
C H A P T E R

1

Realizing the Promise of SOA
Those who do not remember the past are condemned to repeat it.

— George Santayana

Everyone has heard the many promises and benefits of Service-Oriented Archi-
tecture (SOA), and you’ve all probably heard a dozen different definitions of
what SOA is or isn’t. We’re going to take a different approach. We want
to paint a picture of what SOA can deliver and the promise of SOA, and
then describe the challenges that organizations face in realizing that promise.
Together, the vision and the challenges provide a set of requirements that
the architecture must meet to make your implementation of SOA successful
at delivering the promised benefits. Throughout the book, we’ll describe the
detailed architecture, design principles, and techniques that meet those archi-
tectural requirements, make the architecture actionable, and deliver results. In
this chapter, you look at:

What did and didn’t work in the past

The promise of SOA to the enterprise

The challenges of delivering on that promise

How to meet the challenge (the subject of this book)

But first, let’s start with a little story. The scenario is true although the names
have been changed.

3

CO
PYRIG

HTED
 M

ATERIA
L

4 Part I ■ Understanding SOA

Once Upon a Time . . .

Back in 1994, a major U.S. bank was trying to resolve a problem with customer
service. Like pretty much every bank at that time, all of the different products
(i.e., different types of accounts) were implemented on different mainframe
systems. When you telephoned the customer service representative, you spoke
to a beleaguered person with numerous green screen terminals on his or her
desktop.

If you wanted information about your checking account, the customer ser-
vice representative went to one terminal and entered your account number. If
you wanted information about your savings account, the representative had to
get a different account number from you and enter that in a different terminal.
Each account system had a different interface. Together, they provided a con-
fusing mix of commands and interaction that necessitated expensive training
and was error prone. Customer satisfaction with problem resolution was low,
employee satisfaction was low, and retention of both was problematic.

So what’s a bank to do? First, they set about rationalizing the interface to
all of the systems into a consistent interface, on a single terminal. Solutions
such as 3270 emulators and PCs were tossed around but discarded because
they only reduced the number of terminals, not the complexity of multiple
interfaces. Instead, the bank took a gamble on a relatively new, distributed
technology, Common Object Request Broker Architecture (CORBA).

The specific technology they chose is less important than the approach. The
first thing they did was to create distributed objects to represent the different
types of accounts. These objects provided an abstraction layer between the user
interface and the mainframe systems that actually implemented the accounts.
Next, they wrote a new user interface, using Visual Basic (VB), that provided
account information to the customer service representatives by accessing the
different systems via the CORBA objects.

It took about 6 months to get the basic functions in place — a new user
interface, VB/CORBA bridging, and simple account objects — and then they
were able to start replacing some of the green screen terminals. At this point,
they began to understand the potential of the approach. They had essentially
implemented the beginnings of a 3-tiered application architecture by separat-
ing the presentation, business logic, and operational systems. Figure 1-1 shows
a simplified view of their solutions.

The next enhancement was to implement a customer relationship object in
the logic tier. What this did was to take any account number or customer name,
find all of the accounts that belonged to that customer, and provide that infor-
mation to the customer service representative. Now, the customers didn’t need
to keep track of all their different account numbers in order to do business with
the bank. The next incremental improvement was to automatically look up

Chapter 1 ■ Realizing the Promise of SOA 5

Service Layer

Check Account
Object

Account x
Object

Save Account
Object

Customer
Relationship

Call Center
Services

Internet
Services

Presentation

Logic

Operational
systems

Customer
Service

Internet
Banking

Figure 1-1 Bank customer service solution

information about each account and display a summary on the customer ser-
vice representative’s terminal. Now, without any additional effort on their part,
the representatives had a broader view of the customers and a better under-
standing of their relationship to the bank. This allowed them to better serve
the customers requests and at the same time offer additional value or services
(i.e., turn a customer support scenario into a sales opportunity). Customer and
employee satisfaction started to go up as the new approach started to pay off.

Over the next 2 years, the bank continued to provide more business objects
in the logic tier and better features in the interface. The bank built up a library
of about 250 objects (services) that served the needs of multiple channels,
including the initial customer service representatives as well as ATMs and
touch-tone dial-in systems. Things were going along smoothly in 1997 until
a disruptive technology had a huge impact on banking, and everything
else for that matter. All of a sudden, everybody wanted to do Internet
banking.

Again, what’s a bank to do? Well, while most of their competitors pondered
the problem and scrambled to look at solutions like screen scraping, this bank
didn’t have to. They had invested in building up an architectural approach
to the problem, namely separation of presentation from logic and logic from
operational systems, and they had invested in building up an effective library
of services in the logic layer. Therefore, all they had to do was implement a
new Internet presentation. Of course, some minor changes to services were
required as well as some new services to support security and other Internet
specifics, but the bank’s challenges were comparatively simple and they were

6 Part I ■ Understanding SOA

up on the Internet in less than 6 months. This was a full 6–12 months faster
than their competitors, who struggled to catch up. And it was a real imple-
mentation that built toward the future, not a quick-and-dirty hack that needed
to be replaced later. Many of the bank’s competitors have never caught up.

Two years later, the bank merged with another major bank. This time the
problem was how to integrate the new bank’s systems into the other bank’s
Internet operations. Imagine the challenges involved, and imagine the surprise
when 100% of the combined customers were able to access their accounts via
the Internet on the first official day of merged operations! Okay, in reality, a
few months were spent making this possible before the official opening day,
but again the architectural investment paid off. Instead of adding a new pre-
sentation, the bank added new systems to the operational layer and enhanced
the logic layer so that it was possible to access the new types of accounts and
systems. Only very minor changes were required in the presentation layer.

Since the initial introduction of their Internet banking capability, the imple-
mentation and infrastructure has been enhanced to support tens of millions
of transactions per day. And, since the merger, hundreds of other banks have
been acquired and merged into the architecture. They were the competitors
that never caught up, that never invested in architecturally sound IT solutions.

But of course, all of this didn’t just happen by accident. The bank was for-
tunate to have a perceptive, skilled, and forward-thinking architect involved
in the project. The architect quickly realized both the potential and the chal-
lenges and set about making changes to address them. First and foremost was
the adoption of an architecture that distributed responsibilities across layers
and tiers.

Second, the bank understood the challenge of creating the right kind of
services in the logic tier and of having developers reuse them. To accomplish
this, the bank created a new position, a reuse manager, for fostering and
managing reuse. This person was responsible for helping developers create
the right services with the right interfaces, helping presentation applications
find and reuse services, and setting out an overall vision and roadmap of what
services would be needed over time.

Finally, the bank realized that the existing organizational structure was not
conducive to creating or using services. Instead of having monolithic applica-
tion groups, they divided IT into groups that built the business services, and
into other groups that used the services in their presentations and applications.
After some obvious learning curves and attitude adjustments, the bank was
able to drop the time to enhance or develop new user applications from 6
months under the monolithic model to 4–6 weeks under the service model.
And, the more services that were added to the service library, under the careful
direction of the reuse manager, the shorter this timeframe became.

So, with a successful implementation of SOA, the bank was able to improve
customer retention and satisfaction, reduce costs and time to market, take

Chapter 1 ■ Realizing the Promise of SOA 7

advantage of disruptive technologies, quickly absorb acquisitions, and keep
ahead of their competitors. No wonder businesses are interested in SOA.
From a more technical point of view, the bank was able to integrate multiple
systems, support multiple channels and devices, scale horizontally to support
very large-scale and highly reliable requirements, incrementally add new
functionality, manage reuse, and converge on a common service infrastructure.

The moral of the story is this: SOA isn’t about technology, and SOA
doesn’t just happen. SOA is an architectural approach to building systems that
requires an investment in architecture and IT, a strategic and business vision,
engineering discipline and governance, and a supporting organizational struc-
ture. Ignore these things and you end up with another broken promise. Put
them together well, and you can deliver the promise and potential of agility,
flexibility, and competitive advantage.

Learning from History

As can be seen from this story, SOA is not new. It has been around for years,
well before the term was coined, by most accounts, in 1996. Forward-thinking
companies like the bank whose story was told earlier, and many other finance
and telecom companies were able to implement service layers using a variety
of distributed technologies, including CORBA and the Distributed Common
Object Model (DCOM). Other technologies, like Tuxedo, were inherently
service-oriented and stateless, and formed the basis of some of the largest,
high-performance, distributed applications of their day.

So while it is not difficult to find companies that were successful in imple-
menting SOA, it’s much easier to find companies that failed in their SOA.
IT graveyards are filled with failed projects and sometimes the vendors of
the technologies that promised the elusive, and ultimately ineffective, silver
bullet. Figure 1-2 shows a brief timeline of SOA activity.

1990

Tuxedo
Apps

Distributed
Objects

(CORBA/COM)

1996

Term SOA
Coined Web Services

2002 2008

Te
ch

no
lo

gy
 C

om
pl

ex
ity

SO
A

Su
cc

es
s

Ra
te

Figure 1-2 SOA timeline

8 Part I ■ Understanding SOA

What Went Wrong?
You might ask why some projects succeeded while others failed. Luckily, you
have the opportunity to look back and examine both the successes and failures
to discover patterns, and to then plan a path forward that avoids the failed
behavior and embraces the successful activities.

Looking at the failures uncovers two main patterns. First, the technologies
that we mentioned were too difficult for the average programmer to master.
Distributed computing with CORBA or DCOM was just too difficult for the
masses. Sophisticated IT departments had the system programmers and archi-
tects to manage these technologies, but most organizations did not. Visual Basic
(VB) programmers and other client/server Rapid Application Development
(RAD) application programmers didn’t cut it, and the underlying platforms did
not have enough of the complexities of distributed applications built into them.

The other problem was that, as an industry, we had not yet figured out what
a good service was. No one knew what the right characteristics of a service or
its interface or interaction style were. And if you could figure these things out,
you then had to describe them in a service abstraction, and finally implement
the service abstraction on top of the object abstraction naturally provided
by the distributed technology. Again, some sophisticated people figured all
this out, but most didn’t. The hurdles to create any service were so great that
most attempts failed well before the developers had to worry about whether
they were building good services or what SOA meant, how to build it, or how
to use it.

The situation today is much better. Web Services are much easier to use
than previous technologies. This is not because the technologies are really any
simpler (see the sidebar ‘‘It’s Not So Simple’’), but mostly because the tools
and environments have advanced greatly. It is now possible to develop
services without really knowing what a service is or anything much about
distributed technologies (we can debate whether this is good or bad later . . .).

Instead, the implicit knowledge of distribution and services is built into the
platform, whether it is based on Java, .NET, or something else. And the service
abstraction layer is built into the Web Service technologies.

IT’S NOT SO SIMPLE

Distributed technologies have had a long history, a history that tends to repeat
itself. In the early days, we came up with the Distributed Computing
Environment (DCE). Originally, this was a Remote Procedure Call (RPC)
mechanism aimed at allowing different UNIX systems to communicate. Once
the basics were worked out, people tried to use it for real enterprise
applications and realized that it needed more capabilities such as security,
transactions, reliability, and so on.

Chapter 1 ■ Realizing the Promise of SOA 9

Next was CORBA, a mechanism for distributing objects. Initially, it was pretty
simple, until people tried to use it to create real enterprise applications. Soon
they realized that it needed security, transactions, reliable delivery, and so on,
and it became complicated.

So a simpler technology was invented, Java. And all was well and good until
people tried to use it to build real enterprise applications. All of a sudden it
needed to have security, transactions, messaging, and so on.

Finally, Web Services came along, invented by developers so ignorant of
history that they actually had the audacity to call the protocol SOAP, Simple
Object Access Protocol. And all was fine until people tried to build real
applications with it and discovered that they needed security, transactions,
reliable messaging, and so on. You know the rest.

Hmm. What will be next?

What Went Right?
If you look at what worked, you get a broader picture. Not every company
that mastered the technology managed to succeed with SOA. As has always
been true with IT, technology alone is not enough to solve business problems.

The first thing that successful companies had was an understanding of not
only how to use the technology but also what to do with it. These companies
had an architectural vision that described the construction of applications in
terms of a logical distribution of responsibility across tiers. The architecture
went on to describe how services fit into that mix, what services were, how to
build them, and how to use them.

The next, and equally important, aspect shared by successful companies
was a business vision that described what business the company was in, what
information and processes were necessary to run the business, what capabilities
were needed to support those processes, and what services were needed to
provide those capabilities. In addition, the vision included a roadmap that
allowed for a prioritization and ordering of service implementations.

The vision and roadmap were combined with processes that helped the
organization implement them. Two major aspects of this were: first, to help
applications use existing services and, second, to help service providers create
the right services, ones that didn’t overlap with existing services or leave gaps
in the roadmap.

Another aspect of successful SOA implementations was a structure that
supported the consumer-and-provider nature of services. In addition to an
organizational structure that separated these roles, the underlying architec-
ture and infrastructure supported the discovery and publishing functions of
consumers and providers.

10 Part I ■ Understanding SOA

Finally, the architecture and process were tied into an implementation
methodology that supported the use and creation of services within applica-
tions and was informed by the overall enterprise context, business vision, and
roadmap.

What Can You Learn?
So, what can you learn from this? First, success is not based on the technology.
Technology can cause you to fail, but it doesn’t make you succeed. Although
previous technologies were too hard for most organizations, and the current
technologies and tools are much better, there is more to it. You need to know
how to use the technologies to build enterprise applications, not just isolated
services. This requires architecture, vision, reuse, process, and organization,
as illustrated in Figure 1-3.

Successful
SOA

Technology
Mastery

Service
Abstraction

Architectural
Approach

Business
Vision

Reuse
Initiative

Organizational
Structure

Methodology
Can get

from
Web Services

The rest
of the
story

Figure 1-3 Ingredients of historically successful SOA

The Promise of SOA

Another way to assess the promise of SOA is to look at the motivations and
expectations of the people who are engaged in SOA activities. In a 2006 survey
conducted by the Cutter Consortium, the motivations for SOA included a
range of technical and business reasons. The most common motivations were:
agility, flexibility, reuse, data rationalization, integration, and reduced costs.
Some of the more telling specific responses included:

‘‘Strategic reuse of assets across multiple department’s applications’’

‘‘Need to provide more agile support to business processes, and to han-
dle change management impacts more efficiently and effectively’’

Chapter 1 ■ Realizing the Promise of SOA 11

‘‘Master Data Management’’

‘‘Speed and ease of project deployment, concerns with duplication of
work between projects’’

‘‘Support external collaborators’’

‘‘Efficiency in terms of time to market and development cost’’

‘‘Bring together diverse lines of business across many geographies with
faster speed to market’’

‘‘Integrate legacy systems’’

Not surprisingly, the motivations for adopting SOA echo the concerns that
most enterprise IT organizations are struggling with.

The Challenges of SOA

If we examine the history and look at the goals or motivations for SOA, we can
determine the challenges that organizations face in delivering on its promise.
Let’s restate the expectations, history, and goals in terms of four questions
and then look at the issues they raise and the corresponding architectural
requirements.

What is required to provide agility, flexibility, and the strategic reuse of
assets across multiple departments?

What is required to bring more efficiency in terms of time to market and
development costs, while delivering new capabilities to the organization?

How will the integration of existing applications or enterprise data help
to bring together diverse lines of business across geographies with faster
time to market?

How will SOA’s agility and flexibility improve relationships and provide
better alignment of business and IT?

Figure 1-4 illustrates the four major challenges facing SOA adoption today.

Reuse
Reuse seems to have been the holy grail of software for decades. But the
objects and components failed to live up to the promise of the marketeers.
Now, services are the next great hope for reuse. If we’re smart enough to learn
from the past, we can be more successful with services. SOA will march on
either way (see the sidebar ‘‘Does SOA Need Reuse?’’).

12 Part I ■ Understanding SOA

SOA
Challenges

Require
Architecture

Reuse
Consistency

Efficiency
Time-to-market

Lower Cost

Agility
Flexibility

Application
and Data

Integration

Figure 1-4 SOA challenges

DOES SOA NEED REUSE?

The object revolution of the late 1980s promised great increases in productivity
and reductions in cost based on reuse. However, the reuse didn’t really happen,
except in some limited situations. But, it turns out that object orientation
provides a better paradigm for development of complex software systems and
that it is the prominent model supported by development tools. Every time you
use a web page, you see object reuse. Thus, it has been widely adopted in spite
of not attaining the promise of custom object reuse.

Components came along in the 1990s, promising to solve the reuse problem
that objects hadn’t. The advantage of components was that they provided a
way to package functionality that matched the distributed, web-based systems
that were being built. Once again, reuse was not achieved on a large scale. Yet,
components are entrenched in modern systems because they bring with them
all of the advantages of application servers such as distribution, scalability, and
redundancy.

Now, the 2000s bring back the promise of reuse with services. Services
provide a larger-granularity, run-time unit of functionality and reuse. Will
enterprises be any more successful in achieving reuse with services than with
previous technologies? At one level, services may not make that much
difference. The march toward service orientation is well underway. Product
vendors are structuring everything from infrastructure to software applications
to development tools to support a service-oriented approach. Similar to
objects, the advantages of services as a construction paradigm for enterprise
applications will make SOA a reality regardless of how much the independently
developed services actually get reused. So, services will probably be the future
architectural and development paradigm, if for no other reason than because
they are better for the software providers that provide infrastructure, tools,
applications, Independent Software Vendors (ISVs), and so on.

Chapter 1 ■ Realizing the Promise of SOA 13

However, many of the benefits that organizations hope to achieve with SOA
require that services be reused within their environment. Those enterprises
that achieve reuse will reap more of the benefits, be more agile, and be more
competitive. Therefore, it behooves us to look at what did and didn’t work
in terms of reuse, and apply those lessons to services. Guess what? In every
instance, technology was not the issue when it came to reuse. It’s true that
services have some technical features that make them better for reuse than
components, just as components had technical features that were superior to
those of objects. But the main roadblocks to reuse have, and will continue to
be, organizational, methodological, and political.

Let’s look at these issues from the perspective of the service consumer.
When an application or process wants to use a service, it first needs a way to
find and evaluate candidate services. Then, once it decides to use the service,
it has dependencies on that service. Therefore, the service consumer needs to
be guaranteed that the service will operate reliably, that bugs will be fixed in
a timely manner, that requests for enhancements will be considered, that it
will continue to operate and be supported for a reasonable amount of time,
and, most importantly, that new versions of a service won’t cause existing
consumer applications to stop working. To make things more complicated, in
an enterprise, the service consumer often needs to rely on another organization
for that guarantee.

The following list discusses the architectural requirements for effective
reuse:

The ability to publish, search for, evaluate, and register as a consumer of
a service

Sufficient variability in service function to meet consumers’ needs

Capabilities for managing and maintaining a service life cycle across
organizational boundaries

The ability to guarantee the availability and lifetime of a service version

Mechanisms for decoupling the consumer’s life cycle from the provider’s

CONSISTENCY, CONSISTENCY, CONSISTENCY

We often promote reuse as a way to reduce development costs or time to
market. Although you can achieve improvements in both these areas, often it is
consistency that is the most important value of reuse. SOA allows you to
separate access to functions or data such that every application that needs to
make use of the function or data can use the same service to get it.

(continued)

14 Part I ■ Understanding SOA

CONSISTENCY, CONSISTENCY, CONSISTENCY (continued)

How many enterprises suffer from redundant data or applications? (All of
them, probably.) What is the result? Users get different results depending on
how they go about doing something. When the users are customers, this results
in dissatisfaction and lost customers. You’ve all heard of problems such as a
customer having to call multiple different departments to correctly change his
or her address, or an item being available through one system, but not another.

Imagine an enterprise-wide customer service that manages the shared
customer information (such as addresses) for all systems and only needs to be
changed once. Or, a single inventory service used by all order-management
processes where they get consistent results about availability. SOA provides an
approach for consistency of processes and data for both internal and external
customers. This is something that the business sponsors understand and are
often more willing to pay for than the promise of reduced costs and reuse.

Efficiency in Development
Making development more efficient means building more functionality, in less
time, at less cost. Doing so depends on a variety of factors, including the reuse
of services and the ability to quickly compose applications from those services.
This in turn requires a different approach to service and solution development
than the approach that was used in the past.

Developers of services can no longer create services in isolation, but rather,
the services must fit into the overall architecture and conform to the enterprise
business and information models. However, the initial version of a service
cannot be expected to meet the requirements of all possible, future users.
There has to be a managed process for deciding on, funding, and implement-
ing enhancements to accommodate those additional users. But at the same
time, enhancements to services need to be done in a controlled fashion that
maintains the integrity of the service architecture and design, and conforms to
versioning and compatibility requirements.

Developers of solutions that will consume services need to be able to
easily find existing services and to evaluate them, determine what they
do, and request enhancements. Furthermore, methods and tools for modeling
and composing business processes from existing services need to be estab-
lished. When projects are implementing business processes, a system design
methodology is needed that focuses on composing business processes from

Chapter 1 ■ Realizing the Promise of SOA 15

the existing services. And, there has to be a variety of different kinds of services
available, at different levels of organizational scope and granularity, to fully
support the composition of business processes.

There also has to be an analysis and design methodology for the services
themselves that describes the characteristics of the different types of services
and explains the interaction, interface, and implementation design decisions.

Finally, there have to be organizational changes to support service devel-
opment and use across the enterprise that match the consumer and provider
nature of services.

The following architectural requirements are necessary for effective devel-
opment productivity:

Have a reference architecture that guides the development of services.

Use Business Process Management (BPM) to define business processes,
based on service composition and a layered set of services. Use BPM to
drive the discovery and design of required services.

Have efficient processes that manage the integrity of the total set of ser-
vices for both providers and consumers in accordance with the overall
vision and the business and information models.

Integration of Applications and Data
The integration of existing applications and data is perhaps the most perplexing
challenge facing enterprise IT organizations. Billions have been spent over the
past decades on enterprise application integration (EAI) to implement applica-
tion integration, but results are mixed. Too often, fragile and unmaintainable
solutions have been put in place that created a rat’s nest of point-to-point
connections over a variety of different technologies and protocols.

SOA, based on Web Services, promises to simplify integration by providing
universal connectivity to existing systems and data. But, as with everything
else, technology is only a small part of the solution. Again, you can look at
what did and didn’t work with EAI to craft a strategy for moving forward. And
when you do, you see that an overall, enterprise-wide, architectural solution is
required. You should no longer be connecting individual applications directly
with point-to-point connections, but rather, providing services that connect
individual applications into the overall enterprise.

The really hard part, however, is getting the new interfaces to the existing
system right. Here, the tools are often our own worst enemy. The vendors

16 Part I ■ Understanding SOA

trumpet their wiz-bang Web Services Description Language (WSDL)
generators that can take an existing schema or application programming
interface (API) and generate a service interface. Although this is seductive, it
is wrong. You should not be exposing the data models or APIs of 20-year-old
applications directly as services. The chances that these old APIs represent
what your enterprise needs today are slim at best. Instead, you should trans-
form them into new interfaces that meet the strategy, goals, and requirements
of the enterprise today and in the future.

A similar situation exists for data integration. How many millions were
spent on failed projects to implement a global enterprise data model? Too
often, applications could not be retrofitted to the model, the cost of change
was too high, or business units wouldn’t go along with the changes. Yet, for
services to fit together into a business process or to be composed together in
a meaningful way, they have to share a common data model and semantics.
Here’s the difference, however: They do not have to agree on every single item
and field of data. They have to agree only on what the shared, enterprise-wide
data should be. Then, each application can translate between its own, internal
version of the data and the shared, enterprise (external) representation of
the data.

The following architectural requirements are necessary for integration:

Have an enterprise, common semantic model for the shared information.

Have a reference architecture that differentiates between business ser-
vices and integration services.

Have a reference architecture that describes common patterns for
integration.

Have infrastructure capabilities that enable semantic transformation
between existing systems and the enterprise model.

Agility, Flexibility, and Alignment
Agility and flexibility occur when new processes can quickly and efficiently
be created from the existing set of services. Achieving agility and flexibility
requires an easily searchable catalog that lists the functions and data provided
by the available services. In addition, an efficient way to assemble the business
processes from the services needs to be available.

The services that compose the catalog must support a variety of different
processes, at a variety of different levels, and have minimal gaps or overlaps
in functionality. At the same time, the services must share and conform to a

Chapter 1 ■ Realizing the Promise of SOA 17

common enterprise semantic model. This doesn’t just happen by itself, or by
accident. The SOA architectural approach needs:

A business architecture that lays out a roadmap for the processes and
services of the enterprise now and over time, and identifies the func-
tional and application capabilities to support those services. In addition,
the business architecture needs to specify the desired outcomes so that
business processes can be measured against achieving them.

An information architecture that lays out a roadmap for the shared enter-
prise semantics and data model.

An application architecture that defines a hierarchy of service types,
how to compose processes from services, how to produce and consume
services, and how to measure services contributions toward business
outcomes.

A technology architecture that defines what the technologies are and
how they are used to support processes, services, integration, data access
and transformations, and so on.

Obviously, business needs to be involved in the development of the enter-
prise business and information architecture and roadmaps. But, that alone does
not achieve alignment of business intentions with implemented IT systems.
There has to be a process that directly integrates the enterprise architecture
(business, information, application, and technology) into the development
process. In addition, there needs to be an organizational and governance
structure in place to support and enforce it.

The following list defines requirements of SOA for alignment:

Have a reference architecture that defines the business and information
aspects of SOA and their relationship to the enterprise.

Have an enterprise, common semantic model that is used to inform the
service interface design.

Use model-based development techniques to ensure traceability between
the business models and the implemented systems.

Have processes that enable and validate conformance.

Table 1-1 summarizes the overall architectural requirements needed. Obvi-
ously, there is some overlap between the architectural requirements for the
different challenges. This is a good thing. It indicates that a holistic architec-
tural approach can not only meet the different challenges but also integrate
the solutions.

18 Part I ■ Understanding SOA

Table 1-1 Summary of architectural requirements

CHALLENGE ARCHITECTURAL REQUIREMENT

Reuse Ability to publish, search for, evaluate, and register as a
consumer of a service.

Capabilities for managing and maintaining a service life cycle
across organizational boundaries.

Ability to guarantee availability and lifetime of a service version.

Mechanisms for decoupling the consumer’s life cycle from the
provider’s.

Efficient Development Have a reference architecture that guides the development of
services.

Use BPM to define business processes, based on service
composition and a layered set of services.

Have efficient processes that manage the integrity of the total
set of services for both providers and consumers in accordance
with the overall vision and business and information models.

Integration of
Applications and Data

Have an enterprise, common semantic model for the shared
information.

Have a reference architecture that differentiates between
business services and integration services.

Have a reference architecture that describes common patterns
for integration.

Have infrastructure capabilities that enable semantic
transformation between existing systems and the enterprise
model.

Agility, Flexibility, and
Alignment

Have a reference architecture that defines the business and
information aspects of SOA and their relationship to the
enterprise.

Have an enterprise, common semantic model that is used to
inform the service interface design.

Use model-based development techniques to ensure the
traceability between the business models and the
implemented systems.

Have processes that enable and validate conformance.

Meeting the Challenge
Examining the promise of SOA and the goals of the organizations that adopt
it leads to a set of requirements for meeting the challenges laid out in this
chapter. Let’s summarize the requirements for SOA.

Chapter 1 ■ Realizing the Promise of SOA 19

Reference Architecture

Creating and maintaining a reference architecture is one of the more important
but difficult best practices for SOA and is an important critical success factor
in achieving SOA goals. Yet, often, organizations will have only an informal
architecture, or none at all. Figure 1-5 shows the major components of an
SOA reference architecture. The reference architecture represents a more
formal architectural definition, one that can be used for objective validation of
services and applications. For SOA, the reference architecture should:

Support enterprise concepts, particularly the subarchitectures of busi-
ness, information, application, and technology

Specify a hierarchy and taxonomy of services and service types

Define how services fit into an overall enterprise application, such as a
portal

Provide a separation between business, application, and technology
concepts

Be integrated into the development process

Chapter 2 covers the reference architecture in detail.

Service
Taxonomy

Service
Design

Methodology

Service-
Oriented
Solutions

Technology

SOA Reference Architecture

Business

Domain

Utility

Integration
Enterprise
Concerns

Technology

Application

Information

Business

Figure 1-5 Aspects of an enterprise SOA reference architecture

Common Semantics

Defining a common, enterprise semantic and information model is key to
achieving agility and flexibility. Without it services cannot be easily combined
to form meaningful business processes. For example, imagine a process that
combines different travel activities, such as air, hotel, and rental car into a trip
based on a customer and their companions. The customer wants to see all of the
related activities and only wants to provide the information once. The airlines

20 Part I ■ Understanding SOA

require the names of all passengers; the rental car agency needs to know
if additional travelers are over age 25 and their relationship to the primary
traveler; and the hotel needs a different set of information. If the services
don’t have some common understanding of what a customer is, and what a
travel companion is, it won’t be very easy to automate the combined processes
or provide a single view or interface to the customer. Without common
understanding, rather than agility and flexibility, each process requires special
case code to combine the data. The common semantics should:

Identify information that must be shared across the enterprise and
between services

Define the meaning and context of that information

Identify techniques for mapping enterprise semantics to existing applica-
tion data models

Chapter 5 describes the development of the common semantic model, and
Chapter 6 shows how it is used in the design of service interfaces.

Governance

Governance has been defined as the art and discipline of managing
outcomes through structured relationships, procedures, and policies. Gov-
ernance enforces compliance with the architecture and common semantics
and facilitates managing the enterprise-wide development, use, and evolution
of services. Governance consists of a set of policies that service providers and
consumers (and their developers) must conform to, a set of practices for imple-
menting those policies, and a set of processes for ensuring that the policies
are implemented correctly. There is typically an organizational structure in
place to define and implement governance policies and often a repository to
automate and enforce them. Governance of SOA should include:

Policies regulating service definition and enhancements, including own-
ership, roles, criteria, review guidelines, and so on.

Identification of roles, responsibilities, and owners.

Policy enforcement that is integrated directly into the service repository
(where appropriate).

Guidelines, templates, checklists, and examples that make it easy to con-
form to governance requirements.

Review of service interface definitions for new services and enhance-
ments to existing services. The review ensures that the service definition
conforms to standards and aligns with the business and information

Chapter 1 ■ Realizing the Promise of SOA 21

models. The review is typically done by a service review board or the
unit responsible for the service.

Architectural review of solutions and services to ensure that they con-
form to the SOA and enterprise architecture. This review is typically
done by an architecture review board.

Warning! Governance should not be primarily a review activity. If architec-
ture is nothing more than extra steps in the process or a burden to developers,
they will just ignore it. Effective governance follows a carrot-and-stick
approach with an emphasis on enabling developers to build conforming
applications (the carrot) and automating governance activities and policies.
Reviews (the stick) should be a final check where process is minimal and
exceptions are actually the exception.

We’ve seen countless articles and presentations (surprisingly by vendors)
that talk about governance as a required activity from day 1. But we don’t
agree. There are enough challenges and barriers to get over for SOA to work,
that you don’t need another one to start with. When you have only a few
services, you don’t need a lot of processes to govern them. Figure out how
to build and use services first, and then add governance. If you have to go
back and correct things, fine. Certainly make sure that you have governance
before you have 100 services, but don’t put it in place when you have only one
service. Chapter 12 discusses governance.

TYPES OF GOVERNANCE

We often discuss governance in terms of four different aspects of a service’s
life cycle:

◆ Design-time governance — Policies and procedures to ensure that the right
services are built and used

◆ Deploy-time governance — Policies that affect the deployment of services
into production

◆ Run-time governance — Policies that affect the binding of consumers and
providers

◆ Change-time governance — Policies and procedures that affect the
design, versioning, and provisioning of service enhancements

We have primarily discussed design-time and change-time governance as
architectural requirements. Obviously, deploy-time governance is important for
operational quality. Although automated run-time governance functions can
provide benefits and sophistication to a SOA implementation, we don’t think
that it is a critical factor in achieving overall SOA success and value. Of course,
it is important to specify policies regarding security and the authorization of

(continued)

22 Part I ■ Understanding SOA

TYPES OF GOVERNANCE (continued)

service consumers and providers. However, many successful SOA
implementations today use very simple mechanisms to implement this rather
than a sophisticated registry to automatically apply the policies during binding.
On the other hand, governance of service interface design is necessary to
achieve a consistent overall set of services, which is critical to achieving SOA
success.

Business Process Modeling

Business processes need to change relatively frequently yet be based on stable
underlying capabilities. The flexibility to do this comes from being able to
quickly construct new business processes from business services, which are
relatively stable. Business processes should:

Be specified using Business Process Models and executed in a business
process management system

Be composed of activities that are implemented by business services
(provided by the SOA)

Pass information into, out of, and within the processes in the form of
documents, which are built on top of the common information model

Chapter 4 describes the use of BPM in addressing business requirements
and influencing service design.

Design-Time Service Discovery

To reuse services, you have to be able to find the services that exist, and
you have to be able to examine them to see if they perform the functions
required, provide the appropriate qualities of service, are reliable, and so on.
It is important to understand the distinction between a run-time registry and
a design-time repository, even though both functions may be implemented by
the same software. A registry is used at run time to identify a service endpoint
for a requested service interface. This is where run-time governance policies
may be enforced. A repository is used at design time to find existing services
for inclusion in processes during the design of that process. This is critical to
enabling service reuse. Service discovery does not necessarily have to be based
on a repository (although repositories do a good job of it) but should provide
the following functions:

Chapter 1 ■ Realizing the Promise of SOA 23

A catalog of available services.

Sophisticated search capabilities for identifying potential services.

Capabilities for examining a service, its interface and implementation,
and design and testing to determine if it is appropriate for the desired
usage. This will often be through links to documents, models, code,
reports, and the like that are stored in other systems.

Metrics on service usage.

Notification to interested parties about upgrades to services or other
events.

Automation of certain governance policies.

Direct integration into the development environment.

In subsequent chapters, we provide methods for describing and categorizing
services to assist you in locating them during development. Chapter 5 describes
the creation and use of the service inventory in the discovery and design of
service interfaces.

Model-Based Development

Model-based development is a best practice in software engineering in general
and in SOA as well. Models provide a way to conceptualize and describe a
system without getting bogged down in details, and to describe the major parts
of a system and their relationships. A model-based development approach for
SOA should incorporate the following:

A higher level of abstraction for software development and the ability to
visualize software and service designs

Support for a domain-specific language (DSL) for the implementation
of SOA

Automatic integration of SOA reference architecture into the design
environment and DSL

Separation of business, services, and technology concerns

The design methodologies throughout this book use a model-based approach
to SOA design, based on a set of SOA domain concepts and abstractions that
make up a domain-specific language for SOA. Although it is helpful to be
able to generate development artifacts directly from design models, and in
fact many tools do exactly that, it is not strictly required. The proper design
of services is critical to achieving SOA goals, and models are the lingua
franca of design. What is required is the design of service interfaces and

24 Part I ■ Understanding SOA

implementations, and a way to pass those design models to development as
specifications for construction. Of course, the more you can generate, the
easier and less error prone that hand-off will be. Chapter 7 focuses on the
technology-independent design of service implementations that lead to a
model-based approach.

Best Practices in SOA Analysis and Design

There’s a clever saying that goes ‘‘In theory, there’s no difference between
theory and practice, but in practice there is.’’ This difference is most often seen
in the clash between architecture and development.

The architecture team is responsible for understanding the big picture.
They must answer questions such as: How will SOA support the overall
enterprise goals? How will it fit with other initiatives such as Single Sign-On
(SSO)? What standards and technologies are important? How do they fit in
with the enterprise technology roadmap? What strategy and tactics should be
employed to introduce and phase in SOA? How will it be sold to management
and the business? All of these are important and difficult questions that must
be answered, and the architecture team or steering committee is the right place
for this. We often call this a top-down approach.

The development team is responsible for implementing and deploying
individual services. They have a different set of questions to answer: How will
an individual service be implemented? How will the master data definition be
translated to the individual systems of record that contain the data? How will
the service be deployed? How will the service be managed? How will new
versions be implemented and deployed? How will services be registered and
discovered at run time? How will services be discovered and reused at design
time? How will dependencies be minimized and managed? Again, these are
very important and difficult questions that must be answered. We might call
this a bottom-up approach.

With these questions and concerns, the architecture team is trying to max-
imize the value that SOA can provide in the delivery of enterprise solutions.
Value comes from enabling and creating an enterprise service layer that
supports the flexible creation of business processes. Value comes from being
able to quickly modify these business processes without having to make diffi-
cult and expensive modifications to existing operational systems. Value comes
from having consistent behavior across the enterprise for the same business
function (i.e., having the business function implemented in a single service).
Value comes from having modular business capabilities that can be outsourced

Chapter 1 ■ Realizing the Promise of SOA 25

or sold as a service. To support this, the SOA has to describe how the different
organizations in the enterprise can contribute to the overall SOA, and at the
same time, meet their immediate business requirements.

Meanwhile, the technical team is trying to provide value by implementing
specific business functionality in the best, most efficient, and most cost-effective
manner — not just in the short term, but with an eye toward the total cost of
ownership of IT systems. The manager of a technical team we worked with
put it best. He sees SOA as a way to minimize and manage the collateral
damage caused by changes. We’ve all heard the horror stories, such as the case
of adding two digits to a part number that required $25 million and 1 year
to implement (but added no business value), because it touched on almost
every system in the enterprise. By applying a separation of concerns, having a
Master Data Schema, and a set of services to manage the fundamental business
entities, the required changes could have been isolated and minimized.

The theory naturally leads toward a top-down approach in which processes
and services are driven by an overall enterprise model. These projects are often
started with a high-level business process model or an overall enterprise system
analysis activity. The practice leads us to a bottom-up approach in which
services are implemented to meet a specific, immediate business requirement
or project. These projects often start by service-enabling legacy systems or
incorporating simple external services. Yet neither of these approaches is very
effective. In order to meet both the enterprise goals and the immediate project
goals, these organizations and concerns have to meet in the middle. Chapter
3 describes the overall process of initiating SOA and designing services based
on a middle-out approach.

Summary

Effective SOA (and architecture in general) is the careful balance and blending
of the big picture and the immediate requirements. It is the practical applica-
tion of theory to meet a set of goals, now and in the future. In this middle-out
approach, the architecture team provides an overall SOA that offers the guid-
ance and context necessary to support the implementation and reuse of ser-
vices. This is provided as a set of guidelines, patterns, frameworks, examples,
and reference implementations. The technical teams use these to incorporate
the requirements (business and information context) into their designs so that
the services they implement provide the necessary business functions that are
needed immediately, but can easily be extended to support other processes

26 Part I ■ Understanding SOA

and services in the future. These are the roles of the reference architecture,
the architecture-driven design process, and the domain-specific modeling
approach.

Chapter 2 describes the SOA reference architecture and how it meets
the challenges and requirements introduced in this chapter. It describes the
overall enterprise context, the architectural layers and tiers, the domain-specific
concepts and abstractions, and specifically what a service is and the important
architectural characteristics of a service.

