
Part I

Mobile Data and
Intelligence

CO
PYRIG

HTED
 M

ATERIA
L





Chapter 1

A Survey of State-of-the-Art
Routing Protocols for Mobile
Ad Hoc Networks

Amitava Datta and Subbiah Soundaralakshmi
School of Computer Science and Software Engineering, University of Western Australia,
Perth, WA, Australia

1.1 Introduction 3
1.2 A Taxonomy of MANET Routing Protocols 5
1.3 Proactive Routing Protocols 6
1.4 Reactive Routing Protocols 10
1.5 Other Routing Protocols 17
1.6 Conclusion 23
References 24

1.1 INTRODUCTION

Mobile ad hoc networks (MANETs) have opened up many new possibilities in using
computer networks in improvised scenarios where traditional networking infrastruc-
ture is unavailable. Mobile networks are usually based on wireless communication
and hence many of the established technologies developed for wired networks are not
directly applicable in mobile networks. In particular, nodes forming a mobile network
are not tied to any infrastructure and can form a network on the fly and for a short
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period of time. The main difficulties in forming a mobile network are the mobility of
the nodes, the nature of the wireless medium, the energy constraints of small mobile
nodes, and the possibility that nodes may join or leave a network anytime during the
lifetime of the network.

Since nodes are mobile, the routes in the network usually have a short life span.
A route may or may not exist for the entire duration of a data communication session,
unlike in wired networks, where nodes are usually present in fixed geographical po-
sitions. The wireless medium has the constraint that any communication by a node is
done through broadcasting of a packet. Since the bandwidth in the wireless medium is
much less compared to wired networks, this poses the problem that almost all commu-
nications take up large amount of bandwidth due to the flooding of packets. Moreover,
the contention for limited bandwidth results in packet collisions and retransmissions,
further wasting the available bandwidth. The nodes in a mobile ad hoc network are
usually powered by batteries that may not be rechargeable during a network session.
This imposes the added constraint that nodes should not waste their energy in retrans-
mitting packets that have been lost due to collision. Since nodes spend almost equal
amount of energy in transmitting and receiving packets, even overhearing packets
destined for other nodes results in wastage of energy.

Routing of packets is one of the most basic activities in any computer network,
wired or wireless. All applications in a MANET depend on reliable and efficient
routing of packets. Hence, it is extremely important to design routing protocols that
can work within the constraints of a mobile ad hoc network and provide support for all
higher level applications. It is not surprising that tremendous amount of research effort
has been invested in designing efficient routing protocols for MANETs during the past
10 years. The MANET working group within the Internet Engineering Task Force
(IETF) [8] is considering several of these protocols for standardization. However, the
task of the MANET working group is considerably difficult due to the existence of
many different routing protocols in the literature. Currently, there are four protocols
under consideration by the working group and the Internet drafts for these protocols
are available for comments.

Our aim in this chapter is to provide a concise yet comprehensive view of many
different routing protocols proposed for MANETs. We will pay special attention
to the protocols under consideration by the MANET working group as naturally
these protocols are some of the most efficient and reliable routing protocols proposed
until now. However, we will also discuss the evolution of routing protocols from a
historical point of view and discuss other protocols that have significantly different yet
interesting ideas. More details about many of the protocols discussed in this chapter
can be found in the paper by Belding-Royer and Toh [19] and the book edited by
Perkins [15].

The rest of the chapter is organized as follows. We discuss a taxonomy of routing
protocols in Section 1.2. We discuss the class of proactive routing protocols in
Section 1.3 and reactive routing protocols in Section 1.4. We discuss some other
classes of protocols in Section 1.5. Finally, we conclude with some comments in
Section 1.6.
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1.2 A TAXONOMY OF MANET ROUTING PROTOCOLS

The main aims of all routing protocols designed for MANETs are to achieve a high
level of performance, in terms of high throughput, low latency, and low energy expen-
diture by individual nodes. However, these aims are quite often contradictory in the
sense that a routing protocol might have to sacrifice one of them in order to satisfy an-
other. For example, assume that we are trying to design a routing protocol that aims for
low latency in packet delivery. This may be a quality of service (QoS) requirement in a
network that delivers multimedia content from one node to another. If individual nodes
want to deliver or forward packets very fast toward a destination node, they must have
a very clear idea about the network topology and the routes to the destination should
be as accurate as possible. However, the collection of accurate topology information
requires exchange of local views of topology among the nodes. In other words, each
node should inform other nodes about its neighbors frequently so that all nodes have
up-to-date information about the network topology. This type of information exchange
is done through sending control messages (this name is used to differentiate from the
actual data packets) and requires the nodes to spend substantial amount of energy.
Hence, a protocol may have to sacrifice battery power in order to achieve low latency.

All routing protocols implicitly assume that nodes in a MANET cooperate with
each other in delivering packets. Nodes in a MANET can be classified into three
categories from the point of view of a packet. A node may be a sender, receiver, or
a forwarding node for the packet. A forwarding node tries its best to send a packet
toward its destination. The question of security in MANETs is beyond the scope of
this chapter and we will assume that all nodes in the network are trusted. We refer the
reader to the paper by Pirzada et al. [18] and the references therein for more discussion
on security in MANETs.

The main routing protocols for MANET can be classified into two categories,
proactive and reactive, depending on how a protocol collects information about the
topology of the network. Proactive protocols try to reduce latency in packet delivery
by aggressively disseminating topology information throughout the network. This,
however, has a detrimental effect that much of the available bandwidth in the wireless
medium is used for sending control messages. Hence, a challenging problem in de-
signing a proactive protocol is to reduce the effect of control messages in the network
while still achieving an acceptable level of latency. We will discuss this issue in more
detail in the next section.

Reactive protocols try to minimize the wastage of bandwidth by reducing the
amount of control messages in the network. They try to find routes on-demand and
do not depend on proactive collection of topology information for finding routes.
However, this approach quite often increases latency in packet delivery. A challenging
problem in designing reactive protocols is to reduce latency while maintaining the
low volume of control messages. Mobile nodes executing reactive protocols quite
often resort to indirect means such as overhearing passing wireless traffic to improve
their knowledge of network topology. We will discuss reactive protocols in depth in
Section 1.4.
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There are other protocols that combine the advantages of both proactive and reac-
tive protocols while eliminating their disadvantages. These protocols use a proactive
protocol within a small neighborhood of each node so that the volume of control
messages remain manageable and use a reactive protocol over the entire network.
The zone routing protocol (ZRP) is the most notable among these protocols, and we
will discuss this protocol briefly in Section 1.5.

We will also discuss an important class of protocols in Section 1.5, called link
reversal protocols. These protocols are based on an elegant idea of maintaining a
rooted directed acyclic graph (DAG) in a MANET. The main thrust in these protocols
is to maintain the DAG (and hence routes); however, usually the overhead in these
protocols is quite high.

1.3 PROACTIVE ROUTING PROTOCOLS

Proactive routing protocols try to collect as much information about the MANET
as possible through proactive exchange of messages about their local topology. One
of the earliest protocols for MANETs was the destination sequenced distance vector
(DSDV) protocol [16], which is one of the best known proactive routing protocols. The
DSDV protocol has a large overhead of control messages and hence it fell out of favor
due to the emergence of more efficient reactive protocols such as the dynamic source
routing (DSR) and the ad hoc on-demand distance vector (AODV) protocol. However,
the low latency in packet delivery is one of the most attractive aspects of the proactive
protocols. Considerable work has been done in recent years to reduce the overhead
of the DSDV protocol and one of the most promising proactive protocols called the
optimal link state routing (OLSR) protocol [13] is currently under consideration by
the MANET working group. In this section, we will first discuss the DSDV protocol
and then the OLSR protocol.

1.3.1 The Destination Sequenced Distance
Vector Protocol

We should first list a few points about MANET routing protocols that are applicable for
all the protocols discussed in this chapter. A routing protocol is a distributed algorithm
executed by each node in a MANET. In other words, each node executes a local copy of
the protocol on the data that they collect locally. Moreover, this distributed execution
of a protocol aims to achieve some global performance goals such as high throughput,
low latency, and minimizing the overall expenditure of energy. In the following, we
will use the terms packets and messages to mean packets sent by nodes in the wireless
medium.

DSDV is a table-driven protocol, in the sense that all routing decisions are
taken by individual nodes based on their local routing tables. There are two parts
in the DSDV protocol, namely, keeping the local routing tables as up-to-date as
possible and computing routes with the help of the local routing tables. We will
first discuss the second part as it will be clear how nodes find the best routes by



1.3 Proactive Routing Protocols 7

executing the DSDV protocol. We will then discuss how nodes update their routing
tables.

First, we assume that each node has collected up-to-date information about the
topology of the network in its routing table. Given a source node S and a destination
node D, the purpose of a routing table is to find a best path according to some metric
between S and D. In a MANET, intermediate nodes (i.e., nodes other than S and D)
forward the packets that they receive from S toward D. Hence, the best path from the
point of view of an intermediate node I is a path starting at I with D as the destination.

We will take an abstract graph theoretical view of the routing table, but this view
can be applied to any other representation of the table without much modification.
We consider the nodes in the MANET as nodes of our graph. There is a link or
edge between two nodes if they are within the transmission range of each other. In
practice, links between neighboring nodes in a MANET may not be bidirectional
as the transmission ranges of both the neighbors may not be equal. We will take
the simplified view that links are always bidirectional to keep the descriptions of
the protocols simpler. However, our descriptions can be modified for the case when the
links are unidirectional. We can now view the routing table as an adjacency matrix
of the graph representing the underlying MANET. We can indicate an edge between
nodes i and j by a 1 in the entry at the intersection of the ith row and the jth column.
Similarly, a 0 indicates the absence of an edge.

It is now possible to find shortest paths from this adjacency matrix by running
Dijkstra’s shortest path algorithm. Suppose the source node (every node is potentially
a source node for packets) or an intermediate node I has to find a best path for a packet
to the destination D. The node runs Dijkstra’s shortest path algorithm on its routing
table and finds the shortest path to D. This shortest path must pass through one of its
neighbors. The task is then to forward the packet to this neighbor. The neighbor in turn
runs Dijkstra’s shortest path algorithm on its own routing table to find a best path to
the destination and repeats the process of forwarding the packet. We have assumed till
now that hop count is the only metric for finding best paths using Dijkstra’s algorithm;
however, we can use several other metrics that are relevant for the wireless medium.
Some other metrics could be the bandwidth as a cost on a link, the possible delay of
a link, and so on. The choice of shortest path is illustrated in Figure 1.1.

I

J

K

L

D12

18

14

Figure 1.1 Illustration for selection of a forwarding node in the DSDV protocol. Node I finds three
different paths to the destination D by running Dijkstra’s shortest path algorithm on its routing table. I
chooses neighbor K as the next hop of the packet since the cost of the path to D through K is least. The
node IDs are shown inside the nodes and cost of the paths from J, K, and L are shown on the paths.
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We now turn our attention to the other part of the DSDV protocol, namely,
collection of topology information. If we expect nodes to find best paths by executing
Dijkstra’s shortest path algorithm, the routing table at each node should be as up-to-
date as possible. Note that we can possibly never have the situation that all the routing
tables in all the nodes of the MANET contain correct information. In other words,
all the links that are recorded as links between neighbors may not exist at any time
during the execution of the protocol due to the mobility of the nodes. Consider three
nodes i, j, and k in a MANET. The node i may have noted the information that there
is a link between j and k. However, this information is usually relatively old and by
the time i uses this information to compute shortest paths, the link between j and k
might have already broken due to the mobility of these two nodes.

This is a very important point to note as it differentiates a centralized algorithm
from a distributed one; in particular, centralized algorithms usually have complete
input before the execution starts. A distributed algorithm has only a partial view of
the input at each node and the node executing the algorithm has to take decisions
using this partial input. Moreover, routing protocols in a MANET do not even have a
correct partial input due to the mobility of the nodes. Hence, any routing protocol in a
MANET is not an exact algorithm in the traditional sense. It is in a sense an algorithm
that tries to achieve best results using incomplete and partially incorrect inputs.

The nodes executing the DSDV protocol exchange their routing tables to update
their knowledge of the network topology. Consider a node i and its routing table.
Suppose i currently has three neighbors j, k, and l. If any of these three neighbors, say
j, moves out of the transmission range of i, there is a change in the routing table of
i. This type of change triggers a broadcast of the routing table from i to all the other
nodes in the network, so that all the other nodes can update the routing tables with
the changed topology. The broadcast is done by i sending its routing table to all its
current neighbors and the neighbors sending it to their neighbors, and so on. If a node
m receives such a broadcast from another node i, that may change the routing table
of m, triggering a broadcast from m.

This is clearly an expensive process as all nodes in a MANET need to broadcast
their routing tables due to changes in their local topology triggered by the mobility of
the nodes. A large part of the bandwidth may be consumed by these update packets,
especially in high-mobility scenarios. Several suggestions were made in the original
proposal of DSDV to alleviate this overhead by sending incremental updates of routing
tables instead of full updates. The idea of an incremental update is to broadcast a part
of the routing table that has changed instead of sending the whole routing table.
However, the fact remains that each update floods the entire network and the protocol
becomes too inefficient in terms of throughput of data packets even in moderate-
mobility scenarios.

We conclude the discussion of the DSDV protocol by mentioning another of its
important features, assignment of sequence numbers to packets. One of the effects
of broadcasting a packet, say p, from one node i to all other nodes in a MANET is
that another node j gets multiple copies of p. Moreover, if i has sent two different
updates of its routing table at two different instances, there is no guarantee that these
two packets will arrive at j in the correct order, that is, the packet sent earlier may



1.3 Proactive Routing Protocols 9

reach later. Since DSDV depends on the correct topology information for routing, it
is very important that nodes use most recent information for updating their routing
tables. One way of ensuring that nodes use most recent information is to time-stamp
each packet with the current time. That way if j receives two packets from i, it can
decide which one is more recent. However, this scheme works only when all nodes
maintain synchronized clocks. Clock synchronization is a difficult task in a distributed
system, and in particular in a MANET, since we do not expect the nodes have access
to any infrastructure. Another alternative is to use sequence numbers that work as
logical clocks. Each node stamps the packets that it broadcasts with an increasing
integer called a sequence number. Any node j receiving two packets from a node i
can decide which packet is more recent by comparing the sequence numbers in the
packets.

1.3.2 The Optimized Link State Routing Protocol

Although the DSDV protocol is attractive due its low latency in finding routes, it has
a very high overhead of control packets due to the broadcasting of the routing tables.
Any broadcast floods the entire network and takes up a large portion of the available
bandwidth in the wireless medium. The OLSR protocol is a relatively recent attempt to
reduce the control overhead of the DSDV protocol in order to increase the throughput
of packet delivery. The OLSR protocol tries to improve the DSDV protocol in two
ways, by reducing the size of the updates and by reducing the effect of the broadcasts.
We discuss these two improvements below.

Nodes executing the OLSR protocol broadcast link states rather than routing
tables. Suppose a node i currently has three neighbors j, k, and l. If at least one of
the neighbors, say k, moves out of the transmission range of i, there is a change in
topology and i should inform other nodes about it through a broadcast. Note that
it is sufficient for i to inform that the link i–k has broken and other nodes can up-
date their routing tables with this information. Hence, broadcasting link state infor-
mation instead of routing tables is better to keep the volume of control messages
low.

The main improvement in the OLSR protocol, however, comes from reducing
the effect of broadcasting of packets. Note that, for a node i, all its neighbors receive
any packet broadcast by i due to the fact that wireless transmission is omnidirectional.
However, there is no need for all the neighbors of i to rebroadcast the packet again.
It is desirable to choose only a subset of neighbors of i to rebroadcast the packet.
The OLSR protocol uses a subset of neighbors called multipoint relays to broadcast
its packets further. Strictly speaking, the concept of multipoint relays is not a part of
the OLSR protocol. Rather, it is a concept used for reducing the volume of broadcast
packets in wireless networks. We can illustrate the use of multipoint relays through
an example. Consider again a node i and its three neighbors j, k, and l. These three
neighbors are called one-hop neighbors of i. A two-hop neighbor can be reached
from i in two transmissions. Suppose i has six two-hop neighbors a, b, c, d, e, and f.
Clearly, each of these two-hop neighbors has at least one of the one-hop neighbors
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(a) (b)

C C

Figure 1.2 Illustration for simple flooding and flooding through multipoint relays. (a) This figure shows
simple flooding. Every node that receives the packet initially sent by the central node C broadcasts it again.
A double arrow between a pair of nodes indicates the receipt of broadcasts from each other (we have
assumed symmetric communication links). (b) The number of packets has been reduced considerably by
using the multipoint relay nodes (dark nodes). These nodes are one-hop neighbors of C and collectively
neighbors of all the two-hop neighbors of C. The total number of packets is reduced considerably as the
one-hop neighbors that are not multipoint relays do not broadcast.

of i as a neighbor (otherwise, they cannot be two-hop neighbors of i). As we have
mentioned above, the multipoint relays for node i, denoted by MPR(i), are a subset
of one-hop neighbors of i such that all the two-hop neighbors of i are neighbors of
the nodes in the subset MPR(i). To illustrate this, suppose k and l collectively are
neighbors of a, b, c, d, e, and f. In that case, we can choose k and l as the members
of MPR(i) so that only these two nodes forward the packets broadcast by i. There is
no need for j to broadcast the packets from i. These MPR subsets are chosen by all
the nodes in the MANET by keeping track of their one-hop and two-hop neighbors.
It has been shown that the broadcast overhead can be significantly reduced by using
the MPR sets. The process of broadcasting through multipoint relays is illustrated in
Figure 1.2.

The OLSR protocol is currently under consideration by the MANET working
group of IETF and it has the desirable properties of high throughput and low latency.

1.4 REACTIVE ROUTING PROTOCOLS

The main design aim of reactive routing protocols is to reduce the control packet over-
head of proactive protocols. These protocols do not maintain routing tables proactively
and, as a result, cannot find routes as soon as they are required. There is usually a
delay or latency in finding routes. This results in high throughput in packet delivery
as the available bandwidth is utilized for delivery of data packets rather than regular
flooding of control packets as in the proactive protocols. However, reactive protocols
also need flooding or broadcasting of packets, which occurs on-demand. We will dis-
cuss below two of the most important reactive protocols, namely, the DSR and the
AODV protocol.
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1.4.1 The Dynamic Source Routing Protocol

The DSR protocol [9, 10] has two distinct phases, route discovery and route main-
tenance. The route discovery phase starts when a source node, say S, wants to find a
route to a destination node D. Once a route to D has been found, the route mainte-
nance phase starts while S transfers its data packets to D using the discovered route.
We discuss these two phases in detail below.

A source node S starts route discovery by sending a route request (RREQ) packet
to its neighbors. A RREQ packet has an identifier that includes a source node, a
destination node, and a sequential ID that is an integer. If an intermediate node I
receives a RREQ packet and it does not know a route to the destination node D, it
takes one of the two actions. If it is a new RREQ packet (i.e., I has not seen this RREQ
before), I broadcasts the packet to its neighbors after attaching its ID on the header of
the RREQ packet. I also stores this packet in a list so that it can compare the identifier
of this packet with future RREQ packets. If it is an old RREQ packet, that is, I has
already received this packet in the past, I simply drops the packet.

If I knows a route to the destination D (we will discuss below how I may know
a route), it initiates a route reply (RREP) packet by attaching the route I to D and the
route from S to I in the header of the RREP packet and sending the packet back to
the neighbor from whom it received the corresponding RREQ packet. Note that the
RREP packet has the accumulated route from S to I in its header now. Hence, any
intermediate node that receives such a RREP packet knows exactly the neighbor to
whom it should send the RREP packet back. Eventually, the source node S receives
the RREP packet and the route discovery phase ends. If no intermediate node knows
a route to D, the RREQ packet reaches the destination D (provided the destination
is in the same connected part of the network as S) and D sends the RREP packet. If
the source node S does not receive a route reply within a specified period of time,
it can initiate a new RREQ packet after assigning a new ID to the packet. The route
discovery process in the DSR protocol is illustrated in Figure 1.3.

S A B C DE FS SA SAB

S A B C DE F

(a)

(b)

Figure 1.3 Illustration for the route discovery phase in the DSR protocol. (a) S starts the route discovery
by broadcasting a RREQ packet. The arrows surrounding a node indicate omnidirectional broadcast. Every
node appends its ID to the source route in the header of the RREQ packet. Node C has a route to destination
D through the nodes E and F. (b) C sends a RREP packet back to S. Each node determines the next hop of
the RREP packet by examining the source route.
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One of the most important aspects of the route discovery process is the attaching
of the IDs of all intermediate nodes in the header of the RREQ packet as well as the
RREP packet. This list of IDs is sometimes called the source route. Recall that nodes
executing the DSR protocol do not maintain routing tables, and hence a mechanism is
needed through which a node can decide where to forward a packet when it receives
a RREQ or RREP packet. The case for a RREQ packet is easier as it needs to be
broadcast to all the neighbors. However, the purpose of a RREP packet is to deliver the
packet to the source node S that initiated the route discovery. Hence, every intermediate
node that receives a RREP packet should know the previous node (toward S) that
originally sent it the corresponding RREQ packet. The purpose of attaching the source
route to the header of a RREP packet is to provide this information. Moreover, RREQ
packets also need to carry the source route as the node that initiates the RREP packet
needs to copy this information from the corresponding RREQ packet.

Once S has received a RREP packet, it has a route to D and also knows the IDs
of all the nodes along this route. S can now start the transfer of data packets using this
route. S attaches the entire source route in the header of each data packet so that any
intermediate node can correctly forward the packet to one of its neighbors along the
source route. It is very important to maintain a route discovered in the route discovery
phase. A route may break in the middle of data transmission due to the mobility of
the nodes. For example, suppose a link in the route is G–H, where G and H are the
end nodes of the link. If now H moves out of the transmission range of G, the entire
route from S to D will be broken. The node G in this case sends a route error (RERR)
packet to S by using the source route in the header. A RERR packet is almost similar
to a RREP packet except that the purpose now is to inform S that the route it was
using has broken. S has now two choices, either to start using an alternate route if it
has one or start the route discovery phase again to find a new route.

Till now we have mentioned that nodes executing the DSR protocol do not use
a routing table. However, in practice, running route discovery phase again and again
is too expensive in a MANET as each route discovery is essentially a flooding of the
entire network using RREQ packets. Hence, DSR uses a data structure called a route
cache to reduce the effect of flooding. The purpose of a route cache is to store any
information that a node can gather either from the packets that it receives or forwards
or from the passing traffic. In particular, nodes may utilize the promiscuous mode
operation allowed in IEEE 802.11 standards, where a node can overhear traffic that is
not intended for it. The working of a route cache can be explained through a simple
example. Consider a node I and a destination D. Suppose I worked as an intermediate
node for forwarding data packets to D for a source node P. Assume also that the path
from I to D is through some other intermediate nodes E, F, and G. Now I stores this
route fragment I–E–F–G–D in its route cache. If I receives a RREQ packet for the
destination D from some other source S in future, it can use this cached route for
sending a RREP packet to S.

However, cached route may not always provide correct information due to the
mobility of the nodes in a MANET. For example, in the example above, suppose
node G has moved out of the transmission range of F and the link F–G has broken
as a result. However, I is not aware of this link breakage. If I now sends a RREP in
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reply to the RREQ from S, it will report a route that has already broken. This causes
a problem since this will result in further route requests from S. A better policy is to
time out old entries from the cache as most probably old entries are invalid due to the
mobility in the network. The ns-2 simulator [12] adopts this policy and times out all
cache entries that are older than 20 s.

The DSR protocol employs several other optimizations in order to reduce the
control packet overhead and improve throughput. We discuss here only two of these
optimizations due to space constraint. The first optimization is called packet salvaging.
As we have mentioned, an intermediate node that detects link breakage in a route sends
a RERR packet to the source node of that route. In addition to that, such an intermediate
node tries to deliver the packet by finding an alternate route to the destination from
its route cache. In other words, it tries to salvage the data packet by sending it to
the destination through an alternate route. Packet salvaging reduces the possibility of
loss of data packets in nodes that have experienced link failures with their neighbors
while forwarding packets for other nodes. Since the source node continues to send
packets until it receives a RERR packet informing the breakage of a route, the buffers
in the intermediate nodes may overflow when there is a large amount of traffic in the
network.

Another important optimization is related to sending RREP packets in reply to
route requests. In certain situations, the route caches in the nodes may be quite up-to-
date and many different nodes may be in a situation to send route replies. However,
the network may get flooded due to many route replies. Hence, DSR uses a strategy
where a node waits for a random period of time before sending a route reply. If it
overhears that another node has already sent a route reply for the same route request,
or the source node has already started using an alternate route, it does not send a route
reply. This optimization reduces the overhead in the network considerably.

DSR is one of the most efficient protocols in terms of throughput even in high-
mobility scenarios. Moreover, DSR almost always finds shortest paths through its
route discovery mechanism. However, one of the drawbacks of the DSR protocol
is the use of source routes in every packet. The number of IDs in a source route
increases as the lengths of the routes increase. Since the wireless medium usually
supports relatively small packet size, it is not possible to keep an entire source route
in a single packet if a route is long. On the other hand, there is no guarantee of delivery
of packets in the correct sequence in the wireless medium. Hence, the problem cannot
be solved by splitting source routes in multiple packets. Hence, DSR is a very efficient
protocol for MANETs that are relatively small and when the routes are up to about
10 hops long.

1.4.2 The Ad Hoc On-Demand Distance
Vector Protocol

The AODV protocol [1, 17] tries to remove the main drawback of the DSR protocol
by eliminating source routes from its control and data packets. Moreover, AODV was
the first protocol to support multicasting in a MANET. Till now we have discussed
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routing from the perspective of unicasting, that is, one source node sending packets
to one destination node. However, this is only one of several types of communication
used in a typical network. In multicasting, a source node may want to send the same
packet to several destination nodes (called a multicast group). Broadcasting is a spe-
cial case of multicasting, when a source node wants to send the same packet to all the
nodes in the network. It is possible to support multicasting through finding unicast (or
one-to-one) routes from the source to all the nodes in a multicast group. However, dis-
covering and maintaining separate routes to multiple nodes is usually more expensive.
It is desirable to have a common routing mechanism for all members in a multicast
group. AODV solves this problem in an elegant way, as we will discuss later in this
section.

AODV is in a sense a table-driven as well as a reactive protocol. Each node
executing AODV maintains a routing table; however, this routing table is local and
contains information only about the neighboring nodes. In contrast to DSDV, there
is no need to update the routing tables through global broadcasting. AODV also has
two phases, route discovery and route maintenance, like DSR. The route discovery
phase is almost similar to that of DSR. The only two differences are that AODV does
not use source routes and each RREQ packet is stamped with a sequence number
by the source node of the packet. A source node S uses four different fields in the
RREQ packet, namely, its own IP address, the IP address of the destination, its own
sequence number, and the last known sequence number of the destination D. S may
have obtained the sequence number of D from a packet that it had forwarded in the
past; however, S does not have a route to D at present. The purpose of including the
last known sequence number of D in the packet is to inform other nodes about the
quality of the information that S has about D. Suppose the sequence number of D
that S has is seq1 and another node I has a routing table entry for D with a sequence
number seq2. Suppose I now receives a RREQ packet from S for destination D. Recall
that sequence numbers are integers and I can compare these two sequence numbers.
If seq1 > seq2, it is clear that S has more recent information about D compared to
I and I need not reply to this RREQ packet as its information about D is old. On
the other hand, if seq1 < seq2, I has more recent information about D compared to
S. Hence, the sequence numbers are used as a logical clock in a way similar to the
DSDV protocol.

AODV uses a mechanism where every node along a route sets up forward and
reverse paths during the route discovery phase. We will illustrate this mechanism
through an example. Suppose an intermediate node J has received a RREQ packet
from another node I and the source for this RREQ packet is a node S. J sets a reverse
route entry in its routing table with I as the destination of this entry. If J receives a
RREP in reply to this RREQ in future, this reverse route entry helps J to route the
packet to S through I. J also stores the current time with this reverse route entry. The
reverse route entry is deleted if it is not used within a specified lifetime.

Suppose a node M receives a RREP packet from one of its neighbors N. M creates
forward path entry in its routing table with N as the destination of the forward path.
If the source node S sends data packets in future, M can send these data packets to
D through N. A node J can reply to a RREQ packet with a RREP only if it has an
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Figure 1.4 Illustration for the establishment of forward and reverse paths in the route discovery phase
of the AODV protocol. (a) The propagation of the RREQ packet from the source node S is shown by the
straight arrows. Each node makes a reverse path entry in its routing table by noting the ID of the neighbor
from which it received the RREQ packet. These reverse path entries are illustrated by the bold and curved
arrows. (b) The node C initiates a route reply by sending a RREP packet since it has a route to the destination
D. When a node receives a RREP packet from one of its neighbors, it makes a forward path entry in its
routing table by noting the ID of the neighbor from which the RREP has arrived. The propagation of the
RREP packet is shown by the straight arrows and the forward path entries by the bold and curved arrows.
Note that nodes such as E and F already have forward path entries as they are parts of a path to D.

unexpired route for D with a higher sequence number (compared to the sequence
number in the RREQ packet) from D. The RREP packet follows the reverse path
entries along the path through which the RREQ packet traveled to J. Figure 1.4
illustrates the forward and reverse path entries in the AODV protocol.

The route maintenance phase starts if there is a route breakage due to link failure
during the data transfer phase along an established route. The sending of RERR
packets is exactly similar to the DSR protocol, with the exception that nodes executing
the AODV protocol do not try to salvage packets when a link breaks. When the source
receives a RERR packet, it initiates a new route discovery phase.

Every node keeps only a single forward path entry for each route in the original
AODV protocol. However, this may be inefficient because a new route discovery phase
begins every time there is a route breakage, incurring large control packet overheads.
There is a variant of the AODV protocol called the multipath AODV (AOMDV) [11]
in which each node keeps multiple forward path entries for each route. For example,
suppose a source node S has requested a route for a destination D and the resulting
RREQ packet has passed through an intermediate node J. J may receive multiple
RREP packets in future in reply to this RREQ. Assume that J receives RREP packets
from three of its neighbors U, V, and W. In the original AODV protocol, J chooses
only one of these three neighbors for keeping a forward path entry in its routing table
and rejects the other two. In the AOMDV protocol, J keeps forward path entries to
all the three neighbors. However, J marks these forward path entries with the times
when the corresponding RREP packet was received and times out these entries if they
become too old before they are used. Assume now that J chooses one of these entries,
say to U, for forwarding data packets when S starts transmitting data. In case U moves
out of the transmission range of J in future by breaking the J–U link and also the path



16 A Survey of State-of-the-Art Routing Protocols for Mobile Ad Hoc Networks

S

Figure 1.5 An illustration for the AOMDV protocol. In general, each node maintains multiple forward
path entries in its routing table corresponding to each RREP it receives. These forward path entries are
shown by bold arrows.

to the destination D, J can start using another of its forward path entries, say the link
to V, for forwarding packets to D, provided the link to V is not too old. Hence, the
need for sending a RERR packet to S due to the failure of the J–U link is eliminated in
the AOMDV protocol. However, a RERR packet needs to be sent if the last forward
path entry in J’s routing table breaks. The AOMDV protocol has better performance
in terms of lower packet overhead compared to the AODV protocol. We illustrate the
forward path entries in the AOMDV protocol in Figure 1.5.

We now discuss how AODV supports multicasting in a MANET. The main aim is
to maintain a multicasting tree for each multicasting group of nodes. A multicasting
tree consists of two kinds of nodes, multicast group members and multicast tree
members. All other nodes in the MANET are non-tree nodes from the point of view
of a multicasting group. Multicast tree members are not members of the multicast
group; however, they are required for maintaining connectivity of the multicasting
tree. It is important to keep a multicasting tree connected as a packet received by any
member of a tree can send the packet to any other member. Also, it is important to
have a tree instead of a graph to avoid routing loops.

A multicasting tree is considered as a single entity for the purpose of route
discovery in AODV. Recall that any RREQ packet should contain a destination node
ID. A node I can send a RREQ packet to a multicasting group M in two different
cases, either I wants to send packets to the nodes in M (a data request) or I wants to
join M (a join request). In case of a data request, any node that has a current path to
the multicasting group can send a RREP packet in reply to the RREQ. The meaning
of a current path is same as in the original or unicasting version of AODV that we
have discussed before. Also, a path to the multicasting group means a path to any
member of the multicasting group. In case of a join request, only a member of the
multicasting tree can send the RREP. The setting of reverse path and forward path
entries is similar to the unicast version of AODV, with one exception. The sender of a
RREQ packet with a join request may receive multiple potential branches that connect
to the multicasting tree, since the RREP packets travel through different routes. The



1.5 Other Routing Protocols 17

sender should select only one of these branches as a path to the multicasting group
by sending a multicast activation message.

It is important to maintain a multicast tree so that the tree does not get discon-
nected due to the mobility of the group members. Usually a special node is selected
as the leader of the multicast tree and each node knows the ID of this leader node
and also the path to the leader node. When a link breaks, the node that is closer to
the leader initiates a route repair by sending a RREQ as a join request. The link is
repaired when the corresponding RREP comes back and the node has found a new
path to the multicasting group.

1.5 OTHER ROUTING PROTOCOLS

Till now we have discussed the two main categories of routing protocols for MANETs,
namely, proactive and reactive protocols. However, there are other protocols that
cannot be classified as purely reactive or purely proactive. We discuss two such
important classes of protocols in this section, namely, the zone routing protocol (ZRP)
and link reversal routing protocols.

1.5.1 The Zone Routing Protocol

The zone routing protocol [7] takes advantage of both proactive and reactive rout-
ing strategies in a MANET. Recall that the main drawback of proactive protocols is
their large overhead due to proactive exchange of routing tables or link state informa-
tion and that of reactive protocols is their high latency. ZRP tries to overcome both
of these drawbacks while preserving the advantages of both proactive and reactive
protocols.

Each node N executing the ZRP in a MANET maintains its routing zone. A
routing zone is a k-hop neighborhood of N, where k is usually a small number from
2 to 4. k is also called the radius of a routing zone and is same for all nodes in
the MANET. Each node routes proactively within its routing zone, that is, it tries to
maintain a complete routing table for all the nodes in its routing zone, like the DSDV
protocol. The routing outside this routing zone is done reactively, like the DSR or
AODV protocol.

Suppose node S wants to start a data communication with node D. If D is within
the routing zone of S, then there is no need for route discovery, as S can find a route
to D by consulting its routing table. If D is outside the routing zone of S, there is a
need for route discovery; however, the route discovery process is not as expensive as
that of a reactive protocol. S initiates route discovery by sending a RREQ packet as
in case of reactive protocols, but this RREQ packet is sent more efficiently by using
border nodes in each routing zone. A border node is a node on the periphery of a
routing zone. For example, suppose the radius of the routing zone is 2. For node S,
all the nodes that are two-hop neighbors of S are the border nodes of the routing zone
of S. Since S has a routing table for its routing zone, it can quickly route the RREQ
packet to all these border nodes by consulting its routing table. Suppose B is one of



18 A Survey of State-of-the-Art Routing Protocols for Mobile Ad Hoc Networks

SA
B 

C

D

Figure 1.6 An illustration for the propagation of RREQ in the ZRP. The large circles represent the
routing zones of individual nodes. The small solid circles represent border nodes and the empty circles
represent other nodes. The solid arrows represent the propagation of the RREQ that succeeds in finding a
route. C can send a RREP since the destination D is within its routing zone. The RREQ is propagated from
one node to another on its zone boundary. The dashed arrows indicate the propagation of RREQs that are
not successful.

these border nodes in the routing zone of S. There are two possibilities, either D is
within the routing zone of B (recall that each node proactively maintains its routing
zone) or D is not within the routing zone of B. In the first case, B can send a RREP
packet back to S as it has a path to D from its routing table. B needs to forward the
RREQ further in the second case and this is again done by using the border nodes
of B’s routing zone. The propagation of the RREQ packet continues until either it
reaches D or it reaches a node C such that D is within the routing zone of C. This
process is illustrated in Figure 1.6.

It is easy to see that the propagation of a RREQ packet in the ZRP is more
efficient compared to that in a pure reactive protocol such as DSR or AODV. Every
node that receives the packet needs to send the packet to its border nodes and the
routes to the border nodes can be found consulting the corresponding routing tables.
A RREP packet is also propagated back in exactly the same way, that is, using border
nodes. Hence, overall ZRP achieves a better performance in terms of lower latency
compared to pure reactive protocols.

We need to ask the question whether the proactive maintenance of routing tables
within routing zones incurs considerable overhead in the ZRP. The overhead is indeed
high if the routing zones are large, and Haas and Perlman [7] report that the overhead
is significantly lower if the radius of a routing zone is kept small, typically 2 or 3.
This choice of the radius maintains both low latency and high throughput even under
high-mobility scenarios.

We close our discussion on ZRP by mentioning an important optimization that
needs to be done to make the protocol efficient. There is usually a significant overlap
among the routing zones of different nodes in a MANET. For example, consider two
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neighboring nodes I and J. The routing zones of I and J will contain almost the same
nodes, except for few exceptions. Moreover, if a node M is a border node for the
routing zone of another node N, N is also a border node for the routing zone of M. If
the RREQ packets are sent always to the border nodes of routing zones, as we have
discussed above, the RREQ packets will flood the same part of the network again
and again. This is clearly undesirable. ZRP tries to remove this type of flooding by
directing a RREQ packet to the parts of MANET where the packet has not yet arrived
and avoids flooding the parts where the packet has already arrived. A node that has
broadcast a RREQ suppresses the same RREQ in future if it gets the RREQ again.
Similarly, nodes that have overheard the RREQ in the promiscuous mode know that
the RREQ has arrived in their part of the network and avoid forwarding the RREQ in
future. This simple optimization reduces the overhead of route discovery considerably
while using the ZRP.

1.5.2 Link Reversal Routing Protocols

The main idea behind link reversal routing is to treat a MANET as a directed graph.
The first such protocol was designed for static packet radio networks by Gafni and
Bertsekas [6] and the MANET community later extended the idea to networks of
mobile nodes. We first discuss the protocol in Ref. [6].

1.5.2.1 Gafni–Bertsekas Protocol

Consider a network of static wireless nodes with a single destination node D and
possibly many source nodes. The source nodes want to send packets to the destination
node. The link between a pair of nodes is determined by their transmission radii. We
will assume for simplicity that all links between neighboring nodes are bidirectional,
that is, they are within the transmission range of each other. However, the protocol
works equally well for the case when the links are asymmetric.

The problem of routing to a single destination D can be naturally framed as a
problem on a directed acyclic graph such that the nodes in the wireless network are
nodes in this graph and the edges between neighboring nodes in the network are edges
of the graph. Every node other than D has at least one outgoing edge and D is the only
node without any outgoing edge. Hence, D acts as a sink for all the packets transmitted
in the network. A packet transmitted over a directed edge is forwarded by the recipient
of the packet over an outgoing edge and this process continues until the packet reaches
the destination D. It cannot be forwarded again as D does not have any outgoing edges.
Hence, the routing scheme becomes very simple. A node (other than the destination)
does not need to know its position in the network or the position of the destination. If it
has to route a packet to the destination, it simply needs to forward the packet over one
of its outgoing edges and the packet is guaranteed to reach the destination since there
is no loop in the DAG and also D is the only sink, or node without any outgoing edges,
in the network. Hence, a node executing the Gafni–Bertsekas protocol does not need
to either maintain routing tables like proactive protocols or run a route discovery
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D

Figure 1.7 The view of a wireless network as a directed acyclic graph. The destination D is the only
node that does not have any outgoing edge, every other node has at least one outgoing edge. It is easy to
see that a node needs to forward a packet over one of its outgoing edges and the packet will eventually
reach D.

phase like reactive protocols. A sample wireless network as a DAG is shown in
Figure 1.7.

The success of the Gafni–Bertsekas protocol of course depends on route main-
tenance; that is, we have to ensure that always the graph is maintained as a DAG and
also D is the only sink in the graph. Let us first examine how the DAG is established
in the first place. Initially, the network is just a graph with links between neighbors
when they are within the transmission range of each other. Only the neighbors of D
have directed links to D. The initialization of the network as a DAG starts when a
node S other than D needs a path to D for routing packets. S floods a QRY packet in
the network in the usual manner. Any node that has a path to D replies to this QRY
by sending a RPY packet. The RPY packets travel exactly in the opposite direction
compared to the QRY packets. We need to explain at this point the meaning of a path
to the destination in link reversal routing protocols. Such a path does not have any
global meaning from a node’s point of view in the sense that we have seen in proactive
and reactive routing protocols. For a node N, a path to the destination D exists if N
has at least one outgoing directed edge.

A node can send a RPY packet if it is either the destination D or one of the
neighbors of D, as only the neighbors of D have a path to D due to their outgoing
links to D. Suppose a node I has received a RPY packet from a node J and I and J
are neighbors. I can now mark its link to J as an outgoing link as J has a route to D.
After this, I also has a route to D and I can now send RPY packets to its neighbors.
The initialization proceeds in this way until all the nodes in the network receive RPY
packets and set their outgoing directed links. The network now is a DAG with only
one sink D as we desired.

A node can lose a link in a static wireless network if nodes are allowed to switch
off, that is, they stop participating in the network. Recall that the Gafni–Bertsekas
protocol was designed for a packet radio network, where participation is voluntary.
In general, there is no harm if a node withdraws from the network, until the situation
arises that another node, say T, other than the destination becomes a sink. In other
words, T loses all its outgoing links and becomes another sink in the network. This
is clearly undesirable, as any packet reaching T will be stuck there and will not be
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delivered to D. The Gafni–Bertsekas protocol rectifies this situation by two mecha-
nisms called full reversal and partial reversal.

The main activity in a link reversal routing protocol is route maintenance. The
two reversal mechanisms maintain the directed acyclicity of the network graph and
hence maintain routes in the graph for a destination D. In the full reversal mechanism,
node I that has lost all of its outgoing links reverses all its incoming links to make
them outgoing. As a result, one or more of I’s neighbors may lose their outgoing links
and the full reversal process continues until all the nodes have at least one outgoing
link each. It can be shown that the full reversal process terminates within a finite time
(usually a short time in a wireless network) if the network is connected, that is, the
destination can be reached from each node. The partial reversal mechanism is more
selective. Consider two neighboring nodes I and J. Suppose I has just reversed all its
links and J has lost its last outgoing link as a result. J does not reverse its link to I
and instead reverses its other incoming links in the partial reversal mechanism. The
partial reversal mechanism is illustrated in Figure 1.8.

The Gafni–Bertsekas protocol guarantees a directed acyclic graph once the net-
work stabilizes. However, the network may have loops and hence the acyclicity prop-
erty may not hold temporarily when the partial or full reversal mechanisms are in
action. However, the reversal mechanisms usually terminate within a short time in a
wireless network. Although this protocol is quite elegant and efficient in static wireless
networks, one of its main drawbacks is that it does not work in partitioned networks.
It can be shown easily that the full or partial reversal mechanism may go into an
indefinite cycle (the nodes continue reversing their links for an indefinite period of
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Figure 1.8 An illustration of the partial reversal mechanism in the Gafni–Bertsekas protocol. (a) Each
node except the destination D has at least one outgoing link. (b) B moves away and A loses its last outgoing
link. (c) A reverses its incoming links, the link to E in this case. E now loses its last outgoing link. (d) E
does not reverse its incoming link to A as A has just reversed it. E instead reverses its other incoming link
to F. The network is now again a DAG with only one sink (D).
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time) for nodes that are partitioned from the destination D. This wastes bandwidth
of the wireless network. Since mobile ad hoc networks may get partitioned from
time to time due to the mobility of nodes, this protocol cannot be directly used in a
MANET.

We need to mention another important point about the Gafni–Bertsekas protocol.
Throughout our discussion we have assumed only one destination in the network.
However, this is not realistic as usually any node in a wireless network may act as
a source or destination of packets. However, the protocol can be extended easily
for multiple destinations. Conceptually, we need to maintain k different DAGs for k
destinations. Note that there is no global maintenance of DAG in the Gafni–Bertsekas
protocol, rather individual nodes store local information to get a global DAG in a
distributed fashion. A node can keep track of its links with its neighbors in a local
routing table and assign status to these links as incoming and outgoing. Also, nodes
need to change the status of these links during the link reversal process. It is possible to
support k destinations by keeping k copies of each link with a neighbor and assigning
a status (incoming or outgoing) for each copy according to the status of the DAG for
a particular destination. A link between neighbors I and J could be incoming for node
I for a destination Dp and outgoing for I for another destination Dq. When I receives
a packet for destination Dp, it cannot forward that packet to J because the direction
of the link is from J to I. On the other hand, when it receives a packet for destination
Dq, it can forward the packet to J since the direction of the link is from I to J for
destination Dq.

1.5.2.2 Temporally Ordered Routing Algorithm

The TORA protocol [4, 14] was designed as a modification of the Gafni–Bertsekas
algorithm for mobile ad hoc networks. We cannot discuss this protocol in detail due
to limitation of space and a detailed description can be found in the review article by
Corson and Park [5]. We discuss only the essential components of this protocol that
make it suitable for using in MANETs.

The main aim of the TORA protocol is to make it suitable for networks that may
become partitioned, as is the case for MANETs. It retains the core ideas behind the
Gafni–Bertsekas protocol, such as using the network as a DAG and maintaining the
DAG through full and partial reversal of links. However, it has some extra mechanisms
for detecting partitions in a MANET.

The direction of the links between neighbors in the TORA protocol is enforced
through a height assignment to each end point of a link. Suppose I and J are two
neighboring nodes and we assign integers as heights to I and J to fix the direction of
the link between them. For example, if I is assigned a height of 4 and J a height of 7,
then J has a greater height compared to I and the direction of the link between them
will be from J to I. In other words, the link between I and J will be incoming for I
and outgoing for J. If I wants to reverse this link, it has to make its own height higher
than J, say 8. Link reversals in TORA are done by changing the heights of the two
end nodes of a link. However, the height assignment in TORA is more complex, with
each height consisting of five components. Two heights are compared according to
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the lexicographic ordering of these five components. When a node wants to change its
height, it usually tries to borrow the height of one of its neighbors and increases one of
the components so that its height becomes higher than that neighbor. This is basically
the idea of partial reversal in the Gafni–Bertsekas algorithm. There are several rules
in changing heights in TORA and we will not discuss all the rules; however, we will
only discuss the way TORA detects partition in the network.

One of the components in a height is the origin ID or oid and the other is time.
There are situations when a node cannot borrow a neighbor’s height and increase it
to do partial reversal. In such cases, a node (say I) initiates a global new height by
assigning the first component as the current time. Since current time is the global
highest time, the new height becomes lexicographically highest in the entire network.
The node I initiating a new height also sets the oid field of the new height with its
own ID. It is then possible for I to detect in future if all of its neighbors have the
height that it had initiated. This means all of its neighbors have tried to borrow I’s
height and increase it to establish outgoing links to I. This is an indication of a par-
tition in the network as no node is able to force a new route to the destination by
increasing others’ heights. Nodes executing TORA erase all their heights in such
cases as there is no point in trying to find new routes since the destination is unreach-
able. The destination may become reachable in future again due to the mobility of
nodes when there are new nodes between the partitions and these nodes connect the
partitions.

Although TORA is an elegant protocol for routing in MANETs, it has quite high
overhead in high-mobility scenarios. In particular, the link reversals become excessive
when there are frequent link breakages in the network. It has been shown [2] that
the performance of TORA becomes worse compared to reactive protocols in high-
mobility scenarios. However, the performance of TORA is comparable to protocols
such as DSR and AODV in low- and moderate-mobility scenarios.

1.6 CONCLUSION

We have reviewed several key protocols for routing in mobile ad hoc networks. How-
ever, this review is not comprehensive as we have left many other protocols from
our discussion due to limitation of space. One such class of protocols is the class of
position-based routing protocols [20], where each node knows the locations of all
the other nodes through a location service such as global positioning system (GPS).
It can be shown that the overheads of reactive protocols can be reduced considerably
in this class of protocols. We refer the reader to the review article by Stojmenovic
[20] for more details.

We conclude this chapter by briefly discussing how the MANET routing proto-
cols are evaluated in terms of their performance, such as throughput and latency in
packet delivery. Since a real evaluation of a protocol through deploying mobile nodes
is expensive, most such evaluations are done through simulations in a discrete event
simulator. The network simulator [12] or ns-2 has become the most popular simula-
tor in the research community for this purpose. ns-2 has been developed for over a
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decade by volunteers who are researchers and PhD students in different universities
worldwide and it is still in the process of development with new protocols and features
being added every year. It is written in C++, one of the most popular object-oriented
programming languages. The protocols discussed in this chapter are usually evaluated
under the random waypoint model of mobility of nodes. In this model, a node moves
in a random direction with a random speed (bounded above by a maximum speed) and
then pauses for a specified time before moving in another random direction again.
This process continues throughout the simulation period. The range of mobilities
(in terms of maximum speed) usually considered by researchers is in the range of
1 m/s (pedestrian speed) to 20 m/s (speed of a car). Much more details about perfor-
mance evaluation of specific protocols can be found from the references cited in this
chapter.
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