) ¼ f (z, z�) as if z and z� were independent
variables, that is, as

Df (z, z�) � hrz f , Dz�i þ hrz� f , Dzi þ
1
2

@f

@z@zT
Dz, Dz�


 �

þ
@f

@z@zH
Dz�, Dz�


 �

þ
1
2

@f

@z�@zH
Dz�, Dz


 �

: (1:17)

In other words, the series expansion has the same form as a real-valued function of two
variables which happen to be replaced by z and z� as the two independent variables.
Note that when f (z, z�) is real valued, we have

hrz f , Dz�i þ hrz� f , Dzi ¼ 2Re{hrz� f , Dzi} (1:18)

since in this case we have rf (z�) ¼ [r f (z)]�. Using the Cauchy–Bunyakovskii–
Schwarz inequality [77], we have

jDzHrf (z�)j � kDzk krf (z�)k

which holds with equality when Dz is in the same direction as rf (z�). Hence, it is the
gradient with respect to the complex conjugate of the variable rf (z�) that yields the
maximum change in function D f (z, z�).

It is also important to note that when f(z, z�) ¼ f (z), that is, the function is
analytic (complex differentiable), all derivatives with respect to z� in (1.17) vanish
and (1.17) coincides with (1.16). As noted earlier, the Wirtinger formulation
for real-differentiable functions includes analytic functions, and when the function
is analytic, all the expressions used in the formulations reduce to the traditional
ones for analytic functions.

For the transformations that map the function to the real domain as those given in
Table 1.2, the ~(�)R and (�)R mappings, the expansion is straightforward since in this
case, the expansion is written in the real domain as in

D f (~zR) � hr~zR f (~zR), D~zRi þ
1
2
hH(~zR)D~zR, D~zRi:

By using the complex domain transformation defined by van den Bos (1.14), a very
similar form for the expansion can be obtained in the complex domain as well, and
it is given by [110]

D f (~zC) � hr~z�C f (~zC), D~zCi þ
1
2
hH(~zC)D~zC, D~zCi (1:19)
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where

H(~zC) ¼
@2f (~zC)

@~z�C @~z
T
C

	

	

	

	

	

z̄C0

:

When writing the expansions in the transform domain, we assume that the function f (.)
is written in terms of the transformed arguments, for example, we have f (z) ¼ f (~zC).
Hence, in the expansions given in this section, we have included the variable explicitly
in all the expressions.

The two Hessian matrices, H(~zR) and H(~zC) are related through the mapping

H(~zR) ¼ ~U
H

H(~zC) ~U

where Ũ is defined in Section 1.2.3. Since the real-valued Hessian is a symmetric
matrix—we assume the existence of continuous second-order derivatives of f (.)—
and ŨŨH ¼ 2I, the complex Hessian matrix H(z̃C) is Hermitian. Hence, we can write

H(~zR)� lI ¼ ~U
H

[H(~zC)� 2lI] ~U

and observe that if l is an eigenvalue of H(z̃C), then 2l is an eigenvalue of H(z̃R).
Thus, when checking whether the Hessian is a positive definite matrix—for example,
for local optimality and local stability properties—one can work with either form of
the Hessian. Hence, other properties of the Hessian such as its condition number,
which is important in a number of scenarios for example, when deriving second-
order learning algorithms, are also preserved under the transformation [110].

Even though it is generally more desirable to work in the original space where the
functions are defined, which is typically CN, the transformations given in Section 1.2.3
can provide simplifications to the series expansions. For example, the mapping ~(�)C

given in (1.14) can lead to simplifications in the expressions as demonstrated in
[86] in the derivation and local stability analysis of a complex independent component
analysis algorithm. The use of Wirtinger calculus through the R2 7! C2 mapping in
this case leads to a simpler block structure for the final Hessian matrix H(z̃C) compared
to H(z̃R), hence simplifying assumptions such as circularity of random variables as
done in [13] for a similar setting can be avoided.

In this section, we concentrated on functions of vector variables. For matrix vari-
ables, a first-order expansion can be obtained in a very similar manner. For a function
f (Z, Z�): C

N�M
� C

N�M
! R, we have

Df (Z, Z�) � hrZ f, DZ�i þ hrZ� f , DZi

¼ 2Re{hrZ� f , DZi} (1:20)

where @f/@Z is an N � M matrix whose (k, l )th entry is the partial derivative of f
with respect to wkl and the last equality follows only for real-valued functions.
Again, it is the gradient with respect to the conjugate variable, that is, rZ�f, the quan-
tity that defines the direction of the maximum rate of change in f with respect to Z not
the gradient rZ f.
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Since the definition of a Hessian for a function of the form f (Z, Z�) does not result
in a matrix form and cannot be written as one of the six forms given in Table 1.1, there
are a number of options when working with the second-order expansions in this case.
One approach is to write the expression directly in terms of each element, which is
given by

r2
Z f ¼

1
2

X

m,n

X

k,l

@2f

@zmn@zkl
dzmndzkl þ

1
2

X

m,n

X

k,l

@2f

@z�mn@z
�
kl

dz�mndz�kl

þ
X

m,n

X

k,l

@2f

@zmn@z�kl

dzmndz�kl:

Note that this form is written by evaluating the second-order term in (1.17) with
respect to every entry of matrix Z. In certain cases, second-order matrix differentials
can be put into compact forms using matrix differentials introduced in Section 1.2.2
and invariant transforms as in [7]. Such a procedure allows for efficient derivations
while keeping all the evaluations in the original transform domain as demonstrated
in the derivation of maximum likelihood based relative gradient update rule for
complex independent component analysis in [68].

Another approach for calculating differential or Hessian expressions of matrix
variables is to use the vectorization operator vec(.) that converts the matrix to a
vector form by stacking the columns of a matrix into a long column vector starting
from the first column [50]. Then the analysis proceeds by using vector calculus.
The approach requires working with careful definitions of functions for manipulating
the variables defined as such and then their reshaping at the end. This is the approach
taken in [46] for defining derivatives of functions with matrix arguments.

1.2.5 Statistics of Complex-Valued Random Variables and
Random Processes

Statistical Description of Complex Random Variables and
Vectors A complex-valued random variable X ¼ Xr þ jXi is defined through the
joint probability density function (pdf) fX(x) W fXrXi (xr, xi) provided that it exists.
For a pdf fXrXi (xr, xi) that is differentiable with respect to xr and xi individually, we
can write fXrXi (xr, xi) ¼ f (x, x�) where x ¼ xr þ jxi, and use the expression written
in terms of x and x� in the evaluations to take advantage of Wirtinger calculus.

Note that writing the pdf in the form f (x, x�) is mainly a representation, which in
most instances, significantly simplifies the evaluations. Thus, it is primarily a compu-
tational tool. As in the case of representation of any function using the variables x and
x� rather than only x, the form is degenerate since the two variables are not independent
of each other. In [87], the evaluation of probability masses using the form f (x, x�) is
discussed in detail, both for continuous and mixed-distribution random variables.
When evaluating expected values using a pdf written as f (x, x�), we have to thus
consider the contour integrals as given in (1.9).
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The joint pdf for a complex random vector X [ C
N is extended to the form

f (x, x�): CN
� CN 7! R similarly. In the subsequent discussion, we write the expec-

tations with respect to the corresponding joint pdf, pdf of a scalar or vector random
variable as defined here.

Second-order statistics of a complex random vector X are completely defined
through two (auto) covariance matrices: the covariance matrix

CXX ¼ E{(X� E{X})(X� E{X})H}

that is commonly used, and in addition, the pseudo-covariance [81] matrix—also
called the complementary covariance [101] or the relation matrix [92]—given by

PXX ¼ E{(X� E{X})(X� E{X})T}:

Expressions are written similarly for the cross-covariance matrices CXY and PXY

of two complex random vectors X and Y. The properties given in Section 1.2.3 for
complex-to-real mappings can be effectively used to work with covariance matrices
in either the complex- or the double-dimensioned real domain. In the sequel, we
drop the indices used in matrix definitions here when the matrices in question are
clear from the context, and assume that the vectors are zero mean without loss
of generality.

Through their definitions, the covariance matrix is a Hermitian and the pseudo-
covariance matrix is a complex symmetric matrix. As is easily shown, the covariance
matrix is nonnegative definite—and in practice typically positive definite. Hence, the
nonnegative eigenvalues of the covariance matrix can be identified using simple
eigenvalue decomposition. For the pseudo-covariance matrix, however, we need to
use Takagi’s factorization [49] to obtain the spectral representation such that

P ¼ QDQT

where Q is a unitary matrix and D ¼ diagfk1, k2, . . . , kNg contains the singular values,
1 	 k1 	 k2 	 � � � 	 kN 	 0, on its diagonal. The values kn are canonical corre-
lations of a given vector and its complex conjugate [100] and are called the circularity
coefficients [33]—though noncircularity coefficients might be the more appropriate
name—since for a second-order circular random vector, which we define next,
these values are all zero.

The vector transformation z [ CN 7! z̄C [ C2N given in (1.13) can be used to
define a single matrix summarizing the second-order properties of a random vector
X, which is called the augmented correlation matrix [92, 101]

E{X̄CX̄
H
C } ¼ E

X
X�

� �

[XHXT ]

� 

¼
C P
P� C�

� �

and is used in the study of widely linear least mean squares filter which we discuss in
Section 1.4.
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Circularity Properties of a Complex Random Variable and
Random Vector An important property of complex-valued random variables
is related to their circular nature.

A zero-mean complex random variable is called second-order circular [91] (or proper
[81, 101]) when its pseudo-covariance is zero, that is,

E{X2} ¼ 0

which implies that sXr ¼ sXi and E{XrXi} ¼ 0 where sXr and sXi are the standard
deviations of the real and imaginary parts of the variable.

For a random vector X, the condition for second-order circularity is written in terms
of the pseudo-covariance matrix as P ¼ 0, which implies that E{XrXT

r } ¼ E{XiXT
i }

and E{XrXT
i } ¼ �E{XiXT

r }.
A stronger condition for circularity is based on the pdf of the random variable.

A random variable X is called circular in the strict-sense, or simply circular, if X and Xe ju

have the same pdf, that is, the pdf is rotation invariant [91].

In this case, the phase is non-informative and the pdf is a function of only the magnitude,
fX(x) ¼ g(jxj) where g: R 7! R, hence the pdf can be written as a function of zz� rather
than z and z� separately. A direct consequence of this property is that EfXp(X�)q

g ¼ 0
for all p=q if X is circular. Circularity is a strong property, preserved under linear
transformations, and since it implies noninformative phase, a real-valued approach
and a complex-valued approach for this case are usually equivalent [109].

As one would expect, circularity implies second-order circularity, and only for a
Gaussian-distributed random variable, second-order circularity implies (strict sense)
circularity. Otherwise, the reverse is not true.

For random vectors, in [91], three different types of circularity are identified. A
random vector X [ CN is called

† marginally circular if each component of the random vector Xn is a circular
random variable;

† weakly circular if X and Xe ju have the same distribution for any given u; and

† strongly circular if X and X0 have the same distribution where X0 is formed by
rotating the corresponding entries (random variables) in X by un, such that
X0n ¼ Xne jun . This condition is satisfied when uk are independent and identically
distributed random variables with uniform distribution in [2p, p] and are
independent of the amplitude of the random variables, Xn.

As the definitions suggest, strong circularity implies weak circularity, and weak
circularity implies marginal circularity.

Differential Entropy of Complex Random Vectors The differential
entropy of a zero mean random vector X [ CN is given by the joint entropy
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H(Xr, Xi), and satisfies [81]:

H(X) � log[(pe)Ndet(C)] (1:21)

with equality if, and only if, X is second-order circular and Gaussian with zero mean.
Thus, it is a circular Gaussian random variable that maximizes the entropy for the
complex case. It is also worthwhile to note that orthogonality and Gaussianity,
together do not imply independence for complex Gaussian random variables, unless
the variable is circular.

For a noncircular Gaussian random vector, we have [33, 100]

Hnoncirc ¼ log[(pe)Ndet(C)]
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

Hcirc

þ
1
2

log
Y

N

n¼1

(1� k 2
n)

where kn are the singular values of P as defined and kn ¼ 0 when the random vector
is circular. Hence, the circularity coefficients provide an attractive measure for quan-
tifying circularity and a number of those measures are studied in [100]. Since kn � 1
for all n, the second term is negative for noncircular random variables decreasing the
overall differential entropy as a function of the circularity coefficients.

Complex Random Processes In [8, 27, 81, 90, 91], the statistical character-
ization and properties of complex random processes are discussed in detail. In particu-
lar, [91] explores the strong relationship between stationarity and circularity of a
random process through definitions of circularity and stationarity with varying degrees
of assumptions on the properties of the process.

In our introduction to complex random processes, we focus on discrete-time pro-
cesses and primarily use the notations and terminology adopted by [81] and [91].
The covariance function for a complex discrete-time random process X(n) is written as

c(n, m) ¼ E{X(n)X�(m)}� E{X(n)}E{X�(m)}

and the correlation function as EfX(n)X�(m)g.
To completely define the second-order statistics, as in the case of random variables,

we also define the pseudo-covariance function [81]—also called the complementary
covariance [101] and the relation function [91]—as

p(n, m) ¼ E{X(n)X(m)}� E{X(n)}E{X(m)}:

In the sequel, to simplify the expressions, we assume zero mean random processes,
and hence, the covariance and correlation functions coincide.

Stationarity and Circularity Properties of Random Processes A
random signal X(n) is stationary if all of its statistical properties are invariant to any
given time shift (translations by the origin), or alternatively, if the family of
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distributions that describe the random process as a collection of random variables are
all invariant to any time shift. As in the case of a random variable, the distribution for
a complex random process is defined as the joint distribution of real and imaginary
parts of the process.

For second-order stationarity, again we need to consider the complete characteriz-
ation using the pseudo-covariance function.

A complex random process X(n) is called wide sense stationary (WSS) if EfX(n)g ¼ mx,
is independent of n and if

E{X(n)X�(m)}¼ r(n� m)

and it is called second-order stationary (SOS) if it is WSS and in addition, its pseudo-
covariance function satisfies and

E{X(n)X(m)}¼ p(n� m)

that is, it is a function of the time difference n 2 m.

Obviously, the two definitions are equivalent for real-valued signals and second-order
stationarity implies WSS but the reverse is not true. In [81], second-order stationarity
is identified as circular WSS and a WSS process is defined as an SOS process.

Let X(n) be a second-order zero mean stationary process. Using the widely-linear
transform for the scalar-valued random process X(n), X̄C(n) ¼ [X(n) X�(n)]T we
define the spectral matrix of X̄C(n) as the Fourier transform of the covariance function
of X̄C(n) [93], which is given by

CC( f ) W F{E{X̄C(n)X̄
H
C (n)}} ¼

C( f ) P( f )
P�(�f ) C(�f )

� �

and where C( f ) and P( f ) denote the Fourier transforms of the covariance and pseudo-
covariance functions of X(n), that is, of c(k) and p(k) respectively.

The covariance function is nonnegative definite and the pseudo-covariance
function of a SOS process is symmetric. Hence its Fourier transform also satisfies
P( f ) ¼ P(2f ). Since, by definition, the spectral matrix CC( f ) has to be nonnegative
definite, we obtain the condition

jP( f )j2 � C( f )C(� f )

from the condition for nonnegative definiteness of CC( f ). The inequality also states
the relationship between the power spectrum C( f ) and the Fourier transform of a
pseudo-covariance function.

A random process is called second-order circular if its pseudo-covariance function

p(k) ¼ 0, 8k

a condition that requires the process to be SOS.
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Also, it is easy to observe that an analytic signal constructed from a WSS real signal is
always second-order circular, since for an analytic signal we have C( f ) ¼ 0 for f , 0,
which implies that P( f ) ¼ 0. An analytic signal corresponding to a nonstationary real
signal is, on the other hand, in general noncircular [93].

B EXAMPLES

In Figure 1.3, we show scatter plots of three random processes: (1) a circular
complex autoregressive (AR) process driven by a circular Gaussian signal; (2) a
16 quadrature amplitude modulated (QAM) signal; and (3) a noncircular complex
AR process driven by a circular Gaussian signal. The processes shown in
the figure are circular, second-order circular, and noncircular respectively.
The corresponding covariance and pseudo-covariance functions [c(k) and p(k)]
are shown in Figure 1.4, which demonstrate that for the first two processes, the
pseudo-covariance function is zero since both are second-order circular.

Note that even though the 16-QAM signal is second-order circular, it is not
circular as it is not invariant to phase rotations. A binary phase shift keying
signal, on the other hand, is noncircular when interpreted as a complex signal,
and since the signal is actually real valued, its covariance and pseudo-covariance

Figure 1.3 Scatter plots for a strictly (a) circular, (b) second-order circular 16-QAM,
and (c) noncircular AR process.

Figure 1.4 Covariance and pseudo-covariance function plots for the strictly
(a) circular, (b) second-order circular 16-QAM, and (c) noncircular AR processes
shown in Figure 1.3.
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functions are the same. Hence, it has a non-zero pseudo-covariance function thus
quantitatively verifying its noncircular nature.

In Figures 1.5 and 1.6, we show examples of real-world signals where the
samples within each data set are normalized to zero mean and unit variance. The
scatter plot of a sample of wind data obtained from http://mesonet.agron.iastate.
edu is shown in Figure 1.5 along with its covariance and pseudo-covariance
functions. The data are interpreted as complex by combining its strength as the
magnitude and direction as the phase information. As observed from the scatter
plot as well as its nonzero pseudo-covariance function, the signal is noncircular.
Two more samples are shown in Figure 1.6. The example in Figure 1.6a shows

Figure 1.6 Scatter plots of (a) a circular (radar) data and (b) a noncircular
(fMRI) data.

Figure 1.5 (a) Scatter plot and the (b) covariance and pseudo-covariance function
plots for a sample wind data.
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a sample Ice Multiparameter Imaging X-Band Radar (IPIX) data from the website
http://soma.crl.mcmaster.ca/ipix/. As observed in the figure, the data have
circular characteristics. In Figure 1.6b, we show the scatter plot of a functional
MRI data volume. The paradigm used in the collection of the data is a simple
motor task with a box-car type time-course, that is, the stimulus has periodic on
and off periods. Since fMRI detects intensity changes, to evaluate the value of
the fMRI signal at each voxel, we have calculated the average difference between
the intensity values during the period the stimulus was “on” and “off” as a function
of time. The scatter plot suggests a highly noncircular signal. The noncircular
nature of fMRI data is also noted in [47] as the a large signal change in magnitude
is noted as being accompanied by a corresponding change in the phase. Even
though in these examples we have based the classifications on circular nature on
simple visual observations, such a classification can be statistically justified by
using a proper measure of noncircularity and a statistical test such as the general-
ized likelihood ratio test [100, 102].

As demonstrated by these examples, noncircular signals commonly arise in
practice even though circularity has been a common assumption for many signal
processing problems. Thus, we emphasize the importance of designing algorithms
for the general case where signals may be noncircular and not to make assumptions
such as circularity.

1.3 OPTIMIZATION IN THE COMPLEX DOMAIN

Most problems in signal processing involve the optimization of a real-valued
cost function, which, as we noted, is not differentiable in the complex domain.
Using Wirtinger calculus, however, we can relax the stringent requirement for
differentiability (complex differentiability) and when the more relaxed condition of
real differentiability is satisfied, can perform optimization in the complex domain in
a way quite similar to the real domain. In this section, we provide the basic relation-
ships that enable the transformation between the real and the complex domains and
demonstrate how they can be used to extend basic update rules to the complex
domain. We first provide a basic review of first- and second-order learning rules in
the real domain and then discuss the development of appropriate tools in CN.

1.3.1 Basic Optimization Approaches in RN

Most signal processing applications use an iterative optimization procedure to deter-
mine the parameter vector w for a given nonlinear function f (w): RN 7! R that
cannot be directly solved for w. We start with an initial guess for the parameter
vector (weights) w(0) [ RN and generate a sequence of iterations for the weights as
w(1), w(2), . . . , w(n) such that the cost function f (w) decreases (increases) until it
reaches a local minimum (maximum). At each iteration n (or typically time index
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for most signal processing applications), the weights are updated such that

w(nþ 1) ¼ w(n)þ m d(n)

where m is the stepsize and d(n) is the line search direction, that is, the update vector.
Without loss of generality, if we consider a minimization problem, both m and d(n)
should be chosen such that f [w(n þ 1)] , f [w(n)]. In the derivation of the form of
the update vector d(n), Taylor series expansions discussed in Section 1.2.4 play a
key role.

To derive the gradient descent (also called the steepest descent) updates for the
minimization of f (w), we write the first-order Taylor series expansion of f (w) at
w(n þ 1) as

f [w(nþ 1)] ¼ f [w(n)]þ hmd(n), rw(n) f i

where rw(n) f is the gradient vector of f (.) at w(n). The inner product between the
gradient and the update vector is written as

hd(n), rw(n) f i ¼ dT (n)rw(n) f ¼ kd(n)kkrw(n) f k cos u

where u is the angle between the two vectors. Thus, for a fixed stepsize m and magni-
tude of d(n), maximum decrease in f [w(n)] is achieved when d(n) and rw(n) f are in
reverse directions yielding the gradient descent update rule

w(nþ 1) ¼ w(n)� mrw(n) f :

Newton method, on the other hand, assumes that the function can be locally
approximated as a quadratic function in the region around the optimum. Thus, to
derive the Newton update, we write the Taylor series expansion of f [w(n þ 1)] up
to the second order as

f [w(nþ 1)] ¼ f [w(n)]þ dT (n)rw(n) f þ
1
2

dT (n)H[w(n)]d(n)

¼ f [w(n)]þ hrw(n) f , d(n)i þ
1
2
hH[w(n)]d(n), d(n)i

where H[w(n)] W r2
w(n) f is the Hessian matrix of f (w) at w(n) and the stepsize m is set

to 1. Setting the derivative of this expansion [with respect to d(n)] to zero, we obtain

rw(n) f þH[w(n)]d(n) ¼ 0 (1:22)

as the necessary condition for the optimum function change. The optimum direction

d(n) ¼ �(H[w(n)])�1rw(n)f (1:23)
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is called the Newton direction if H[w(n)] is nonsingular. Newton method converges
quadratically to a local optimum if w(0) is sufficiently close to this point and if the
Hessian is positive definite. However, the method faces difficulties when the quadratic
approximation is not a reasonable one at the current weight update and/or the Hessian
is not positive definite. Thus a number of modifications have been proposed to the
Newton method, such as performing a line search along the Newton direction,
rather than using the stepsize that minimizes the quadratic model assumption. More
importantly, a number of procedures are introduced that use an approximate
Hessian rather than the actual Hessian that allow better numerical properties. These
include the Davidon–Fletcher–Powell (DFP) method and the Broyden–Fletcher–
Goldfarb–Shanno (BFGS) method [82].

Another approach is to solve (1.22) iteratively, which is desirable also when
the dimensionality of the problem is high and/or the numerical properties of the
Hessian are known to be poor. For the task, we can employ the well known conjugate
gradient algorithm, which generates a sequence d(1), d(2), . . . , d(k) such that d(k)
converges to the optimal direction 2(H[w(n)])21

rw(n) f.
A set of nonzero vectors [c(0), c(1), . . . , c(n)] are said to be conjugate with respect

to a symmetric positive definite matrix A if

cT (k)Ac(l) ¼ 0, for all k = l

where, in this case A ¼ H[w(n)].
It can be shown that for any d(0) [ RN, the sequence d(k) generated by the conju-

gate direction algorithm as

d(k þ 1) ¼ d(k)þ akc(k)

a(k) ¼ �
qT (k)c(k)

cT (k)H[w(n)]c(k)

q(k) ¼ rw(n) f þH[w(n)]d(k)

converges to the optimal solution at most N steps. The question that remains is how
to construct the set of conjugate directions. Generally c(k) is selected to be a linear
combination of q(k) and the previous direction c(k 2 1) as

c(k) ¼ �q(k)þ b(k)c(k � 1)

where

b(k) ¼
qT (k)H[w(n)]c(k � 1)

cT (k � 1)H[w(n)]c(k � 1)

is determined by the constraint that c(k) and c(k 2 1) must be conjugate to the
Hessian matrix.
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1.3.2 Vector Optimization in C
N

Given a real-differentiable cost function f (w): CN 7! R, we can write f (w) ¼ f (w, w�)
and take advantage of Wirtinger calculus as discussed in Section 1.2.2. The first-order
Taylor series expansion of f (w, w�) is given by (1.18), and as discussed in Section
1.2.4, it is the gradient with respect to the conjugate of the variable that results
in the maximum change for the complex case. Hence, the updates for gradient
optimization of f is written as

Dw ¼ w(nþ 1)� w(n) ¼ �mrw�(n) f : (1:24)

The update given in (1.24) leads to a nonpositive increment, D f ¼ �2mkrw(n) f k2,
while the update that uses Dw ¼ �mrw(n)f , leads to changes of the form
D f ¼ �2mRe{hrw�(n) f , rw(n) f i}, which are not guaranteed to be nonpositive.
Here, we consider only first-order corrections since m is typically very small.

The complex gradient update rule given in (1.24) can be also derived through
the relationship given in the following proposition, which provides the connection
between the real-valued and the complex-valued gradients. Using the mappings
defined in Table 1.2 (Section 1.2.3) and the linear transformations among them, we
can extend Wirtinger derivatives to the vector case both for the first- and second-
order derivatives as stated in the following proposition.

Proposition 1 Given a function f (w, w�): CN
� CN 7! R that is real differentiable

up to the second-order. If we write the function as f (w̄R): R2N 7! R using the defi-
nitions for w̄C and w̄R given in Table 1.2 we have

@f

@w̄R
¼ UH @f

@w̄�C
(1:25)

@2f

@w̄R@w̄T
R

¼ UH @2f

@w̄�C@w̄
T
C

U (1:26)

where U ¼
I jI
I �jI

� �

:

Proof 1 Since we have UUH ¼ 2I, w̄C ¼ Uw̄R and w̄R ¼
1
2 UHw̄C. We can thus

write the two Wirtinger derivatives given in (1.5) in vector form as

@f

@w̄C
¼

1
2

U�
@f

@w̄R

in a single equation. Rewriting the above equality as

@f

@w̄R
¼ UT @f

@w̄C
¼ UH @f

@w̄�C
(1:27)

we obtain the first-order connection between the real and the complex gradient.
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Taking the transpose of the first equality in (1.27), we have

@f

@w̄T
R

¼
@f

@w̄T
C

U: (1:28)

We regard the kth element of the two row vectors in (1.28) as two equal scalar-valued
functions defined on w̄R and w̄C, and take their derivatives to obtain

@
@f

@w̄T
R

� �

k

@w̄R
¼ UT

@
@f

@w̄T
C

U
� �

k

@ w̄C
:

We can then take the conjugate on each side and write the equality in vector form as

@2f

@w̄R@w̄T
R

¼ UH @2f

@w̄�C@w̄
T
C

U ¼ UT @2f

@w̄C@w̄T
C

U

to obtain the second-order relationship given in (1.26).

The second-order differential relationship for vector parameters given in (1.26) is
first reported in [111] but is defined with respect to variables ~wR and ~wC using
element-wise transforms given in Table 1.2. Using the mapping w̄C as we have
shown here rather than the element-wise transform enables one to easily reduce the
dimension of problem from C2N to CN . The second-order Taylor series expansion
using the two forms ( ~wC and w̄C) are the same, as expected, and we can write
using either ~wC or w̄C

Df � Dw̄T
C

@f

@w̄C
þ

1
2
D w̄H

C

@2f

@w̄�C @w̄
T
C

Dw̄C (1:29)

as in (1.19), a form that demonstrates the fact that the C2N�2N Hessian in (1.29) can be
decomposed into three CN�N Hessians which are given in (1.17).

The two complex-to-real relationships given in (1.25) and (1.26) are particularly
useful for the derivation of update rules in the complex domain. Next, we show
their application in the derivation of the complex gradient and the complex Newton
updates, and note the connection to the corresponding update rules in the real domain.

Complex Gradient Updates Given a real-differentiable function f as defined
in Proposition 1, the well-known gradient update rule for f (w̄R) is

Dw̄R ¼ �m
@f

@w̄R

which can be mapped to the complex domain using (1.25) as

Dw̄C ¼ UDw̄R ¼ �mU
@f

@w̄R
¼ �2m

@f

@w̄�C
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The dimension of the update equation can be further decreased as

Dw
Dw�

� �

¼ �2m

@f

@w�

@f

@w

2

6

6

4

3

7

7

5

)Dw ¼ �2m
@f

@w�
:

Complex Newton Updates

Proposition 2 Given function f (.) defined in Proposition 1, Newton update in R2N

given by

@2f

@w̄R@w̄T
R

Dw̄R ¼ �
@f

@w̄R
(1:30)

is equivalent to

Dw ¼ �(H�2 �H�1H�1
2 H1)�1 @f

@w�
�H�1H�1

2
@f

@w

� �

(1:31)

in C
N, where

H1 W
@2f

@w@wT
and H2 W

@2f

@w@wH
: (1:32)

Proof 2 By using (1.25) and (1.26), the real domain Newton updates given in (1.30)
can be written as

@2f

@w̄�C@w̄
T
C

Dw̄C ¼ �
@f

@w̄�C

which can then put into the form

H�2 H�1
H1 H2

� �

Dw
Dw�

� �

¼ �

@f

@w�

@f

@w

2

6

6

4

3

7

7

5

where H1 and H2 are defined in (1.32).

We can use the formula for the inverse of a partitioned positive definite matrix ([49],

p. 472) when the nonnegative definite matrix
@2f

@w̄�C@w̄
T
C

is positive definite, to write

Dw
Dw�

� �

¼ �
T�1 �H��2 H�1T��

�T��H1H��2 T��

� �

@f

@w�

@f

@w

2

6

6

4

3

7

7

5
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where T W H�2 �H�1H�1
2 H1 and (�)�� denotes [(�)�]�1. Since

@2f

@w̄�C@w̄
T
C

is Hermitian,

we finally obtain the complex Newton’s method given in (1.31). The expression for
Dw� is the conjugate of (1.31).

In [80], it has been shown that the Newton algorithm for N complex variables
cannot be written in a form similar to the real-valued case. However, as we have
shown, by including the conjugate of N variables, it can be written as shown in
(1.31), a form that is equivalent to the Newton method in R2n. This form is also
given in [110] using the variables ~wR and ~wC, which is shown to lead to the
form given in (1.31) using the same notation in [64]. Also, a quasi-Newton update
is given in [117] by setting the matrix H1 to a zero matrix, which might not define a
descent direction for every case, as also noted in [64].

1.3.3 Matrix Optimization in C
N

Complex Matrix Gradient Gradient of a matrix-valued variable can also
be written similarly using Wirtinger calculus. For a real-differentiable f (W, W�):
C

N�N
� C

N�N
7! R, we recall the first-order Taylor series expansion given in (1.20)

Df � DW,
@f

@W�


 �

þ DW�,
@f

@W


 �

¼ 2Re DW,
@f

@W�


 �� 

(1:33)

where
@f

@W
is an N � N matrix whose (m, n)th entry is the partial derivative of f with

respect to wmn. As in the vector case, the matrix gradient with respect to the conjugate
@f

@W�
defines the direction of the maximum rate of change in f with respect to the

variable W.

Complex Relative Gradient Updates We can use the first-order Taylor
series expansion to derive the relative gradient update rule [21] for complex matrix
variables, which is usually directly extended to the complex case without a derivation
[9, 18, 34]. To write the relative gradient rule, we consider an update of the parameter
matrix W in the invariant form G(W)W [21]. We then write the first-order Taylor
series expansion for the change of the form G(W)W as

Df � G(W)W,
@f

@W�


 �

þ G(W�)W�,
@f

@W


 �

¼ 2Re G(W),
@f

@W�
WH


 �� 
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to determine the quantity that maximizes the rate of change in the function. Using the
Cauchy–Bunyakovskii–Schwarz inequality, it is clear that G(W) has to be in the

same direction as
@f

@W�
WH to maximize the change. Therefore we define the complex

relative gradient of f (.) at W as
@f

@W�
WH to write the relative gradient update term as

DW ¼ �mG(W)W ¼ �m
@f

@W�
WHW: (1:34)

Upon substitution of DW into (1.33), we observe that Df ¼ �2mk(@f =@W�)WHk2Fro,
that is, it is a nonpositive quantity, thus a proper update term.

Complex Matrix Newton Update To derive the matrix Newton update rule,
we need to write the Taylor series expansion up to the second order with respect to
matrix variables. However, since the variables are matrix quantities, the resulting
Hessian in this case is a tensor with four indices.

The Taylor series expansion up to the second order can be written as

Df �
X

m,n

@f

@wmn
dwmn þ

X

m,n

@f

@w�mn

dw�mn þ
X

m,n

X

k,l

@2f

@wmn@w�kl

dwmn dw�kl

þ
1
2

X

m,n

X

k,l

@2f

@wmn@wkl
dwmn dwkl þ

1
2

X

m,n

X

k,l

@2f

@w�mn@w
�
kl

dw�mn dw�kl:

For the update of a single element wmn, the Newton update rule is derived by taking
the partial derivatives of the Taylor series expansion with respect to the differential
dwmn and setting it to zero

@(Df )
@(dwmn)

¼
@f

@wmn
þ
X

k,l

@2f

@wmn@wkl
dwkl þ

@2f

@wmn@w�kl

dw�kl

� �

¼ 0 (1:35)

where we have given the expression in element-wise form in order to keep the
notation simple.

The solution of Newton equation in (1.35) thus yields the element-wise matrix
Newton update rule for wmn. In certain applications, such as independent component
analysis, the Newton equation given in (1.35) can be written in a compact matrix form
instead of the element-wise form given here. This point will be illustrated in Section
1.6.1 in the derivation of complex Newton updates for maximum likelihood indepen-
dent component analysis.

1.3.4 Newton–Variant Updates

As we have shown in Section 1.3.2, equations (1.25) and (1.26) given in Proposition 1
play a key role in the derivation of the complex gradient and Newton update rules.
Also, they can be used to extend the real-valued Newton variations that are proposed
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in the literature to the complex domain such that the limitations of the Newton method
can be mitigated.

Linear Conjugate Gradient (CG) Updates For the Newton’s method
given in (1.3.1), in order to achieve convergence, we require the search direction
Dw̄R to be a descent direction when minimizing a given cost function. This is the case

when the Hessian
@2f

@w̄R@w̄T
R

is positive definite. However, when the Hessian is not

positive definite, Dw̄R may be an ascent direction. The line search Newton-CG
method is one of the strategies for ensuring that the update is of good quality.
In this strategy, we solve (1.30) using the CG method, terminating the updates

if Dw̄T
R

@2f

@w̄R@w̄T
R

� �

Dw̄R � 0.

In general, a complex-valued function is defined in CN . Hence, writing it in the
form f (w, w�) is much more straightforward than converting it to a function of the
2N dimensional real variable as in f (w̄R). Using a procedure similar to the derivation
of complex gradient and Newton updates, the complex-valued CG updates can be
derived using the real-valued version given in Section 1.3.1. Using (1.25) and
(1.26), and defining s W @f =@w�, the complex CG method can be derived as:

Complex Conjugate Gradient Updates

Given an initial gradient s(0);
Set x(0) = 0, c(0) = 2s(0), k = 0;
while js(k)j= 0

a(k) ¼
sH(k)s(k)

Re{cT(k)H2c�(k)þ cT(k)H1c(k)}
;

x(k þ 1) ¼ x(k)þ a(k)c(k);
s(k þ 1) ¼ s(k)þ a(k)(H�2c(k)þH�1c�(k));

b(k þ 1) ¼
sH(k þ 1)s(k þ 1)

sH(k)s(k)
;

c(k þ 1) ¼ �s(k þ 1)þ b(k þ 1)c(k);
k ¼ k þ 1;

end(while)
where H1 and H2 is defined in (1.32).
The complex line search Newton-CG algorithm is given as:

for k = 0,1,2,. . .
Compute a search direction Dw by applying the

complex CG update rule, starting at x(0)= 0.
Terminate when Re{cT(k)H2c�(k)þ cT(k)H1c(k)} � 0;
Set w(k + 1)= w(k)+ mDw, where m satisfies a complex

Wolfe condition.
end
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The complex Wolfe condition [82] can be easily obtained from the real Wolfe
condition using (1.25). It should be noted that the complex CG algorithm is a linear
version. It is straightforward to obtain a nonlinear version based on the linear version
as shown in [82] for the real case.

Other Newton Variant Updates As shown for the derivation of complex
gradient and Newton update rules, we can easily obtain complex versions of other real
Newton variant methods using (1.25) and (1.26). In [70], this is demonstrated for the
real-valued scaled conjugate gradient (SCG) method [79]. SCG belongs to the class of
CG methods and shows superlinear convergence in many optimization problems.

When the cost function takes a least-squares form, a complex version of the Gauss–
Newton algorithm can be developed as in [64]. In the Gauss–Newton algorithm, the
original Hessian matrix in the Newton update is replaced with a Gauss–Newton
Hessian matrix, which has better numerical properties hence providing better perform-
ance. For more general cost functions, BFGS is a popular and efficient Newton variant
method [82] and can be extended to the complex domain similarly.

1.4 WIDELY LINEAR ADAPTIVE FILTERING

As discussed in Section 1.2.5, in order to completely characterize the second-order
statistics of a complex random process, we need to specify both the covariance and
the pseudo-covariance functions. Only when the process is circular, the covariance
function is sufficient since the pseudo-covariance in this case is zero. A fundamental
result in this context, introduced in [94], states that a widely linear filter rather than the
typically used linear one provides significant advantages in minimizing the mean-
square error when the traditional circularity assumptions on the data do not hold.
A widely linear filter augments the data vector with the conjugate of the data, thus
providing both the covariance and pseudo-covariance information for a filter designed
using a second-order error criterion.

The assumption of circularity is a limiting assumption as, in practice, the real and
imaginary parts of a signal typically will have correlations and/or different variances.
One of the reasons for the prevalence of the circularity assumption in signal processing
has been due to the inherent assumption of stationarity of signals. Since the complex
envelope of a stationary signal is second-order circular [91], circularity is directly
implied in this case. However many signals are not stationary, and a good number
of complex-valued signals such as fMRI and wind data as shown in Section 1.2.5,
do not necessarily have circular distributions. Thus, the importance of widely linear
filters started to be noted and widely linear filters have been proposed for applications
such as interference cancelation, demodulation, and equalization for direct sequence
code-division-multiple-access systems and array receivers [23, 56, 99] implemented
either in direct form, or computed adaptively using the least-mean-square (LMS)
[99] or recursive least squares (RLS) algorithms [55]. Next, we present the widely
linear mean-square error filter and discuss its properties, in particular when computed
using LMS updates as discussed in [5]. We use the vector notation introduced in

40 COMPLEX-VALUED ADAPTIVE SIGNAL PROCESSING



Section 1.2.3 which allows direct extension of most main results of a linear filter to the
widely linear one.

1.4.1 Linear and Widely Linear Mean-Square Error Filter

A linear filter approximates the desired sequence d(n) through a linear combination of
a window of input samples x(n) such that the estimate of the desired sequence is

y(n) ¼ wHx(n)

where the input vector at time n is written as x(n) ¼ [x(n) x(n� 1) � � � x(n� N þ 1)]T

and the filter weights as w ¼ [w0 w1 � � � wN�1]T . The minimum mean-square error
(MSE) filter is designed such that the error

JL(w) ¼ E{je(n)j2} ¼ E{jd(n)� y(n)j2}

is minimized. To evaluate the weights wopt given by

wopt ¼ arg min
w

JL(w)

we can directly take the derivative of the MSE with respect to w� (by treating the vari-
able w as a constant)

@E{e(n)e�(n)}
@w�

¼
@E{[d(n)� wHx(n)][d�(n)� wT x�(n)]}

@w�

¼ �E{x(n)[d�(n)� wT x�(n)]} (1:36)

and obtain the complex Wiener–Hopf equation

E{x(n)xH(n)}wopt ¼ E{d�(n)x(n)}

by setting (1.36) to zero. For simplicity, we assume that the input is zero mean so that
the covariance and correlation functions coincide. We define the input covariance
matrix C ¼ E{xxH} and the cross-covariance vector p ¼ E{d�(n)x}, to write

wopt ¼ C�1p

when the input is persistenly exciting, that is, the covariance matrix is nonsingular,
which is typically the case and our assumption for the rest of the discussion in
this section.
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We can also compute the weight vector w adaptively using gradient descent updates
as discussed in Section 1.3.2

w(nþ 1) ¼ w(n)� m
@JL(w)
@w�(n)

¼ w(n)þ mE{e�(n)x(n)}

or using stochastic gradient updates as in

w(nþ 1) ¼ w(n)þ me�(n)x(n)

which leads to the popular least-mean-square (LMS) algorithm [113]. For both
updates, m . 0 is the stepsize that determines the trade-off between the rate of conver-
gence and the minimum error JL(wopt).

Widely Linear MSE Filter A widely linear filter forms the estimate of d(n)
through the inner product

yWL(n) ¼ vH x̄(n) (1:37)

where the weight vector v ¼ [v0 v1 � � � v2N�1]T , that is, it has double dimension
compared to the linear filter and

x̄(n) ¼
x(n)
x�(n)

� �

as defined in Table 1.2 and the MSE cost in this case is written as

JWL(w) ¼ E{jd(n)� yWL(n)j2}:

As in the case for the linear filter, the minimum MSE optimal weight vector is the
solution of

@JWL(v)
@v�

¼ 0

and results in the widely linear complex Wiener–Hopf equation given by

E{x̄(n)x̄H(n)}vopt ¼ E{d�(n)x̄(n)}:

We can solve for the optimal weight vector as

vopt ¼ C̄
�1

p̄
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where

C̄ ¼ E{x̄(n)x̄H(n)} ¼
C P
P� C�

� �

and

p̄ ¼ E{d�(n)x̄(n)} ¼
p
q�

� �

with the definition of the pseudo-covariance matrix P ¼ E{x(n)xT (n)} and the pseudo
cross covariance vector q ¼ E{d(n)x(n)} in addition to the definitions for C and p
given earlier for the linear MSE filter. Matrix C̄ provides the complete second-order
statistical characterization for a zero-mean complex random process and is called
the augmented covariance matrix.

The minimum MSE value for the two linear models can be calculated as

JL,min W JL(wopt) ¼ E{jd(n)j2}� pHC�1p

JWL,min W JWL(vopt) ¼ E{jd(n)j2}� p̄HC̄
�1

p̄
(1:38)

and the difference between the two is given by [94]

Jdiff ¼ JL,min � JWL,min

¼ (q� � P�C�1p)
H

(C� � P�C�1P)
�1

(q� � P�C�1p): (1:39)

Since the covariance matrix C is assumed to be nonsingular and thus is positive
definite, the error difference Jdiff is always nonnegative. When the joint-circularity
condition is satisfied, that is, when P ¼ 0 and q ¼ 0, the performance of the two filters,
the linear and the widely linear filter, coincide, and there is no gain in using a widely
linear filter. It can be shown that the performance of the two filters can be equal even
for cases where the input is highly noncircular (see Problems 1.6 and 1.7). However,
when certain circularity properties do not hold, widely linear filters provide important
advantages in terms of performance [23, 94, 101] by including the complete statistical
information.

Widely Linear LMS Algorithm The widely linear LMS algorithm is written
similar to the linear case as

v(nþ 1) ¼ v(n)þ me�(n)x̄(n) (1:40)

where m is the stepsize and e(n) ¼ d(n)� vH(n)x̄(n).
The study of the properties of the LMS filter, which was introduced in 1960 [114],

has been an active research topic and a thorough account of these is given in [43] based
on the different types of assumptions that can be invoked to simplify the analysis. With
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the augmented vector notation, most of the results for the behavior of the linear LMS
filter can be readily extended to the widely linear one.

The convergence of the LMS algorithm depends on the eigenvalues of the input
covariance matrix, which in the case of a widely linear LMS filter, is replaced by
the eigenvalues of the augmented covariance matrix. A main result in this context
can be described through the natural modes of the LMS algorithm [16, 43] as follows.

Define 1(n) as the weight vector error difference 1(n) ¼ v(n)� vopt and let the
desired response be written as

d(n) ¼ vH
optx̄(n)þ e0(n):

When the noise term e0 (n) is strongly uncorrelated with the input, that is, uncorrelated
with x(n) and its conjugate, we have

E{1(nþ 1)} ¼ (I� m �C)E{1(n)}

We introduce the rotated version of the weight vector error difference 10(n) ¼ QH1(n)
where Q is the unitary matrix composed of the eigenvectors associated with the eigen-
values of C̄, that is, we assume that the augmented covariance matrix is written

through the unitary similarity transformation C̄ ¼ Q �LQH . The mean value of the
natural mode 1k(n), that is, the kth element of vector 10(n) can then be written as

E{10k(n)} ¼ 10k(0)(1� m �lk)n (1:41)

where �lk is the kth eigenvalue of C̄.
Thus for the convergence of LMS updates to the true solution in the mean, the step-

size has to be chosen such that

0 , m ,
2

�lmax

where �lmax is the maximum eigenvalue of the augmented covariance matrix C̄. Also,
as is evident from the expression given in (1.41), small eigenvalues significantly slow
down the convergence in the mean. These conclusions hold for the linear LMS filter
by simply replacing the eigenvalues of C̄ by the the eigenvalues of C, lks.

A measure typically used for measuring the eigenvalue disparity of a given matrix
is the condition number (or the eigenvalue spread), which is written as

k(C) ¼
lmax

lmin

for a Hermitian matrix C, a property satisfied by the covariance and augmented
covariance matrices.
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When the signal is circular, the augmented covariance matrix assumes the block
diagonal form

C̄circ ¼
C 0
0 C�

� �

and has eigenvalues that occur with even multiplicity. In this case, the conditioning of
the augmented covariance matrix C̄ and C are the same. As the noncircularity of the
signal increases, the values of the entries of the pseudo covariance matrix moves away
from zero increasing the condition number of the augmented covariance matrix C̄, thus
the advantage of using a widely linear filter for noncircular signals comes at a cost
when the LMS algorithm is used when estimating the widely linear MSE solution.
An update scheme such as recursive least squares algorithm [43] which is less sensi-
tive to the eigenvalue spread can be more desirable in such cases. In the next example,
we demonstrate the impact of noncircularity on the convergence of LMS algorithm
using a simple input model.

B EXAMPLE 1.5

Define a random process

X(n) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p

Xr(n)þ jrXi(n) (1:42)

where Xr(n) and Xi(n) are two uncorrelated real-valued random processes, both
Gaussian distributed with zero mean and unit variance. By changing the value
of r [ [0, 1], we can change the degree of noncircularity of X(n) and for
r ¼ 1=

ffiffiffi

2
p

, the random process X(n) becomes circular. Note that since second-
order circularity implies strict-sense circularity for Gaussian signals, this model
lets us to generate a circular signal as well.

If we define the random vector X(n) ¼ [X(n)X(n� 1) � � � X(n� N þ 1)]T , we
can show that the covariance matrix of X(n) is given by C ¼ I, and the pseudo
covariance matrix as P ¼ (1� 2r2)I. The eigenvalues of the augmented covari-
ance matrix C̄ can be shown to be 2r2 and 2(1� r2), each with multiplicity N.
Hence, the condition number is given by

k(C̄) ¼
1
r2
� 1

if r [ [0, 1=
ffiffiffi

2
p

] and by its inverse if r [ [1=
ffiffiffi

2
p

, 1].
In Figure 1.7, we show the convergence behavior of a linear and a widely linear

LMS filter with input generated using the model in (1.42) for identification of a
system with coefficients wopt,n ¼ a[1þ cos(2p(n� 3)=5]� j[1þ cos(2p(n� 3)=
10)]), n ¼ 1, . . . , 5, and a is chosen so that the weight norm is unity (in this case,
a ¼ 0:432). The input signal to noise ratio is 20 dB and the step size is fixed at
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m ¼ 0:04 for all runs. In Figure 1.7a, we show the learning curve for a circular
input, that is, r ¼ 1=

ffiffiffi

2
p

, and in Figure 1.7b, with a noncircular input where
r ¼ 0:1. For the first case, the condition numbers for both C and C̄ are approxi-
mately unity whereas for the second case, k(C) � 1 but k(C̄) � 100. As expected,
when the input is noncircular, the convergence rate of the widely linear LMS filter
decreases. Since the lengths for the linear and widely linear filter are selected to
match that of the unknown system (as 5 and 10 respectively), as discussed in
Problem 6, both filters yield similar steady-state mean square error values.

In this example, even though the input is noncircular, the use of a widely linear filter
does not provide an additional advantage in terms of MSE, and in addition, the con-
vergence rate of the LMS algorithm decreases when the input is noncircular. Another
observation to note for Example 1.5 is that the steady-state error variance for the
widely linear filter is slightly higher compared to the linear filter. The steady-state
MSE for the widely linear LMS filter can be approximated as

JWL(1) ¼ JWL,min þ
mJWL,min

2

X

2N

k¼1

�lk

when the stepsize is assumed to be small. The steady-state error expression for the
linear LMS filter has the same form except the very last term, which is replaced by
PN

k¼1 lk where lk denotes the eigenvalues of C [43]. Since we have
P2N

k¼1
�lk ¼ Trace(C̄) ¼ 2Ns2 and

PN
k¼1lk ¼ Ns2 where s2 ¼ E{jX(n)j2}, com-

pared to the linear LMS filter, doubling the dimension for the widely linear filter
increases the residual mean-square error compared to the linear LMS filter as expected.
The difference can be eliminated by using an annealing procedure such that the step
size is also adjusted such that m(n)! 0 as n! 1.

Figure 1.7 Convergence of the linear and widely linear filter for a circular input

r ¼ 1
ffiffiffi

2
p

) (a) and a noncircular input (r ¼ 0.1) (b) for a linear finite impulse response
system identification problem.
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B EXAMPLE 1.6

In Figure 1.8, we show the learning curves for the linear and widely linear LMS
filters for a widely linear channel. All the settings for the simulation are the
same as those in Example 1.5 except that the unknown system output is given by

d(n) ¼ Re{wH
optx(n)}

and the filter coefficients wopt,n are selected as before.
As observed in the figures, for both the circular and noncircular cases, the

widely linear filter provides smaller MSEs, though its convergence is again
slower for the noncircular input due to the increased eigenvalue spread.

An interesting point to note in Example 1.6 is that the advantage of using a widely
linear filter—in terms of the minimum MSE that is achieved—is more pronounced
in this case for circular input, even though the advantages of widely linear filters
are, in general, emphasized for noncircular statistics.

For a circular input, the MSE gain by using a widely linear filter given in (1.39)
reduces to

Jdiff ¼ kqk2 ¼ kE{d(n) x(n)}k2

and is clearly nonzero for the widely linear system chosen in this example, as observed
in Figure 1.8 resulting in significant performance gain with the widely linear filter.

1.5 NONLINEAR ADAPTIVE FILTERING WITH MULTILAYER
PERCEPTRONS

Neural network structures such as multilayer perceptron (MLP) and the radial basis
function (RBF) filters have been successfully used for adaptive signal processing in

Figure 1.8 Convergence of the linear and widely linear filter for a circular input
(r ¼ 1=

ffiffiffi

2
p

) (a) and a noncircular input (r ¼ 0:1) (b) for the identification of a
widely linear system.
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the real domain for problems that require nonlinear signal processing capability [42].
Both the MLP and the RBF filters are shown to be universal approximators of any
smooth nonlinear mapping [30, 35, 51] and their use has been extended to the complex
domain, see for example [12, 14, 67, 108].

A main issue in the implementation of nonlinear filters in the complex domain has
been the choice of the activation function. Primarily due to stability considerations,
the importance of boundedness has been emphasized, and identified as a property
an activation function should satisfy for use in a complex MLP [36, 119]. Thus, the
typical practice has been the use of split-type activation functions, which are defined
in Section 1.2.1. Fully-complex activation functions, as we discuss next, are more
efficient in approximating nonlinear functions, and can be shown to be universal
approximators as well. In addition, when a fully-complex nonlinear function is used
as the activation function, it enables the use of Wirtinger calculus so that derivations
for the learning rules for the MLP filter can be carried out in a manner very similar to
the real-valued case, making many efficient learning procedures developed for the
real-valued case readily accessible in the complex domain. These results can be
extended to RBF filters in a similar manner.

1.5.1 Choice of Activation Function for the MLP Filter

As noted in Section 1.2.2, Liouville’s theorem states the conflict between the bound-
edness and differentiability of functions in the complex domain. For example, the tanh
nonlinearity that has been the most typically used activation function for real-valued
MLPs, has periodic singular points as shown in Figure 1.13.

Since boundedness is deemed as important for the stability of algorithms, a prac-
tical solution when designing MLP filters for the complex domain has been to
define nonlinear functions that process the real and imaginary parts separately through
bounded real-valued nonlinearities as defined in Section 1.2.1 and given for the
typically employed function tanh as

f (z) W tanh(x)þ j tanh(y) (1:43)

for a complex variable z ¼ xþ jy where tanh: R 7! R. The activation function can
also be defined through real-valued functions defined for the magnitude and phase
of z as introduced in [45]

f (z) ¼ f (re ju) W tanh
r

m

� �

e ju (1:44)

where m is any number different than 0. Another such activation function is proposed
in [36]

f (z) W
z

cþ jzj=d
(1:45)

where again c and d are arbitrary constants with d = 0. The characteristics of the acti-
vation functions given in (1.43)–(1.45) are shown in Figures 1.9–1.11. As observed
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in the figures, though bounded, none of these functions can provide sufficient dis-
crimination ability, the split function in (1.43) shown in Figure 1.9 provides a
decoupled real and imaginary response while those shown in Figures 1.10 and 1.11,
provide smooth radially symmetric magnitude responses and a phase response that
is simply linear. The responses of the real and imaginary parts for these two functions
are the same as in the case for the split function. In [61–63] examples in system identi-
fication and channel equation are provided to show that these functions cannot use the

Figure 1.9 (a) Magnitude, (b) phase, (c) real and (d) imaginary responses of the
split tanh function given in (1.43).

Figure 1.10 (a) Magnitude and (b) phase responses of the activation function given
in (1.44) for m ¼ 1.
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phase information effectively, and in applications that introduce significant phase dis-
tortion such as equalization of saturating type channels, are not effective as complex
domain nonlinear filters. Fully complex activation functions, or more simply, complex
analytic functions, on the other hand provide a much more powerful modeling ability
compared to split functions. It is worth noting that the universal approximation ability
of MLPs that employ split activation functions as given in (1.43) can be easily shown
by simply extending the universal approximation theorem from the real domain to the
complex one [10]. However, as we demonstrate in this section, they cannot make effi-
cient use of the available information.

In [63], a number of fully-complex—or simply analytic functions are proposed as
activation functions and it is shown by a number of recent examples that MLPs using
these activation functions provide a more powerful modeling ability compared to split
functions [38, 39, 41, 61–63]. These functions all have well-defined first-order deriva-
tives and squashing type characteristics that are generally required for nonlinear filters
to be used as global approximators, such as the MLPs. These functions can be divided
into four classes as

† Circular functions:

tan z ¼
e jz � e�jz

j(e jz � e�jz)
d

dz
tan z ¼ sec2 z

sin z ¼
e jz � e�jz

2j

d

dz
sin z ¼ cos z:

† Inverse circular functions:

atan z ¼

ð

z

0

dt

1þ t2

d

dz
atan z ¼

1
1þ z2

Figure 1.11 (a) Magnitude and (b) phase responses of the activation function given
in (1.45) for c ¼ d ¼ 1.
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asin z ¼

ð

z

0

dt

(1� t)1=2

d

dz
asin z ¼ (1� z2)�1=2

acos z ¼

ð

z

0

dt

(1� t2)1=2

d

dz
acos z ¼ �(1� z2)�1=2:

† Hyperbolic functions:

tanh z ¼
sinh z

cosh z
¼

ez � e�z

ez þ e�z

d

dz
tanh z ¼ sech2 z

sinh z ¼
ez � e�z

2
d

dz
sinh z ¼ cosh z:

† Inverse hyperbolic functions:

a tanh z ¼

ð

z

0

dt

1� t2

d

dz
a tanh z ¼

1
1� z2

a sinh z ¼

ð

z

0

dt

(1þ t2)1=2

d

dz
a sinh z ¼

1
1þ z2

:

The magnitude and phase characteristics of these functions are shown in Figures
1.12–1.16, and for the case of the atanh function, also the responses of real and ima-
ginary parts are shown to emphasize the variability of the responses of these functions
for real and imaginary parts when compared to the split type functions shown in
Figures 1.9–1.11. Note that hyperbolic functions and their trigonometric counterparts
(e.g., asinh and asin) have very similar responses except that they are p=2 rotated
versions of each other.

In [63], three types of approximation theorems are given for MLP networks
that use complex activation functions as those listed above from the trigonometric
and hyperbolic family. The theorems are based on type of singularity a function
possesses, as discussed in Section 1.2.2. The approximation theorems for the first
two classes of functions are very general and resemble the universal approximation
theorem for the real-valued feedforward MLP whereas the third approximation theo-
rem for the complex MLP is unique in that it is uniform only in the analytic domain of
convergence. As in the real case, the structure of the MLP network is a single hidden
layer network as shown in Figure 1.17 with nonlinear activation functions in the
hidden layer and a linear output layer. The three approximation theorems are given
as [63]:
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† MLPs that use continuous nonlinear activation functions without any singular
points can achieve universal approximation of any continuous nonlinear map-
ping over a compact set in CN . Note that these functions are not bounded, as
shown for the sinh function in Figure 1.16, but by bounding the region of interest
using scaling, for example, for range around the unit circle for the sinh function,
they can be used as activation functions and can provide good approximation as
demonstrated in [63].

Figure 1.12 (a) Magnitude, (b) phase, (c) real and (d) imaginary responses of atanh.

Figure 1.13 (a) Magnitude and (b) phase responses of tanh.
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† The second group of functions considered are those with bounded singularities,
such as branch cuts over a bounded domain and removable singularities.
Examples include the asinh and acosh functions—and their trigonometric
counterparts—which are all bounded complex measurable functions. It is
shown that MLP using activation functions with bounded singularities provides
universal approximation almost everywhere over a compact set in CN .

† Finally, the third theorem considers unbounded measurable activation functions,
that is, those with poles, such as tanh and atanh and their trigonometric counter-
parts, as well as non-measurable nonlinear activation functions, those with
essential singularity. For MLPs that use these activation functions, the approxi-
mation of any nonlinear mapping is uniform over the deleted annulus of
singularity nearest to the origin. If there are multiple singularities, the radius
of convergence is the shortest distance to a singularity from the origin.

Hence, complex functions such as trigonometric and hyperbolic functions can
be effectively used as activation functions, and when the MLP structure involves

Figure 1.14 (a) Magnitude and (b) phase responses of asinh.

Figure 1.15 (a) Magnitude and (b) phase responses of acosh.
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Figure 1.16 (a, c) Magnitude and (b, d) phase responses of sinh in two distinct ranges.
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Figure 1.17 A single hidden layer (M-N-K) MLP filter.
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such nonlinearities rather than the split type functions given in (1.43)–(1.45), the
update rules for the MLP can be derived in a manner very similar to the real case as
we demonstrate next for the derivation of the back-propagation algorithm.

1.5.2 Derivation of Back-Propagation Updates

For the MLP filter shown in Figure 1.17, we write the square error cost function as

J(V, W) ¼
X

K

k¼1

(dk � yk)(d�k � y�k )

where

yk ¼ h
X

N

n¼1

wknxn

 !

and

xn ¼ g
X

M

m¼1

vnmzm

 !

:

When both activation functions h(�) and g(�) satisfy the property [ f (z)]� ¼ f (z�), then
the cost function can be written as J(V, W) ¼ G(z)G(z�) making it very practical to
evaluate the gradients using Wirtinger calculus by treating the two variables z and
z� as independent in the computation of the derivatives. Any function f (z) that is ana-
lytic for jzj , R with a Taylor series expansion with all real coefficients in jzj , R
satisfies the property [ f (z)]� ¼ f (z�) as noted in [6] and [71].

Examples of such functions include polynomials and most trigonometric functions
and their hyperbolic counterparts (all of the functions whose characteristics are shown
in Figs. 1.12–1.16), which also provide universal approximation ability as discussed
in Section 1.5.1. In addition, the activation functions given in (1.43)–(1.45) that pro-
cess the real and imaginary or the magnitude and phase of the signals separately also
satisfy this property. Hence, there is no real reason to evaluate the gradients through
separate real and imaginary part computations as traditionally done. Indeed, this
approach can easily get quite cumbersome as evidenced by [12, 14, 39, 41, 62, 67,
107, 108, 118] as well as a recent book [75] where the development using
Wirtinger calculus is presented as an afterthought, with the result in [6] and [71]
that enables the use of Wirtinger calculus given without proper citation.

When the fully-complex functions introduced in Section 1.5.1 are used as acti-
vation functions as opposed to those given in (1.43)–(1.45), the MLP filter can
achieve significantly better performance in challenging signal processing problems
such as equalization of highly nonlinear channels [61, 62] both in terms of superior
convergence characteristics and better generalization abilities through the efficient
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representation of the underlying problem structure. The nonsingularities do not pose
any practical problems in the implementation, except that some care is required in
the selection of their parameters when training these networks.

For the MLP filter shown in Figure 1.17, where yk is the output and zm the input,
when the activations functions g(�) and h(�) are chosen as functions that are C 7! C,
we can directly write the back-propagation update equations using Wirtinger deriva-
tives as shown next.

For the output units, we have @yk=@w�kn ¼ 0, therefore

@J

@w�kn

¼
@J

@y�k

@y�k
@w�kn

¼
@[(dk � yk)(d�k � y�k )]

@y�k

@h
P

n w�knx�n
� �

@w�kn

¼ �(dk � yk)h0
X

n

w�knx�n

 !

x�n: (1:46)

We define dk ¼ �(dk � yk)h0
P

n w�knx�n
� �

so that we can write @J=@w�kn ¼ dkx�n.
For the hidden layer or input layer, first we observe the fact that vnm is connected to

xn for all m. Again, we have @yk=@v
�
nm ¼ 0, @xn=@v

�
nm ¼ 0. Using the chain rule once

again, we obtain

@J

@v�nm

¼
X

k

@J

@y�k

@y�k
@x�n

@x�n
@v�nm

¼
@x�n
@v�nm

X

k

@J

@y�k

@y�k
@x�n

¼ g0
X

m

v�nmz�m

 !

z�m
X

k

@J

@y�k

@y�k
@x�n

¼ g0
X

m

v�nmz�m

 !

z�m
X

k

�(dk � yk)h0
X

l

w�klx
�
l

 !

w�kn

 !

¼ z�mg0
X

m

v�nmz�m

 !

X

k

dkw�kn

 !

: (1:47)

Thus, (1.46) and (1.47) define the gradient updates for computing the hidden and
the output layer coefficients, wkn and vnm, through back-propagation. Note that the
derivations in this case are very similar to the real-valued case as opposed to the deri-
vations given in [12, 62, 67], where separate evaluations with respect to the real and
imaginary parts are carried out, and hence the steps in the derivations assume
more complicated forms. Also, the derivations for new learning rules such as those
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given in [38, 39, 41] can be considerably simplified by using Wirtinger derivatives. As
we demonstrate in the next example, the split activation functions are not efficient in
their use of the information when learning nonlinear mappings, and hence are not
desirable for use as activation functions.

B EXAMPLE 1.7

In Figure 1.18, we show the convergence characteristics of two MLP filters, one
using split tanh and a second one that uses the complex tanh as the activation
function. The input is generated using the same model as in Example 1.5 with
r ¼ 1=

ffiffiffi

2
p

and the nonlinear output of the system is given as d(n)þ 0:2d2(n)
where d(n) ¼ wH

optx(n) with the coefficients wopt selected as in Example 1.5. The
size of the input layer is chosen as 5 to match the memory of the finite impulse
response component of the system, and the filter has a single output. The stepsize
is chosen as 0.01 for both the split and the fully complex MLP filters and the
convergence behavior is shown for two different filter sizes, one with a filter
using 15 hidden nodes and a second one with 40 hidden nodes. As observed in
the figures, the MLP filter using a fully complex activation function produces
lower squared error value, however the performance advantage of the fully com-
plex filter decreases when the number of hidden nodes increases as observed in
Figure 1.18b.

The example demonstrates that the fully complex MLP filter is able to use infor-
mation more efficiently, however, the performance of the filter that uses a split-type
activation function can be improved by increasing the filter complexity. Note that
the universal approximation of MLP filters can be demonstrated for both filter
types, and the approximation result guarantees that the MLP structure can come

Figure 1.18 Performance of two (a) 5-15-1 and (b) 5-40-1 MLP filters for a nonlinear
system identification problem using split and fully-complex tanh activation functions.
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arbitrarily close to approximating any given mapping (subject to regularity conditions)
if the number of hidden nodes chosen is sufficiently large.

The results recently given in the literature using fully complex activation functions
suggest that they are promising solutions for challenging nonlinear signal processing
problems, and derivation of new learning rules as well as design or selection of such
activation functions is thus a research direction that deserves attention.

1.6 COMPLEX INDEPENDENT COMPONENT ANALYSIS

Independent component analysis (ICA) has emerged as an attractive analysis tool
for discovering hidden factors in observed data and has been successfully applied
to numerous signal processing problems in areas as diverse as biomedicine,
communications, finance, and remote sensing [54]. In order to perform ICA
of complex-valued data, there are a number of options. Algorithms such as joint
approximate diagonalization of eigenmatrices (JADE) [22] or those using second
order statistics [32, 65] achieve ICA without the need to use nonlinear functions in
the algorithm. The second-order complex blind source separation algorithm, strongly
uncorrelating transform (SUT) [32], though efficient, requires the sources to
be noncircular and have distinct spectral coefficients. Thus a second ICA algorithm
should be utilized after its application as a preprocessing step when the sources
happen to be circular [34]. JADE is based on the joint diagonalization of cumulant
matrices and is quite robust, however, its performance suffers as the number of
sources increases, and the cost of computing and diagonalizing cumulant
matrices becomes prohibitive for separating a large number of sources (see e.g.,
[69]). On the other hand, ICA approaches that use nonlinear functions, such
as maximum likelihood [89], information-maximization (Infomax) [11], nonlinear
decorrelations [25, 58], and maximization of non-Gaussianity (e.g., the FastICA algor-
ithm) [53], are all intimately related to each other and present an attractive alternative
for performing ICA. A number of comparison studies have demonstrated their desir-
able performance over other ICA algorithms such as JADE and second-order algor-
ithms. For example, in [29], this efficiency is observed for the ICA of fMRI and
fMRI-like data.

In the development of complex ICA algorithms with nonlinear functions, tradition-
ally the same approach discussed for MLPs in Section 1.5 has been followed and a
number of limitations have been imposed on the nature of complex sources either
directly, or indirectly through the selection of the nonlinear function. A number of
algorithms have used complex split nonlinear functions such that the real and imagin-
ary parts (or the magnitude and phase) of the argument are processed separately
through real-valued nonlinear functions [96, 103]. Another approach processes the
magnitude of the argument by a real-valued function [9, 13], thus limiting the algor-
ithm to circular sources. These approaches, while yielding satisfactory performance
for a class of problems, are not effective in generating the higher order statistics
required to establish independence for all possible source distributions.
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In this section based on the work in [6], we concentrate on the complex ICA
approaches that use nonlinear functions without imposing any limitations on the
type of source distribution and demonstrate how Wirtinger calculus can be used for
efficient derivation of algorithms and for working with probabilistic characterizations,
which is important in the development of density matching mechanisms that play a
key role in this class of ICA algorithms. We present the two main approaches for per-
forming ICA: maximum likelihood (ML) and maximization of non-Gaussianity
(MN). We discuss their relationship to each other and to other closely related
ICA approaches, and in particular note the importance of source density matching
for both approaches. We present extensions of source density matching mechanisms
for the complex case, and note a few key points for special classes of sources,
such as Gaussian sources, and those that are strictly second-order circular. We
present examples that clearly demonstrate the performance equivalence of ML- and
MN-based ICA algorithms when exact source matching is used for both cases.

In the development, we consider the traditional ICA problem such that

x ¼ As

where x, s [ CN and A [ CN�N, that is, the number of sources and observations are
equal and all variables are complex valued.

The sources si where s ¼ [s1, . . . , sN]T are assumed to be statistically independent
and the source estimates ui where u ¼ [u1, . . . , uN]T, are given by u ¼Wx. If the
mixtures are whitened and sources are assumed to have unit variance, WA approxi-
mates a permutation matrix when the ICA problem is solved, where we assume that
the mixing matrix is full rank. For the complex case, an additional component of
the scaling ambiguity is the phase of the sources since all variables are assumed to
be complex valued. In the case of perfect separation, the permutation matrix will
have one nonzero element. Separability in the complex case is guaranteed as long
as the mixing matrix A is of full column rank and there are no two complex
Gaussian sources with the same circularity coefficient [33], where the circularity
coefficients are defined as the singular values of the pseudo-covariance matrix of
the source random vector. This is similar to the real-valued case where second-
order algorithms that exploit the correlation structure in the mixtures use joint diago-
nalization of two covariance matrices [106].

1.6.1 Complex Maximum Likelihood

As in the case of numerous estimation problems, maximum likelihood theory provides
a natural formulation for the ICA problem. For T independent samples x(t) [ CN, we
can write the log-likelihood function as

L(W) ¼
X

T

t¼1

‘t(W),
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where

‘t(W) ¼ log p(x(t)jW) ¼ log pS(Wx)þ logjdet Wj

and the density of the transformed random variables is written through the compu-
tation of the Jacobian as

p(x) ¼ jdet WjpS(Wx) (1:48)

where W is defined in (1.11).
We use the notation that pS(Wx) W

QN
n¼1pSn (wH

n x), where wn is the nth row of W,
pSn (un) W pSn (unr , uni ) is the joint pdf of source n, n ¼ 1, . . . , N, with un ¼ unr þ juni ,
and defined W ¼ A21, that is, we express the likelihood in terms of the inverse mixing
matrix, which provides a convenient change of parameter. Note that the time index in
x(t) has been omitted in the expressions for simplicity.

To take advantage of Wirtinger calculus, we write each pdf as
pSn (ur, ui) ¼ gn(u, u�) to define g(u, u�): CN

� CN 7! RN so that we can directly
evaluate

@ log g(u, u�)
@W�

¼
@ log g(u, u�)

@u�
xH W �c(u, u�)xH (1:49)

where u ¼Wx and we have defined the score function c (u, u�) that is written directly
by using the result in Brandwood’s theorem given by (1.5)

c(u, u�) ¼ �
1
2
@ log pS(ur, ui)

@ur
þ j

@ log pS(ur, ui)
@ui

� �

: (1:50)

When writing (1.49) and (1.50), we used a compact vector notation where each
element of the score function is given by

cn(u, u�) ¼ �
@ log gn(un, u�n)

@u�n
¼ �

1
2
@ log pSn (ur,n, ui,n)

@ur,n
þ j

@ log pSn (ur,n, ui,n)
@ui,n

� �

:

(1:51)

To compute @ log jdet Wj=@W, we first observe that @ log jdet Wj ¼ Trace(W
�1

@W) ¼ Trace(@WPP�1W
�1

), and then choose

P ¼
1
2

I jI
jI I

� �

to write

@ log jdet Wj ¼ Trace(W�1@W)þ Trace((W�)�1@W�)

¼ hW�H , @Wi þ hW�T , @W�i: (1:52)
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Here, we have used

P�1 W
�1
¼

1
2

W� jW
jW� W

� ��1

¼
(W�)�1 �j(W�)�1

�jW�1 W�1

� �

:

We define Dg(W, W�)@ log jdet Wj and write the first-order Taylor series expansion
given in (1.20) as

Dg(W, W�) ¼ hDW, rW� logjdet Wji þ hDW�, rW logjdet Wji

which, upon comparison with (1.52) gives us the required result for the matrix gradient

@ log jdetWj
@W�

¼W�H : (1:53)

We can then write the relative (natural) gradient updates to maximize the likelihood
function using Eqs. (1.34), (1.49) and (1.53) as

DW ¼ (W�H � c(u)xH)WHW ¼ (I� c(u)uH)W: (1:54)

The update given above and the score function c(u) defined in (1.50) coincide with the
one derived in [20] using a C 7! R2n isomorphic mapping in a relative gradient update
framework and the one given in [34] considering separate derivatives.

The update equation given in (1.54) can be also derived without explicit use of the
relative gradient update rule given in (1.34). We can use (1.49), (1.53), and
@u ¼ (@W)x, to write the first-order differential of the likelihood term ‘t(W) as

@‘t ¼ Trace(@WW�1)þ Trace(@W�W��)� c H(u)@u� cT (u)@u�: (1:55)

Defining @Z W (@W)W�1, we obtain @u ¼ (@W)x ¼ @W(W�1)u ¼ (@Z)u, @u�¼
(@Z�)u�:By treating W as a constant matrix, the differential matrix @Z has components
@zij that are linear combinations of @wij and is a non-integrable differential form.
However, this transformation allows us to easily write (1.55) as

@‘t ¼ Trace(@Z)þ Trace(@Z�)� cH(u)(@Z)u� c T (u)(@Z�)u� (1:56)

where we have treated Z and Z� as two independent variables using Wirtinger
calculus. Therefore, the gradient update rule for Z is given by

DZ ¼
@‘t

@Z�
¼ (I� u�c T (u))T ¼ I� c (u)uH (1:57)

which is equivalent to (1.54) since @Z ¼ (@W)W21.
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The two derivations we have given here for the score function represent a very
straightforward and simple evaluation compared to those in [20, 34], and more impor-
tantly, show how to bypass a major limitation in the development of ML theory for
complex valued signal processing, that is working with probabilistic descriptions
using complex algebra. In the second derivation, the introduction of the differential
form @Z, which is not a true differential as it is not integrable, provides a convenient
form and is especially attractive in evaluation of higher-order differential expressions
as demonstrated in [72].

Newton Updates for ML ICA The same definition, @Z W (@W)W21, can
be used also to derive a Newton update rule in a compact form, as opposed to
the element-wise form given in (1.35). To simplify the notation, we first define
l W 2‘t, and consider Newton updates to minimize the negative likelihood l, and
then evaluate the second-order differential of the likelihood term l.

To write the differential of the term @‘ ¼2@ ‘t given in (1.56) which is a function
of fZ, Z�, u, u�g, we use Wirtinger calculus to write @(Trace(@Z))/@Z ¼ 0 and
@(Trace(@Z�))/@Z� ¼ 0. Then, the second-order differential can be written as

@2l ¼ @[cH(u)@Zuþ c T (u)@Z�u�]

¼ 2Re{uT@ZTh(u, u�)@Zuþ uT@ZTu(u, u�)@Z�y� þ c H(u)@Z@Zu}

where h(u, u�) is a diagonal matrix with ith diagonal element

�
@ log pi(ui, u�i )

@ui@ui

and u(u, u�) is another diagonal matrix with ith diagonal element

�
@ log pi(ui, u�i )

@ui@u�i
:

Using some simple algebra, we can write the expected value of the second
differential term as

E{@2l} ¼
X

i=j

[@zij @z ji @z
�
ij @z

�
ji]

H1 H2

H�2 H1

� �

@z�ij
@z�ji
@zij

@z ji

2

6

6

4

3

7

7

5

þ
X

i

[@zii @z
�
ii] H3

@z�ii
@zii

� �

where H1 ¼
bjdi 0

0 bidj

� �

, H2 ¼
ajgi 1

1 aigj

� �

, H3 ¼
vi qi þ 1

q�i þ 1 vi

� �

, ai ¼

E{u2
i }, bi ¼ E{juij

2}, gi ¼ E{hi(ui, u�i )}, di ¼ E{ui(ui, u�i )}, qi ¼ E{u2
i hi(ui, u�i )},

and vi ¼ E{juij
2ui(ui, u�i )}.
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As given in (1.57), we have

@E{l}
@Z�

¼ E{c(u)uH}� I:

To derive the Newton update, we consider the diagonal and the off-diagonal elements

of E{@2l} separately. We define @~zii W
@zii

@z�ii

� �

, and can write

@E{l}
@~zii
¼

(E{c(u)uH}� I)�ii
(E{c(u)uH}� I)ii

� �

and

@2E{l}
@ ~zii

¼ H�3@ ~zii:

Therefore the Newton rule for updating @~zii can be written by solving

@2E{l}
@~zii

¼ �
@E{l}
@ ~zii

as in (1.35) to obtain

@~zii ¼ �H��3
(E{c (u)uH}� I)�ii
(E{c (u)uH}� I)ii

� �

(1:58)

and the update for @z�ii is simply the conjugate of @zii.
For each off-diagonal element pair @zij, we write @~zij W

@zij

@z ji

@z�ij
@z�ji

2

6

6

4

3

7

7

5

. As in the updates
of the diagonal elements, we obtain

@E{l}
@~zij
¼

(E{c (u)uH}� I)�ij
(E{c (u)uH}� I)�ji
(E{c (u)uH}� I)ij

(E{c (u)uH}� I) ji

2

6

6

6

4

3

7

7

7

5

@2E{l}
@~zij

¼
H1 H�2
H2 H1

� �

@~zij

and obtain the Newton update rule for the parameters @~zij as in the previous case

@~zij ¼ �
H1 H�2
H2 H1

� ��1

(E{c (u)uH}� I)�ij
(E{c (u)uH}� I)�ji
(E{c (u)uH}� I)ij

(E{c (u)uH}� I) ji

2

6

6

6

4

3

7

7

7

5

(1:59)
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where only the upper half elements of Z need to be updated as the lower half is given
by the conjugates of the upper half elements.

Thus, the two sets of updates, (1.58) and (1.59) give the complete Newton update
rule for @Z. The final update rule for W is simply given by @W ¼ @ZW, which implies
that the given Newton update can be called a relative Newton algorithm as its structure
is similar to the relative gradient update given in (1.34). Also, note that if both Hessian
terms in (1.58) and (1.59) are nonsingular, that is, positive definite, then the resulting
Hessian in the updates will be equal to the identity matrix in the solution point
W ¼ A21 as discussed in [7] for the real-valued case.

1.6.2 Complex Maximization of Non-Gaussianity

Another natural cost function for performing ICA is the maximization of non-
Gaussianity [28, 53]. Independence is achieved by moving the transformed mixture,
that is, the independent source estimates wHx away from a Gaussian distribution.
The natural cost in this case is negentropy that measures the entropic distance of
a distribution from that of a Gaussian and can be written for the complex source as

J (w) ¼ H(vr, vi)� H(ur, ui) (1:60)

where H (., .) is the differential entropy of the given bivariate distribution and v ¼ vr þ

jvi denotes the Gaussian-distributed complex variable. Gaussian density yields the
largest entropy when the covariances of the two variables v and u are fixed and attains
its maximum for the circular case [81]. Hence, the first term in (1.60) is constant for
a given covariance matrix, and the maximization of J(w) can be achieved by mini-
mizing the differential entropy H (ur, ui) ¼ 2E flog pS(ur, ui)g under a variance
constraint. Hence, we can define the ICA cost function to minimize as

JG(w) ¼ E{jG(u)j2} ¼ E{jG(wHx)j2} (1:61)

subject to a variance constraint, and choose the nonlinear function G: C 7! C to match
the source pdf, that is, as

ps(u) ¼ ps(ur, ui) ¼ K exp(�jG(u)j2)

where K is a constant, so that the minimization of (1.61) is equivalent to the maximi-
zation of (1.60). While writing the form of the pdf in terms of the nonlinearity G(.), we
assumed that the expectations in (1.60) and (1.61) are written using ensemble averages
over T samples using ergodic theorems. Unit variance is a typical and convenient
constraint and has been a practical choice in this class of algorithms [54].

Note that for maximization of negentropy, we proceed by estimating a single source
at a time, that is, an individual direction that is maximally non-Gaussian while in the
case of ML estimation, the formulation leads to the estimation of all independent
sources through the computation of a single demixing matrix W. Hence, we need a
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mechanism to avoid convergence to the same solution when estimating multiple
sources, and, in addition, to impose a bound on the variance of the estimates. When
we assume that the source signals have unit variance, that is, EfssH

g ¼ I, then whiten-
ing the mixtures v prior to ICA such that x ¼Mv and EfxxH

g ¼ I implies that the
demixing matrix W is unitary. Therefore in this case, we can perform ICA by first
computing maxkwik

2¼1 E{jG(ui)j2}, and after the computation of each wi, by perform-
ing an orthogonalization procedure such as the Gram–Schmidt procedure [77] as in
[53] such that wi is orthogonal to fwjg, 1 � j , i. The estimated sources are given
by ui ¼ wH

i x, i ¼ 1, . . . , N.
The cost function given in (1.61) provides a case where the R2 7! C2 mapping used

by Wirtinger calculus follows naturally. Note that the cost function can be written as

JG(w) ¼ E{G(u)(G(u))�} ¼ E{G(u)G(u�)} (1:62)

where the last equality follows when G(u) is analytic for juj , R with a Taylor series
expansion with all real coefficients in juj , R. Polynomial and most trigonometric
functions and their hyperbolic counterparts satisfy this condition.

When written in the form EfG(u)G(u�)g as shown in (1.62), it is easy to see that the
function JG(w) becomes complex-differentiable when considered separately with
respect to the two arguments u and u� (and consequently w and w�) if the function
is chosen as an analytic function G: C 7! C thus making it even easier to take advan-
tage of Wirtinger calculus in the gradient evaluation.

For the cost function given in (1.62), the gradient is directly written as

@JG(w)
@w�

¼ E{xG(wT x�)G0(wHx)} ¼ E{xG�(u)G0(u)} (1:63)

instead of evaluating the derivatives with respect to the real and imaginary parts as
given in [83]. Here, we have G0(.) ¼ dG(u)/du. Similar to the real-valued algorithm
for maximization of non-Gaussianity using gradient updates, for a general function
G(.)—a function not necessarily matched to the source pdf—we need to determine
whether the cost function is being maximized or minimized by evaluating a factor g
during the updates such that g ¼ E{jG(u)j2}� E{jG(v)j2}. Since g is a real-valued
quantity and does not change the stationary points of the solution, we can simply
include its sign estimate in the online updates and use Dw ¼ sign(g)mxG�(wHx)
G0(wHx) where m . 0 is the learning rate, and ensure the satisfaction of the unit
norm constraints through a practical update scheme w w/kwk after each iteration
of the weight vector. A more efficient update algorithm for performing ICA using
the cost function in (1.61) is given in [84] using a constrained optimization formu-
lation to ensure kwk ¼ 1 and using a modified Newton approach. The updates for
this case are given by

w E{G0(u)(G0)�(u)}w� E{G�(u)G0(u)x}þ E{xxT }E{G�(u)G00(u)}w� (1:64)
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where a following normalization step is used to ensure kwk ¼ 1 as in the gradient
updates.

1.6.3 Mutual Information Minimization: Connections to
ML and MN

As discussed in Sections 1.6.1 and 1.6.2, we can solve the complex ICA problem by
maximizing the log likelihood function given by

L(W) ¼
X

T

t¼1

X

N

n¼1

log pSn (wH
n x)þ T logjdet Wj: (1:65)

The weight matrix W to maximize the log likelihood can be computed using relative
gradient update equation given in (1.54).

When using negentropy maximization as the objective, all sources can be estimated
by maximizing the cost function

J (W) ¼
X

N

n¼1

E{log pSn (wH
n x)}

�
1
T

X

T

t¼1

X

N

n¼1

log pSn (wH
n x) (1:66)

under the unitary constraint for W. The mean ergodic theorem is used to write (1.66)
and when compared to the ML formulation given in (1.65), it is clear that the two
objective functions are equivalent if we constrain the weight matrix W to be unitary
for complex ML. Since det(W) ¼ jdet(W)j2 [40], when W is unitary, the second
term in (1.65) vanishes.

Similar to the real case given in [21], for the complex case, we can satisfy the uni-
tary constraint for the weight matrix by projecting DW to the space of skew-hermitian
matrices. The resulting update equation is then given by

DW ¼ (I� uuH � c (u)uH þ ucH(u))W: (1:67)

On the other hand, for the MN criterion, the weight matrix can be estimated in sym-
metric mode, or the individual rows of the weight matrix W can be estimated sequen-
tially in a deflationary mode as in [52]. The latter procedure provides a more flexible
formulation for individual source density matching than ML where each element of
the score function c(u) given in (1.51) needs to be matched individually.

As in the real case, the two criteria are intimately linked to mutual information.
Written as the Kullback–Leibler distance between the joint and factored marginal
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source densities, the mutual information is given by

I (W) ¼ D kp(u)k
Y

N

n¼1

pSn (un)

 !

¼
X

N

n¼1

H(un)� H(u)

¼
X

N

n¼1

H(un)� H(x)� logjdetWj (1:68)

where in the last line, we have again used the complex-to-real transformation for the
source density given in (1.48). Since H(x) is constant, using the mean ergodic theorem
for the estimation of entropy, it is easy to see that minimization of mutual information
is equivalent to ML, and when the weight matrix is constrained to be unitary, to the
MN criterion.

1.6.4 Density Matching

For all three approaches for achieving ICA, the ML, MN, and mutual information
minimization discussed in Sections 1.6.1–1.6.3, the nonlinearity used in the algorithm
is expected to be matched as much as possible to the density for each estimated source.
Also, the desirable large sample properties of the ML estimator assume their optimal
values when the score function is matched to the source pdf, for example, the asymp-
totic covariance matrix of the ML estimator is minimum when the score function is
chosen to match the source pdfs [89]. A similar result is given for the maximization
of negentropy in [52]. A number of source density adaptation schemes have
been proposed for performing ICA in the real-valued case, in particular for ML-
based ICA (see e.g., [24, 59, 66, 112, 120]) and more recently for the complex case
[84, 85] for maximization of negentropy.

The most common approach for density adaptation has been the use of a flexible
parametric model and to estimate the parameters—or a number of key parameters—
of the model along with the estimation of the demixing matrix. In [89], a true ML
ICA scheme has been differentiated as one that estimates both the source pdfs and
the demixing matrix W, and the common form of ML ICA where the nonlinearity
is fixed and only the demixing matrix is estimated is referred to as quasi-maximum
likelihood. Given the richer structure of possible distributions in the two-dimensional
space compared to the real-valued, that is, single dimensional case, the pdf estimation
problem becomes more challenging for complex-valued ICA. In the real-valued case,
a robust nonlinearity such as the sigmoid nonlinearity provides satisfactory perform-
ance for most applications [29, 54] and the performance can be improved by matching
the nonlinearity to the sub- or super-Gaussian nature of the sources [66]. In the com-
plex case, the circular/noncircular nature of the sources is another important factor
affecting the performance [3, 84]. Also, obviously the unimodal versus multimodal
structure of the density requires special care in both the real and the complex
case. Hence, in general, it is important to take a priori information into account
when performing source matching.
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If a given source has a circular distribution, that is, pSn (u) ¼ g(juj), the corres-
ponding entry of the score function vector can be easily evaluated as

cn(u) ¼ �
@ log g(

ffiffiffiffiffiffiffi

uu�
p

)
@u�

¼ �
u

2juj
g0(juj)
g(juj)

� �

:

Thus, the score function always has the same phase as its argument. This is the form of
the score function proposed in [9] where all sources are assumed to be circular.

If the real and imaginary parts of a given source are mutually independent, the score
function takes the form

cn(u, u�) ¼ �
1
2
@ log pSr (ur)

@ur
þ j

@ log pSi (ui)
@ui

� �

and suggests the need to use separate real-valued functions for processing the real and
imaginary arguments. For example, the score function proposed in [103] for complex
Infomax, c(u) ¼ tanh(ur) þ j tanh(ui), is shown to provide good performance for
independent and circular sources [3].

For density matching, approaches such as the Gram–Charlier and Edgeworth
expansions are proposed for the real case [19], and for the complex case, bivariate
expansions such as those given in [76] can be adopted. However, such expansions
usually perform well for unimodal distributions that are close to the Gaussian and
their estimators are very sensitive to outliers thus usually requiring large number of
samples. With the added dimensionality of the problem for the complex case, in
comparison to the real (univariate) case, such expansions become even less desirable
for complex density matching. Limitations of such expansions are discussed in detail
in [104] where an efficient procedure for least-mean-square estimation of the score
function is proposed for the real case.

Next, we discuss a number of possible density models and nonlinearity choices
for performing complex ICA and discuss their properties. Simple substitution of
ur ¼ (u þ u�)/2 and ui ¼ (u – u�)/2j allows us to write a given pdf that is p(ur, ui):
R � R 7! R in terms of a function f (u, u�): C � C 7! R. Since all smooth functions
that define a pdf can be shown to satisfy the real differentiability condition, they can be
used in the development of ICA algorithms and in their analyses using Wirtinger
calculus.

Generalized Gaussian Density Model A generalized Gaussian density of
order c of the form given in [26] can be written as a function C � C 7! R as

fGG(u, u�;sr,si, r, c) ¼ b exp(�[ga(u, u�)]c) (1:69)
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where

a(u, u�) ¼
(uþ u�)2

4s2
r

þ j
r(u2 � u�2)

2srsi
�

(u� u�)2

4s2
i

,

b ¼
cg

pG(1=c)srsi

ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
p , and g ¼

G(2=c)
2(1� r2)G(1=c)

:

In the above expression, sr and si are the standard deviations of the real and
imaginary parts, r ¼ sr,i/sr si is the correlation coefficient between the two varia-
bles, and the distribution is assumed to be zero mean. When the shape parameter
c ¼ 1, the pdf takes the form of the standard bivariate Gaussian and is super-
Gaussian for 0 , c , 1 and sub-Gaussian for c . 1.

The score function for the pdf given in (1.69) can be evaluated by using (1.50) as

c (u, u�) ¼ cg c[a(u, u�)]c�1 @a(u, u�)
@u�

:

When the sources are circular, that is,sr ¼ si ¼ s and r ¼ 0, we have a(u, u�) ¼ uu�/
s2, and for circular Gaussian sources (c ¼ 1), the score function is linear c(u, u�) ¼
u/2s2 as expected, since circular Gaussian sources cannot be separated using
ICA. However, noncircular Gaussians can be separated, since in this case, the
score function is given by c(u, u�) ¼ (uþ u�)=4(1� r2)s2

r � jru�=2(1� r2)srsiþ

(u� u�)=4(1� r2)s2
i , and thus is nonlinear with respect to u. A simple procedure

for estimating noncircular Gaussian sources using ML is given in [20]. However,
the second-order approach, strongly uncorrelating transform [32, 65] provides a
more efficient procedure for estimating noncircular Gaussian sources as long as the
sources have unique spectral coefficients.

For the Gaussian case, we can also write the score function as in [20]

c (u, u�) ¼
uE{juj2}� u�E{u2}

2(E{juj2}2�jE{u2}j2)

to note the widely linear nature of the score function for Gaussian sources.
In [84], the univariate form of the generalized Gaussian density is used to model

circular source densities for deriving ICA algorithms through negentropy maximiza-
tion and significant performance gain is noted when the shape parameter c is updated
during the estimation. Such a scheme can be adopted for ICA through ML as well and
would also require the estimation of the variances of the real and imaginary parts of the
sources when used for noncircular source distributions.

Mixture Model Generalized Gaussian mixture model provides a flexible alter-
native to source density matching, especially in cases where the sources are not
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unimodal. The mixture model using the generalized Gaussian kernels given in (1.69)
can be written as

fGM(u, u�) ¼
X

K

k¼1

pk fGG(u, u�; sr, si, r, c)

where pk denotes the mixing proportions of the generalized Gaussian kernels. An
example application of the model would be quadrature amplitude modulated
(QAM) sources where the model simplifies to

fQAM(u, u�) ¼
1

K2ps2

X

K

k¼1

fG(u, u�; s, mk) (1:70)

where

fG(u, u�; s, mk) ¼ exp �
1

2s2
(u� mk)(u� mk)�

� �

since the pks are taken as equal and the Gaussian kernels (c ¼ 2) are circular (sr ¼

si ¼ s). The parameters, mk are determined by the QAM scheme, which is a prior
information, for example, are given by f+1g for 4-QAM sources, and the value of
s can be determined by the level of noise in the system, which is assumed to be
Gaussian. The score function can be easily evaluated as

cQAM(u, u�) ¼

PK
k¼1(u� mk) fG(u, u�; s, mk)

2s2
PK

k¼1 fG(u, u�; s, mk)
:

Linear Combinations of Basis Functions In [20], the adaptive score
functions of Pham and Garat [89] are extended to the complex case through
CN 7! R2N mappings. We can directly evaluate and write the adaptive scores in
the complex domain as follows: Approximate the “true” score function co(u, u�) as
a linear combination of M basis functions fm(u, u�), m ¼ 1, . . . , M such that
c(u, u�) ¼

PM
m¼1g

�
mfm(u, u�) ¼ gHf where g ¼ [g1, . . . , gM]T and f¼ [f1(u, u�),

. . . , fM(u, u�)]T. Then, the problem is to determine the coefficient vector g for
each source such that Efjco(u, u�) 2g Hfj2g is minimized. The solution is given
by g ¼ (EfffH

g)21Effco
�(u, u�)g. The term Effco

�(u, u�)g requires that we
know the true score function, which typically is not available. The clever trick intro-
duced in [89] allows one to bypass this limitation, and can be extended to the complex
case using Wirtinger calculus as follows. We substitute the expression for co(u, u�)
given in (1.51) to the integral evaluation for the expectation Effco

�(u, u�)g to obtain

E{fc�o(u, u�)} ¼ �
ð

1

�1

ð

1

�1

a(ur, ui)durdui (1:71)
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where a(ur, ui) W f(@fo(u, u�)/@u), fo denotes the true (and unknown) source pdf
and, we have used (@log fo(u, u�)/@u�)� ¼ @log fo(u, u�)/@u since fo(u, u�) is a pdf
and hence real valued. Wirtinger calculus enables us to directly write

fm(u, u�)
@fo(u, u�)
@u

¼
@

@u
(fm(u, u�)fo(u, u�))� fo(u, u�)

@fm(u, u�)
@u

(1:72)

by using the chain rule. When (1.72) is substituted into (1.71), we obtain the important
equality that shows how to evaluate the coefficients for adaptive scores using
expectations without knowledge of the true source distributions

E{fc�o(u, u�)} ¼ E
@f

@u

� 

(1:73)

which holds when the product fo(u, u�)fm
�(u, u�) vanishes at infinity for ur and ui.

In the evaluation for this term, we used the integral formula given in (1.9) to write
the symbolic integral given in terms of u and u� as a contour integral of a single
complex variable.

In the real case, it is shown that if the set of basis functions contains at least the iden-
tity function plus some other nonlinear function, then the stability of the separation is
guaranteed [89]. For the real-valued generalized Gaussian density, a combination of
three basis functions f(1), f(0.75), and f(2) that correspond to the score functions
with shape parameters c ¼ 1, 0.75, and 2, that is, an identity (linear Gaussian score),
and one corresponding to a typical super- and one to a sub-Gaussian density have
been used. In the complex case, to account for the additional dimensionality, we pro-
pose to use f1 ¼ u, f2 ¼ u a(0:75)(u, u�), f3 ¼ u�a(0:75)(u, u�), f4 ¼ u a(2)(u, u�),
f5 ¼ u�a(2)(u, u�) where a(u, u�) is defined in (1.69). An expansion that includes
these basis functions accounts for all the terms present in the evaluation of the score
function c(u, u�) for the generalized Gaussian density given in (1.69) along with a
choice similar to those to in [89] for the shape parameters. It is worth noting that it is
also possible to estimate coefficients of any nonlinear approximation to the score func-
tion such as those using splines or MLPs using a criterion such as least squares.
However, the approach proposed here as in [89] has the advantage of leading to a
unique solution that can be easily computed.

1.6.5 Numerical Examples

Since our focus in this section has primarily been on establishing a complete frame-
work for complex ICA, and not on algorithm implementation and density matching
mechanisms, in this section, we select examples to demonstrate the relationship
between the two main classes of ICA approaches, complex ML (CML) and complex
MN (CMN), to each other and to other main complex ICA approaches.

We test the performance of complex maximum likelihood using the relative gradi-
ent update in (1.54), which we refer to as the CML algorithm, and the version that con-
strains the demixing matrix to be unitary using the update in (1.67), the CML-unitary
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algorithm. For maximization of non-Gaussianity, we use the modified Newton update
shown in (1.64) as its performance matches that of the gradient update (1.63) when the
stepsize is chosen correctly for the gradient approach [83]. We demonstrate the per-
formance of the algorithms for three sets of sources, a set of 4-QAM and binary
phase-shift keying (BPSK) sources using (1.70), and a circular set from a generalized
Gaussian distribution (GGD) with different values for the shape parameter c as in
(1.69). Hence, we have sources with all three types of circularity: GGDs that are
strictly circular, QAM sources that are second-order circular, and noncircular BPSK
sources. For the CML and CMN updates, the nonlinearity is matched to the form of
the source distribution for each run, and for the 4-QAM and BPSK simulations, par-
ameter s in (1.70) is chosen as 0.25, which corresponds to 12 dB signal-to-noise ratio.
The 4-QAM and BPSK sources are sub-Gaussian with a normalized kurtosis value of
2.885 and 2.77 respectively for the given s. The GGD sources are super-Gaussian
approaching to Gaussian when the shape parameter c approaches 1.

We include the performances of complex nonlinear decorrelations (C-ND) [3]
using the 2asinh(u) þ u nonlinearity for the sub-Gaussian sources, and the perform-
ances of complex FastICA [13] using the log nonlinearity, the kurtosis maximization
(KM) algorithm [69], JADE with the version that uses simultaneous diagonalization of
N cumulant matrices [22], and for the circular generalized Gaussian sources, complex
Infomax using the nonlinear function that assumes circularity given in [9]. Since we
have not considered density adaptation, all sources in a given run are generated
from the same distribution, and as a result comparisons with SUT are not included
since for SUT, all sources have to have distinct spectral coefficients. For CMN, we
implemented symmetric orthogonalization such that all sources are estimated in par-
allel and the demixing matrix is orthogonalized using W (WWH)1/2W, which is
noted to provide slightly better performance when all the source densities are the
same [85].

As the performance index, we use the inter-symbol-interference (ISI)—or the
positive separation index [73]—given by

ISI ¼
1

2N(N � 1)

X

N

i¼1

X

N

j¼1

jpijj

maxkjpikj
� 1

 !

þ
X

N

j¼1

X

N

i¼1

jpijj

maxkjpkjj
� 1

 !" #

where pik are the elements of the matrix P ¼WA, N is the number of sources, and the
lower the ISI value the better the separation performance.

Figures 1.19 and 1.20 show the ISI values for six 4-QAM and six BPSK sources
with increasing number of samples and Figure 1.21, the ISI values for six circular
GGD sources as the shape parameter c varies from 0.125 to 0.75, from highly
super-Gaussian to closely Gaussian for 5000 samples. For both cases, the results
are the average of 10 independent runs with the least ISI out of 25, as we wanted to
compare the approximate best performance of all algorithms. With this selection, the
standard deviation for all the algorithms were in the range 1028 for small number of
samples and 10211 when the number of samples are increased.
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Figure 1.19 ISI as a function of number of samples for six 4-QAM sources.

Figure 1.20 ISI as a function of number of samples for six BPSK sources.
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For all cases, we note the best performance by the CML algorithm, and the almost
identical performance of the CML-unitary and CMN updates that have equivalent
cost functions as discussed in Section 1.6.3. Other complex ICA approaches provide
considerably satisfactory performance at a lower cost, in particular, JADE for the
sub-Gaussian 4-QAM and BPSK sources, complex nonlinear decorrelations with
2asinh(u) þ u nonlinearity for BPSK sources, and C-FastICA and complex
Infomax that assume circularity for the circular GGD sources. The performance
advantage of density matching comes at a computational cost as expected. The ML
class of algorithms are computationally most costly when employed with density
matching followed by the CMN algorithm. For example, the computational cost
measured in terms of time for a single run of CML (and similarly for CML-unitary),
without any optimization for implementation speed, is approximately 15 times that of
KM, C-FastICA, and JADE, and three times that of CMN for six 4-QAM sources
for 5000 samples. For the GGD sources, it is approximately 12 times that of
KM, C-FastICA, JADE, CMN, and six times that of the ML/Infomax or nonlinear
decorrelation approaches with a fixed nonlinearity.

1.7 SUMMARY

In this chapter, we provide the necessary tools for the development and analysis of
algorithms in the complex domain and introduce their application to two important
signal processing problems—filtering and independent component analysis. Complex-
valued signal processing, we note, is not a simple extension of the real-valued case.

Figure 1.21 ISI as a function of the shape parameter c six GGD sources.
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The definition of analyticity and commonly invoked assumptions such as circularity
have been primarily motivated by this desire, such that the computations in the com-
plex domain parallel those in the real domain. Wirtinger calculus, on the other hand,
generalizes the definition of analyticity and enables development of a very convenient
framework for complex-valued signal processing, which again, as desired, allows
computations to be performed similar to the real case. Another important fact to
note is that the framework based on Wirtinger calculus is a complete one, in the
sense that the analytic case is included as a special case. Another attractive feature
of the framework is that promising nonlinear structures such as fully complex (ana-
lytic) functions can be easily incorporated in algorithm development both for use
within nonlinear filter structures such as MLPs and for the development of effective
algorithms for performing independent component analysis. Commonly invoked
assumptions such as circularity can be also easily avoided in the process, making
the resulting algorithms applicable to a general class of signals, thus not limiting
their usefulness. The only other reference besides this chapter—to the best of our
knowledge—that fully develops the optimization framework including second-order
relationships is [64], where the term CR calculus is used instead of Wirtinger calculus.

Though very limited in number, various textbooks have acknowledged the impor-
tance of complex-valued signals. In the most widely used book on adaptive filtering,
[43], the complete development is given for complex signals starting with the 1991
edition of the book. In [43, 60, 97, 105], special sections are dedicated to complex sig-
nals, and optimization in the complex domain is introduced using the forms of the
derivatives given in (1.5), also defined by Brandwood [15]. The simple trick that
allows regarding the complex function as a function of two variables, z and z�,
which significantly simplifies all computations, however, has not been noted in gen-
eral. Even in the specific instance where it has been noted—a recent book [75] follow-
ing [4, 6, 70, 71]—Wirtinger calculus is relegated to an afterthought as derivations are
still given using the unnecessarily long and tedious split approach as in the previous
work by the authors, for example, as in [38, 39, 41]. The important point to note is
that besides simplifying derivations, Wirtinger calculus eliminates the need for
many restrictive assumptions and extends the power of many convenient tools in
analysis introduced for the real-valued case to the complex one. A simple example
is the work in [72] where the second-order analysis of maximum likelihood indepen-
dent component analysis is performed using a transformation introduced in [7] for the
real-valued case while bypassing the need for any circularity assumption.

It is also interesting to note that the two forms for the derivatives given in [15],
which are the correct forms and include the analytic case as well, have not been
widely adopted. In a recent literature search, we noted that a significant portion of
the papers published in the IEEE Transactions on Signal Processing and IEEE
Transactions on Neural Networks within the past five years define the complex deriva-
tive differently than the one given in [15], which was published in 1983. The situation
regarding contradictory statements and conflicting definitions in the complex domain
unfortunately becomes more discouraging when we look at second-order expansions
and algorithms. Even though the algorithms developed with derivative definitions
other than those in (1.5) still provide reasonable—and in certain cases—equivalent
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processing capability, these are ad-hoc solutions and typically do not fully take advan-
tage of the complete information and processing capability offered by the complex
domain. The development we present in this chapter, on the other hand, is a complete
one. When conditions such as analyticity are satisfied, or when certain assumptions
such as circularity are invoked, all the results we have derived simply reduce to the
versions reported earlier in the literature.

Our hope in putting together this chapter has been to describe an effective frame-
work for the complex domain, to present all the tools under a complete and consistent
umbrella, and also to attract attention to two filtering solutions for complex-valued
signal processing. Widely linear and fully complex nonlinearities promise to provide
effective solutions for the challenging signal processing problems of next generation
systems. Both of them also open new avenues for further research and deserve
much attention.
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1.9 PROBLEMS

1.1 Green’s theorem can be stated as [1]:

For a function f (z) ¼ f (x, y) ¼ u(x, y) þ jv(x, y), let the real-valued functions
u(x, y) and v(x, y) along with their partial derivatives ux, uy, vx, and vy, be con-
tinuous throughout a simply connected region R consisting of points interior
to and on a simple closed contour (described in the counter-clockwise direction)
CR in the x-y plane. We then have

þ

CR

(udxþ vdy) ¼
ð ð

R

@v

@x
�
@u

@y

� �

dx dy:

Derive the integral formula given in (1.9) using Green’s formula and the
Wirtinger derivatives given in (1.5).

1.2 Verify the properties of complex-to-real mapping (�): C
N
!R2N given in

Section 1.2.3.

1.3 A simple way to generate samples from a circular distribution is to first generate
real-valued nonnegative samples r from a selected pdf p(r), and then to form the
circular complex samples as

xþ jy ¼ rc j2pu (1:74)

where u are samples from a uniform distribution in the range [0, 1].
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We would like to generate samples from a circular generalized Gaussian dis-
tribution (GGD)—also called the exponential power distribution. We can use the
procedure given in [57] to generate GGD samples with shape parameter c and
scaling s using the expression [gamrnd(1/2c, s)]1/2c where the MATLAB
(www.mathworks.com) function gamrnd generates samples from a gamma
distribution with shape parameter 1/2c and scale parameter s.

Explain why using this procedure directly to generate samples for the magni-
tude, r, will not produce samples with the same shape parameter as the bivariate
case. How can you modify the expression [gamrnd(1/2c, s)]1/2c so that the
resulting samples will be circular-distributed GGDs with the shape parameter
c when the expression given in (1.74) is used.

Hint: A simple way to check for the form of the resulting probability
density function is to consider the case c ¼ 1, that is, to consider the Gaussian
special case.

1.4 Using the two mappings given in Proposition 1, Eqs. (1.25) and (1.26), and real-
valued conjugate gradient algorithm given in Section 1.3.1, derive the complex
conjugate gradient algorithm which is stated in Section 1.3.4.

1.5 Write the widely linear estimate given in (1.37) using the CN notation by
defining

v ¼
v1

v2

� �

and show that the optimum widely linear vector estimates can be written as

v1,opt ¼ [C� PC��P�]�1[p� PC��q�]

and

v2,opt ¼ [C� � P�C�1P]�1[q� � P�C�1p]

in CN, where (.)2� is the complex conjugate of the inverse.
Use the forms given above for v1, opt and v2, opt to show that the mean-square

error between a widely linear and linear filter Jdiff is given by the expression
in (1.38).

1.6 Given a finite impulse response system with the impulse response vector wopt

with coefficients wopt,n for n ¼ 1, . . . , N.
Show that, if the desired response is written as

d(n) ¼ wH
optx(n)þ v(n)

where x(n) ¼ [x(n)x(n� 1) � � � x(N � 1)]T and both the input x(n) and the noise
term v(n) are zero mean and x(n) is uncorrelated with both v(n) and v�(n), then
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the mean-square weight estimator is given by

w ¼ C�1p

or by

w� ¼ P�1q

where the covariance and pseudo covariance matrices C and P as well as the
cross covariance vectors p and q are defined in Section 1.4. Consequently,
show that the mean-square error difference between a linear and a widely
linear MSE filter (Jdiff ¼ JL,min–JWL,min) for this case is exactly zero, that is,
using a widely linear filter does not provide any additional advantage even
when the signal is noncircular.

1.7 The conclusion in Problem 1.6 can be extended to prediction of an autoregres-
sive process given by

X(n)þ
X

N

k¼1

akX(n� k � 1) ¼ V(n)

where V(n) is the white Gaussian noise. For simplicity, assume one-step ahead
predictor and show that Jdiff ¼ 0 as long as V(n) is a doubly white random pro-
cess, that is, the covariance and the pseudo covariance functions of V(n) satisfy
c(k) ¼ c(0)d(k) and p(k) ¼ p(0)d(k) respectively.

1.8 For the widely linear weight vector error difference 1(n) ¼ v(n) – vopt, show that
we can write the expression for the modes of the widely linear LMS algorithm
given in (1.41) as

E{10k(n)} ¼ 10k(0)(1� m �lk)n

and

E{j10k(n)j2} ¼
mJWL,min

2� m �lk
þ (1� m �lk)2n j10k(0)j2 �

mJWL, min

2� m �lk

� �

as shown in [16, 43] for the linear LMS algorithm. Make sure you clearly ident-
ify all assumptions that lead to the expressions given above.

1.9 Explain the importance of the correlation matrix eigenvalues on the performance
of the linear and widely linear LMS filter (l and l̄). Let input x(n) be a first order
autoregressive process (N ¼ 1 for the AR process given in Problem 1.7) but let
the white Gaussian noise v(n) be noncircular such that the pseudo-covariance
Efv2(n)g= 0. Show that when the pseudo-covariance matrix is nonzero, the
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eigenvalue spread of the augmented covariance matrix C̄ will always be greater
than or equal to that of the original covariance matrix C using the majorization
theorem [49].

1.10 In real-valued independent component analysis, separation is possible as long
as only one of the sources is Gaussian. In the complex case, however, as dis-
cussed in Section 1.6.4, Gaussian sources can be separated as long as they
are noncircular with unique spectral coefficients.

Show that the score function for Gaussian sources can be reduced to

cn(u) ¼
ur

4s 2
r

þ j
ui

4s 2
i

when we consider the scaling ambiguity for the complex case. Then, devise a
procedure for density (score function) matching for the estimation of complex
Gaussian sources.
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