25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 1 $

Programming
with Visual C++ 2008

Windows programming isn’t difficult. In fact, Microsoft Visual C++ 2008 makes it remarkably easy,
as you'll see throughout the course of this book. There’s just one obstacle in your path: Before you get
to the specifics of Windows programming, you have to be thoroughly familiar with the capabilities
of the C++ programming language, particularly the object-oriented aspects of the language. Object-
oriented techniques are central to the effectiveness of all the tools that are provided by Visual C++
2008 for Windows programming, so it’s essential that you gain a good understanding of them. That’s
exactly what this book provides.

This chapter gives you an overview of the essential concepts involved in programming applications
in C++. You'll take a rapid tour of the Integrated Development Environment (IDE) that comes with
Visual C++ 2008. The IDE is straightforward and generally intuitive in its operation, so you'll be able
to pick up most of it as you go along. The best approach to getting familiar with it is to work through
the process of creating, compiling, and executing a simple program. By the end of this chapter, you
will have learned:

Q

000000

What the principal components of Visual C++ 2008 are

What the .NET Framework consists of and the advantages it offers
What solutions and projects are and how you create them

About console programs

How to create and edit a program

How to compile, link, and execute C++ console programs

How to create and execute basic Windows programs

So power up your PC, start Windows, load the mighty Visual C++ 2008, and begin your journey.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 2 $

Chapter 1: Programming with Visual C++ 2008
The .NET Framework

The .NET Framework is a central concept in Visual C++ 2008 as well as in all the other .NET development
products from Microsoft. The .NET Framework consists of two elements: the Common Language Runtime
(CLR) in which your application executes, and a set of libraries called the NET Framework class libraries.
The .NET Framework class libraries provide the functional support your code will need when executing
with the CLR, regardless of the programming language used, so NET programs written in C++, C#, or any
of the other languages that support the .NET Framework all use the same .NET libraries.

There are two fundamentally different kinds of C++ applications you can develop with Visual C++ 2008.
You can write applications that natively execute on your computer. These applications will be referred
to as native C++ programs. You write native C++ programs in the version of C++ that is defined by the
ISO/ANSI (International Standards Organization/American National Standards Institute) language stan-
dard. You can also write applications to run under the control of the CLR in an extended version of C++
called C++/CLI. These programs will be referred to as CLR programs, or C++/CLI programs.

The NET Framework is not strictly part of Visual C++ 2008 but rather a component of the Windows oper-
ating system that makes it easier to build software applications and Web services. The .NET Framework
offers substantial advantages in code reliability and security, as well as the ability to integrate your C++
code with code written in over 20 other programming languages that target the .NET Framework. A slight
disadvantage of targeting the .NET Framework is that there is a small performance penalty, but you won't
notice this in the majority of circumstances.

The Common Language Runtime (CLR)

The CLR is a standardized environment for the execution of programs written in a wide range of high-level
languages including Visual Basic, C#, and of course C++. The specification of the CLR is now embodied
in the European Computer Manufacturers Association (ECMA) standard for the Common Language
Infrastructure (CLI), ECMA-335, and also in the equivalent ISO standard, ISO/IEC 23271, so the CLR

is an implementation of this standard. You can see why C++ for the CLR is referred to as C++/CLI —

it’s C++ for the Common Language Infrastructure, so you are likely to see C++/CLI compilers on other
operating systems that implement the CLI.

Note that information on all ECMA standards is available from www.ecma-international.org and
ECMA-335 is currently available as a free download.

The CLI is essentially a specification for a virtual machine environment that enables applications written
in diverse high-level programming languages to be executed in different system environments without
changing or recompiling the original source code. The CLI specifies a standard intermediate language for
the virtual machine to which the high-level language source code is compiled. With the NET Framework,
this intermediate language is referred to as Microsoft Intermediate Language (MSIL). Code in the interme-
diate language is ultimately mapped to machine code by a just-in-time (JIT) compiler when you execute a
program. Of course, code in the CLI intermediate language can be executed within any other environment
that has a CLI implementation.

25905c01.gxd:WroxPro 4/13/09 2:22 PM Page 3 $

Chapter 1: Programming with Visual C++ 2008

The CLI also defines a common set of data types called the Common Type System (CTS) that should be
used for programs written in any programming language targeting a CLI implementation. The CTS speci-
fies how data types are used within the CLR and includes a set of predefined types. You may also define
your own data types, and these must be defined in a particular way to be consistent with the CLR, as you'll
see. Having a standardized type system for representing data allows components written in different pro-
gramming languages to handle data in a uniform way and makes it possible to integrate components writ-
ten in different languages into a single application.

Data security and program reliability is greatly enhanced by the CLR, in part because dynamic memory
allocation and release for data is fully automatic but also because the MSIL code for a program is compre-
hensively checked and validated before the program executes. The CLR is just one implementation of the
CLI specification that executes under Microsoft Windows on a PC; there will undoubtedly be other imple-
mentations of the CLI for other operating system environments and hardware platforms. You'll sometimes
find that the terms CLI and CLR are used interchangeably, although it should be evident that they are not
the same thing. The CLI is a standard specification; the CLR is Microsoft’s implementation of the CLI.

Writing C++ Applications

You have tremendous flexibility in the types of applications and program components that you can develop
with Visual C++ 2008. As noted earlier in this chapter, you have two basic options for Windows applica-
tions: You can write code that executes with the CLR, and you can also write code that compiles directly
to machine code and thus executes natively. For window-based applications targeting the CLR, you use
Windows Forms as the base for the GUI provided by the .NET Framework libraries. Using Windows Forms
enables rapid GUI development because you assemble the GUI graphically from standard components
and have the code generated completely automatically. You then just need to customize the code that has
been generated to provide the functionality you require.

For natively executing code, you have several ways to go. One possibility is to use the Microsoft Founda-
tion Classes (MFC) for programming the graphical user interface for your Windows application. The MFC
encapsulates the Windows operating system Application Programming Interface (API) for GUI creation
and control and greatly eases the process of program development. The Windows API originated long
before the C++ language arrived on the scene so it has none of the object-oriented characteristics that
would be expected if it were written today; however, you are not obliged to use the MFC. If you want
the ultimate in performance, you can write your C++ code to access the Windows API directly.

C++ code that executes with the CLR is described as managed C++ because data and code are managed by
the CLR. In CLR programs, the release of memory that you have allocated dynamically for storing data is
taken care of automatically, thus eliminating a common source of error in native C++ applications. C++
code that executes outside of the CLR is sometimes described by Microsoft as unmanaged C++ because
the CLR is not involved in its execution. With unmanaged C++ you must take care of all aspects of allocat-
ing and releasing memory during execution of your program yourself, and you also forego the enhanced
security provided by the CLR. You'll also see unmanaged C++ referred to as native C++ because it com-
piles directly to native machine code.

Figure 1-1 shows the basic options you have for developing C++ applications.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 4 $

Chapter 1: Programming with Visual C++ 2008

Managed C++

C

Native C++ Framework Classes
Native C++ MFC Common Language Runtime

ac ac ac

Operating System

ac

Hardware

Figure 1-1

Figure 1-1 is not the whole story. An application can consist partly of managed C++ and partly of native
C++, so you are not obliged to stick to one environment or the other. Of course, you do lose out some-
what by mixing the code, so you would choose to follow this approach only when necessary, such as
when you want to convert an existing native C++ application to run with the CLR. You obviously won’t
get the benefits inherent in managed C++ in the native C++ code, and there can also be appreciable over-
head involved in communications between the managed and unmanaged code components. The ability
to mix managed and unmanaged code can be invaluable, however, when you need to develop or extend
existing unmanaged code but also want to obtain the advantages of using the CLR. Of course, for new
applications you should decide whether you want to create a managed C++ application or a native C++
application at the outset.

Learning Windows Programming

There are always two basic aspects to interactive applications executing under Windows: You need code to
create the Graphical User Interface (the GUI) with which the user interacts, and you need code to process
these interactions to provide the functionality of the application. Visual C++ 2008 provides you with a great
deal of assistance in both aspects of Windows application development. As you'll see later in this chapter,
you can create a working Windows program with a GUI without writing any code yourself at all. All the
basic code to create the GUI can be generated automatically by Visual C++ 2008; however, it’s essential
to understand how this automatically generated code works because you need to extend and modify it to
make it do what you want, and to do that you need a comprehensive understanding of C++.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 5 $

Chapter 1: Programming with Visual C++ 2008

For this reason, you'll first learn C++ — both the native C++ and C++/CLI versions of the language —
without getting involved in Windows programming considerations. After you're comfortable with C++,
you'll learn how you develop fully-fledged Windows applications using native C++ and C++/CLI. This
means that while you are learning C++, you'll be working with programs that just involve command
line input and output. By sticking to this rather limited input and output capability, you'll be able to con-
centrate of the specifics of how the C++ language works and avoid the inevitable complications involved
in GUI building and control. After you become comfortable with C++, you’ll find that it’s an easy and
natural progression to applying C++ to the development of Windows application programs.

Learning C++
Visual C++ 2008 fully supports two versions of C++ defined by two separate standards:

Q The ISO/ANSI C++ standard is for implementing native applications — unmanaged C++. This
version of C++ is supported on the majority of computer platforms.

Q The C++/CLI standard is designed specifically for writing programs that target the CLR and is
an extension to the ISO/ANSI C++.

Chapters 2 through 9 of this book teach you the C++ language. Because C++/CLI is an extension of
ISO/ANSI C++, the first part of each chapter introduces elements of the ISO/ANSI C++ language; the
second part explains the additional features that C++/CLI introduces.

Writing programs in C++/CLI allows you to take full advantage of the capabilities of the NET Framework,
something that is not possible with programs written in ISO/ANSI C++. Although C++/CLI is an exten-
sion of ISO/ ANSI C++, to be able to execute your program fully with the CLR means that it must conform
to the requirements of the CLR. This implies that there are some features of ISO/ ANSI C++ that you cannot
use in your CLR programs. One example of this that you might deduce from what I have said up to now
is that the dynamic memory allocation and release facilities offered by ISO/ ANSI C++ are not compatible
with the CLR; you must use the CLR mechanism for memory management and this implies that you must
use C++/CLI classes, not native C++ classes.

The C++ Standards

The ISO/ANSI standard is defined by the document ISO/IEC 14882 that is published by the American
National Standards Institute (ANSI). ISO/ ANSI standard C++ is the well-established version of C++
that has been around since 1998 and is supported by compilers on the majority of computer hardware
platforms and operating systems. Programs that you write in ISO/ ANSI C++ can be ported from one
system environment to another reasonably easily, although the library functions that a program uses —
particularly those related to building a graphical user interface — are a major determinant of how easy
or difficult it will be. ISO/ ANSI standard C++ has been the first choice of many professional program
developers because it is so widely supported, and because it is one of the most powerful programming
languages available today.

The ISO/ANSI standard for C++ can be purchased from www.iso.org.

C++/CLI is a version of C++ that extends the ISO/ANSI standard for C++ to better support the Common
Language Infrastructure (CLI) that is defined by the standard ECMA-355. The first draft of this standard

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 6 $

Chapter 1: Programming with Visual C++ 2008

appeared in 2003 and was developed from an initial technical specification that was produced by Microsoft
to support the execution of C++ programs with the NET Framework. Thus both the CLI and C++/CLI
were originated by Microsoft in support of the .NET Framework. Of course, standardizing the CLI and
C++/CLI greatly increases the likelihood of implementations in environments other than Windows. It’s
important to appreciate that although C++/CLI is an extension of ISO/ANSI C++, there are features of
ISO/ANSI C++ that you must not use when you want your program to execute fully under the control of
the CLR. You'll learn what these are as you progress through the book.

The CLR offers substantial advantages over the native environment. By targeting your C++ programs at
the CLR, your programs will be more secure and not prone to the potential errors you can make when
using the full power of ISO/ANSI C++. The CLR also removes the incompatibilities introduced by vari-
ous high-level languages by standardizing the target environment to which they are compiled and thus
permits modules written in C++ to be combined with modules written in other languages such as C# or
Visual Basic.

Attributes

Attributes are an advanced feature of programming with C++/CLI that allow you to add descriptive
declarations to your code. At the simplest level, you can use attributes to annotate particular program-
ming elements in your program but there’s more to attributes than just additional descriptive data.
Attributes can affect how your code behaves at run time by modifying the way the code is compiled
or by causing extra code to be generated that supports additional capabilities. A range of standard
attributes is available for C++/CLI and it is also possible to create your own.

A detailed discussion of attributes is beyond the scope of this book but I mention them here because you
will make use of attributes in one or two places in the book, particularly in Chapter 18 where you learn
how to write objects to a file.

Console Applications

As well as developing Windows applications, Visual C++ 2008 also allows you to write, compile, and
test C++ programs that have none of the baggage required for Windows programs — that is, applica-
tions that are essentially character-based, command-line programs. These programs are called console
applications in Visual C++ 2008 because you communicate with them through the keyboard and the
screen in character mode.

Writing console applications might seem as though you are being sidetracked from the main objective of
Windows programming, but when it comes to learning C++ (which you do need to do before embarking
on Windows-specific programming), it’s the best way to proceed. There’s a lot of code in even a simple
Windows program, and it’s very important not to be distracted by the complexities of Windows when
learning the ins and outs of C++. Therefore, in the early chapters of the book where you are concerned
with how C++ works, you'll spend time walking with a few lightweight console applications before you
get to run with the heavyweight sacks of code in the world of Windows.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 7 $

Chapter 1: Programming with Visual C++ 2008

While you're learning C++, you'll be able to concentrate on the language features without worrying about
the environment in which you're operating. With the console applications that you’ll write, you have only
a text interface, but this will be quite sufficient for understanding all of C++ because there’s no graphical
capability within the definition of the language. Naturally, I will provide extensive coverage of graphical
user interface programming when you come to write programs specifically for Windows using Microsoft
Foundation Classes (MFC) in native C++ applications and Windows Forms with the CLR.

There are two distinct kinds of console applications and you'll be using both. Win32 console applications
compile to native code, and you'll be using these to try out the capabilities of ISO/ ANSI C++. CLR console
applications target the CLR so you'll be using these when you are working with the features of C++/CLI.

Windows Programming Concepts

Our approach to Windows programming is to use all the tools that Visual C++ 2008 provides. The project
creation facilities that are provided with Visual C++ 2008 can generate skeleton code for a wide variety of
native C++ application programs automatically, including basic Windows programs. For Windows applica-
tions that you develop for the CLR you get even more automatic code generation. You can create complete
applications using Windows Forms that only require a small amount of customizing code to be written by
you and sometimes no additional code at all. Creating a project is the starting point for all applications and
components that you develop with Visual C++ 2008, and to get a flavor of how this works, you'll look at
the mechanics of creating some examples, including an outline Windows program, later in this chapter.

A Windows program, whether a native C++ program or a program written for the CLR, has a different
structure from that of the typical console program you execute from the command line, and it's more
complicated. In a console program, you can get input from the keyboard and write output back to the
command line directly, whereas a Windows program can access the input and output facilities of the
computer only by way of functions supplied by the host environment; no direct access to the hardware
resources is permitted. Because several programs can be active at one time under Windows, Windows
has to determine which application a given raw input such as a mouse click or the pressing of a key on
the keyboard is destined for and signal the program concerned accordingly. Thus the Windows operat-
ing system has primary control of all communications with the user.

Also, the nature of the interface between a user and a Windows application is such that a wide range of
different inputs is usually possible at any given time. A user may select any of a number of menu options,
click a toolbar button, or click the mouse somewhere in the application window. A well-designed Windows
application has to be prepared to deal with any of the possible types of input at any time because there
is no way of knowing in advance which type of input is going to occur. These user actions are received
by the operating system in the first instance and are all regarded by Windows as events. An event that
originates with the user interface for your application will typically result in a particular piece of your
program code being executed. How program execution proceeds is therefore determined by the sequence
of user actions. Programs that operate in this way are referred to as event-driven programs and are differ-
ent from traditional procedural programs that have a single order of execution. Input to a procedural
program is controlled by the program code and can occur only when the program permits it; therefore, a
Windows program consists primarily of pieces of code that respond to events caused by the action of the
user, or by Windows itself. This sort of program structure is illustrated in Figure 1-2.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 8 $

Chapter 1: Programming with Visual C++ 2008

Events:
Keyboard Press Left Press Right
Input Mouse Mouse [--------"1
Button Button
. A
WINDOWS
A, Y A A
Process
Process Process Right
Keyboard Left Mouse | | ,,2 F--------1
Input Button Mouse
Button
A A A A
Y 4 4
Program Data
Your Program
Figure 1-2

Each square block in Figure 1-2 represents a piece of code written specifically to deal with a particular
event. The program may appear to be somewhat fragmented because of the number of disjointed blocks
of code, but the primary factor welding the program into a whole is the Windows operating system itself.
You can think of your program as customizing Windows to provide a particular set of capabilities.

Of course, the modules servicing various external events, such as selecting a menu or clicking the mouse,
all typically have access to a common set of application-specific data in a particular program. This appli-
cation data contains information that relates to what the program is about — for example, blocks of text in
an editor or player scoring records in a program aimed at tracking how your baseball team is doing —
as well as information about some of the events that have occurred during execution of the program.
This shared collection of data allows various parts of the program that look independent to communi-
cate and operate in a coordinated and integrated fashion. I will go into this in much more detail later
in the book.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 9 $

Chapter 1: Programming with Visual C++ 2008

Even an elementary Windows program involves several lines of code, and with Windows programs that are
generated by the Application Wizards that come with Visual C++ 2008, “several” turns out to be “many.” To
simplify process of understanding how C++ works, you need a context that is as uncomplicated as possible.
Fortunately, Visual C++ 2008 comes with an environment that is ready-made for the purpose.

What Is the Integrated
Development Environment?

The Integrated Development Environment (IDE) that comes with Visual C++ 2008 is a completely self-
contained environment for creating, compiling, linking, and testing your C++ programs. It also happens
to be a great environment in which to learn C++ (particularly when combined with a great book).

Visual C++ 2008 incorporates a range of fully integrated tools designed to make the whole process of writ-
ing C++ programs easy. You will see something of these in this chapter, but rather than grind through a
boring litany of features and options in the abstract, first take a look at the basics to get a view of how the
IDE works and then pick up the rest in context as you go along.

Components of the System

The fundamental parts of Visual C++ 2008, provided as part of the IDE, are the editor, the compiler, the
linker, and the libraries. These are the basic tools that are essential to writing and executing a C++ pro-
gram. Their functions are as follows.

The Editor

The editor provides an interactive environment for you to create and edit C++ source code. As well as
the usual facilities, such as cut and paste, which you are certainly already familiar with, the editor also
provides color cues to differentiate between various language elements. The editor automatically recog-
nizes fundamental words in the C++ language and assigns a color to them according to what they are.
This not only helps to make your code more readable but also provides a clear indicator of when you
make errors in keying such words.

The Compiler

The compiler converts your source code into object code, and detects and reports errors in the compilation
process. The compiler can detect a wide range of errors that are due to invalid or unrecognized program
code, as well as structural errors, where, for example, part of a program can never be executed. The object
code output from the compiler is stored in files called object files. There are two types of object code that
the compiler produces. These object codes usually have names with the extension . obj.

The Linker

The linker combines the various modules generated by the compiler from source code files, adds required
code modules from program libraries supplied as part of C++, and welds everything into an executable
whole. The linker can also detect and report errors — for example, if part of your program is missing or a
non-existent library component is referenced.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 10 $

Chapter 1: Programming with Visual C++ 2008

The Libraries

A library is simply a collection of pre-written routines that supports and extends the C++ language
by providing standard professionally produced code units that you can incorporate into your pro-
grams to carry out common operations. The operations that are implemented by routines in the
various libraries provided by Visual C++ 2008 greatly enhance productivity by saving you the effort
of writing and testing the code for such operations yourself. I have already mentioned the .NET
Framework library, and there are a number of others — too many to enumerate here — but I'll
mention the most important ones.

The Standard C++ Library defines a basic set of routines common to all ISO/ANSI C++ compilers. It
contains a wide range of routines including numerical functions such as calculating square roots and
evaluating trigonometrical functions, character and string processing routines such as classifying char-
acters and comparing character strings, and many others. You'll get to know quite a number of these
as you develop your knowledge of ISO/ANSI C++. There are also libraries that support the C++/CLI
extensions to ISO/ANSI C++.

Native window-based applications are supported by a library called the Microsoft Foundation Classes
(MFC). The MFC greatly reduces the effort needed to build the graphical user interface for an application.
You'll see a lot more of the MFC when you finish exploring the nuances of the C++ language. Another
library contains a set of facilities called Windows Forms that are roughly the equivalent of the MFC for
window-based applications that are executed with the NET Framework. You'll be seeing how you make
use of Windows Forms to develop applications, too.

Using the IDE

10

All program development and execution in this book is performed from within the IDE. When you start
Visual C++ 2008, notice an application window similar to that shown in Figure 1-3.

Figure 1-3 shows the Visual Studio 2008 windows using the Classic theme. If you are not using
the Windows Classic theme, your window will look different, especially if you have Windows Vista
installed. All the screen images in the book use the Windows Classic theme for commonality between
Vista and XP, and if you want to make the windows display the same on your machine, follow the
instructions in the “Using the Windows Classic Theme” section in the Introduction.

The window to the left in Figure 1-3 is the Solution Explorer window, the top-right window presently
showing the Start page is the Editor window, and the tab visible in the window at the bottom is the
Code Definition window. The Solution Explorer window enables you to navigate through your pro-
gram files and display their contents in the Editor window and to add new files to your program. The
Solution Explorer window has an additional tab (only three are shown in Figure 1-3) that displays the
Resource View for your application, and you can select which tabs are to be displayed from the View
menu. The Editor window is where you enter and modify source code and other components of your
application. The Code Definition window displays the definition of a symbol selected in the Editor win-
dow. There are two tabs displayed alongside the Code Definition tab, the Call Browser window that
enables you to search your code for function calls, and the Output window that displays messages that
result from compiling and linking your program.

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 11 $

Chapter 1: Programming with Visual C++ 2008

#0 Start Page - Microsoft ¥isual Studio =1]

View Data Tooks Test Analyze Window Help
H-SH@| % RB(9-0-F-B) | ol REFESEED-g
er _Gtart Page > X g
=]
”. " Microsoft* i H
o . Q 2
« Visual Studio Team System 2008 g
o
MSDN: ¥isual C++ E‘;
Give Us Your Feedback on Yisual Studio Documentation = §—
Wed, 17 Oct 2007 14:55:29 -0700 - Help us help wou by taking 10 minutes to fill out our
Wisual Studio Content Survey an how to improve the Yisual Studio dacumentation. We
appreciate it
Soma's Blog: Tell Us What You'd Like to See in Future Yersions of ¥isual C++
Thu, 30 Aug 2007 14:55:29 -0700 - Developer Division YP 5. Somasegar talks about what's
coming up in fubure ediions of Yisual C++ and invibes your input,
Open: Project., "Refactor! For Visual C++ 2005" Access Page
Creabe: Froject.. Fri, 24 Aug 2007 00:54:02 +0000 - Refactor] For Visual C++ 2005 is a free plug-n from
Developer Express Inc., in parbnership with Morosoft, that enables Weual C++ developars
ko siplify and re-struchure source code inside of Wisual Studia 2005,
Getting Started
An Inside Look At The Next Generation OF Yisual C++
\that’srﬂewrln_vwa! i Sat, 2 Jun 2007 00:5+4:02 +0000 - Tarek Madkour shows C++ developers how to take full
Hisual C4+ Guided Towr advantage of the new capabiliies in Windowes Vista with Visusl Studio 2008,
Creaking and Managing Yisual C+ Pr...
Building & C/C:++ Frogram Tntradurtinn ba the Vistal §++ Annakated Teavel |on Starker Kit []
HowDol... 7 L o
MSDM Forums -
Coda Definition Windaow
No definicion selected
Kl |
[“ZCode Definkion Window | =Call Browser Ij Cuitput
Ready
Figure 1-3

Toolbar Options

You can choose which toolbars are displayed in your Visual C++ window by right-clicking in the toolbar
area. A pop-up menu with a list of toolbars (Figure 1-4) appears, and the toolbars that are currently dis-
played have check marks alongside.

This is where you decide which toolbars are visible at any one time. You can make your set of tool-
bars the same as those shown in Figure 1-3 by making sure the Build, Class Designer, Debug,
Standard, and View Designer menu items are checked. Clicking in the gray area to the left of a
toolbar checks it if it is unchecked and results in it being displayed; clicking a check mark hides the
corresponding toolbar.

You don’t need to clutter up the application window with all the toolbars you think you might need at
some time. Some toolbars appear automatically when required, so you’ll probably find that the default
toolbar selections are perfectly adequate most of the time. As you develop your applications, from time
to time you might think it would be more convenient to have access to toolbars that aren’t displayed.
You can change the set of toolbars that are visible whenever it suits you by right-clicking in the toolbar
area and choosing from the context menu.

11

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 12 $

Chapter 1: Programming with Visual C++ 2008

& Class Designer

Data Compare

Daka Design

Data Generator

Dakabase Diagram

Debug

Debug Location

Device

Dialog Edkar

Distributed System Designers

Formatting

Help

HTML Source Editing

Irnage Edkor

Layout

Query Designer

Report Borders

Report Formatting

Schema Compare

Source Control
Standard

Style Application

Style Shest

Table Designer

-

Figure 1-4

Similar to many other Windows applications, the toolbars that make up Visual C++ 2008 come
complete with tooltips. Just let the mouse pointer linger over a toolbar button for a second or two
and a white label displays the function of that button.

Dockable Toolbars

A dockable toolbar is one that you can drag around with the mouse to position at a convenient place
in the window. When it is placed in any of the four borders of the application, it is said to be docked and
looks similar to the toolbars you see at the top of the application window. The toolbar on the upper line
of toolbar buttons that contains the disk icons and the text box to the right of a pair of binoculars is the
Standard toolbar. You can drag this away from the toolbar by placing the cursor on it and dragging it
with the mouse while you hold down the left mouse button. It then appears as a separate window you
can position anywhere.

If you drag any dockable toolbar away from its docked position, it looks like the Standard toolbar you see

in Figure 1-5, enclosed in a little window — with a different caption. In this state, it is called a floating tool-
bar. All the toolbars that you see in Figure 1-3 are dockable and can be floating, so you can experiment with
dragging any of them around. You can position them in docked positions where they revert to their normal
toolbar appearance. You can dock a dockable toolbar at any side of the main window.

12

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 13 $

Chapter 1: Programming with Visual C++ 2008

g-E-GEdsh@ao-c-a-8) =& - | AR 3% B -
Figure 1-5

You'll become familiar with many of the toolbar icons that Visual C++ 2008 uses from other Windows
applications, but you may not appreciate exactly what these icons do in the context of Visual C++, so I'll
describe them as we use them.

Because you'll use a new project for every program you develop, looking at what exactly a project is and
understanding how the mechanism for defining a project works is a good place to start finding out about
Visual C++ 2008.

Documentation

There will be plenty of occasions when you’ll want to find out more information about Visual C++ 2008.
The Microsoft Development Network (MSDN) Library provides comprehensive reference material on
all the capabilities on Visual C++ 2008 and more besides. When you install Visual C++ 2008 onto your
machine, there is an option to install part or all of the MSDN documentation. If you have the disk space
available I strongly recommend that you install the MSDN Library.

Press the F1 function to browse the MSDN Library. The Help menu also provides various routes into the
documentation. As well as offering reference documentation, the MSDN Library is a useful tool when
dealing with errors in your code, as you'll see later in this chapter.

Projects and Solutions

A project is a container for all the things that make up a program of some kind — it might be a console
program, a window-based program, or some other kind of program — and it usually consists of one or
more source files containing your code plus possibly other files containing auxiliary data. All the files
for a project are stored in the project folder and detailed information about the project is stored in an
XML file with the extension .vcproj that is also in the project folder. The project folder also contains
other folders that are used to store the output from compiling and linking your project.

The idea of a solution is expressed by its name, in that it is a mechanism for bringing together all the pro-
grams and other resources that represent a solution to a particular data processing problem. For example,
a distributed order entry system for a business operation might be composed of several different programs
that could each be developed as a project within a single solution; therefore, a solution is a folder in which
all the information relating to one or more projects is stored, so one or more project folders are subfolders
of the solution folder. Information about the projects in a solution is stored in two files with the extensions
.slnand .suo. When you create a project, a new solution is created automatically unless you elect to add
the project to an existing solution.

When you create a project along with a solution, you can add further projects to the same solution. You

can add any kind of project to an existing solution, but you would usually add only a project that was
related in some way to the existing project or projects in the solution. Generally, unless you have a good

13

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 14 $

Chapter 1: Programming with Visual C++ 2008

reason to do otherwise, each of your projects should have its own solution. Each example you create with
this book will be a single project within its own solution.

Defining a Project

The first step in writing a Visual C++ 2008 program is to create a project for it using the File > New >
Project menu option from the main menu or you can press Ctrl+Shift+N; you can also simply click
Project... adjacent to Create: in the Recent Projects pane. As well as containing files that define all the
code and any other data that goes to make up your program, the project XML file in the project folder
also records the Visual C++ 2008 options you're using. Although you don’t need to concern yourself
with the project file — it is entirely maintained by the IDE — you can browse it if you want to see what
the contents are, but take care not to modify it accidentally.

That’s enough introductory stuff for the moment. It’s time to get your hands dirty.

Try It Out Creating a Project for a Win32 Console Application

You'll now take a look at creating a project for a console application. First select File > New > Project
or use one of the other possibilities mentioned earlier to bring up the New Project dialog box, shown in

Figure 1-6.
Rewproiect 21|
Project types: Templates: JMET Framework 3.5 M EHE
[Wisual C++ ¥isual Studio installed templates
L ATL
LR SAWina2 Console Applcation [Ewinsz Project
- General
- MFC My Templates
- Smark Device

o Test (d5earch Online Templates...
Win3az
[#] Diatabase Projects
Distribubed Systems
[#]- Other Project Types
[#]- Test Projects

| A project Far creating & Win32 consale application

Name: | Ex1_01]
Location: | CABaginning Yisual C++ 20081Examples j Browse... |
Salution Mame: | Ex1_01 [¥# Create directary For solution
[T S|
Figure 1-6

The left pane in the New Project dialog box displays the types of projects you can create; in this case,
click win32. This also identifies an Application Wizard that creates the initial contents for the project.
The right pane displays a list of templates available for the project type you have selected in the left
pane. The template you select is used by the Application Wizard when creating the files that make
up the project. In the next dialog box, you have an opportunity to customize the files that are created

14

25905c01.gxd:WroxPro 2/21/08 8:35 AM Page 15 $

Chapter 1: Programming with Visual C++ 2008

when you click the Ok button in this dialog box. For most of the type/template options, a basic set of
program source modules are created automatically.

You can now enter a suitable name for your project by typing into the Name : edit box — for example, you
could call this one Ex1_01, or you can choose your own project name. Visual C++ 2008 supports long file
names, so you have a lot of flexibility. The name of the solution folder appears in the bottom edit box and,
by default, the solution folder has the same name as the project. You can change this if you want. The dia-
log box also allows you to modify the location for the solution that contains your project — this appears in
the Location: edit box. If you simply enter a name for your project, the solution folder is automatically
set to a folder with that name, with the path shown in the Location: edit box. By default the solution
folder is created for you if it doesn’t already exist. If you want to specify a different path for the solution
folder, just enter it in the Location: edit box. Alternatively, you can use the Browse button to select
another path for your solution. Clicking the Ok button displays the Win32 Application Wizard dialog
box shown in Figure 1-7.

Win32 Application Wizard - Exl_01 ﬂﬁ

Welcome to the Win32 Application Wizard

Crerview These are the current project settings:
Application Settings » Console application

Click, Finish From any window Eo accept the current sattings.

After you create the project, see the project's readme. txt file for information
about the praject Features and Files that are generated,

= Preyious | Mext = | Finish Cancel

Figure 1-7

This dialog box explains the settings currently in effect. If you click the Finish button, the wizard cre-
ates all the project files based on this. In this case you can click Application Settings on the left to
display the Application Settings page of the wizard shown in Figure 1-8.

The Application Settings page allows you to choose options that you want to apply to the project.
For most of the projects you'll be creating when you are learning the C++ language, you select the Empty
project checkbox, but here you can leave things as they are and click the Finish button. The Application
Wizard then creates the project with all the default files.

15

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 16 $

Chapter 1: Programming with Visual C++ 2008

16

¥in32 Application Wizard - Ex1_01 2 x|
[o
- Application Settings
Cine

Overview Application bype: Add comman header Fles fior:

Application Settings " windows application ™ an
* Console application I~ wrc
R
" Stakic lbrary

Additional options:
™" Empty project
™ Expert symbicls
¥ Precomplled header
< Pravious Mext = Finish Cancel
Figure 1-8

The project folder will have the name that you supplied as the project name and will hold all the files
making up the project definition. If you didn’t change it, the solution folder has the same name as the
project folder and contains the project folder plus the files defining the contents of the solution. If you
use Windows Explorer to inspect the contents of the solution folder, you'll see that it contains three files:

Q Afile with the extension . s1n that records information about the projects in the solution.
Q Afile with the extension . suo in which user options that apply to the solution will be recorded.

Q A file with the extension .ncb that records data about Intellisense for the solution. Intellisense
is the facility that provides auto-completion and prompting for code in the Editor window as
you enter it.

If you use Windows Explorer to look in the project folder, notice there are seven files initially, including
a file with the name ReadMe. txt that contains a summary of the contents of the files that have been
created for the project. The project you have created will automatically open in Visual C++ 2008 with
the left pane as in Figure 1-9. I have increased the width of this pane so that you can see the complete
names on the tabs.

The Solution Explorer tab presents a view of all the projects in the current solution and the files they con-
tain — here there is just one project of course. You can display the contents of any file as an additional tab
in the Editor pane just by double-clicking in name in the Solution Explorer tab. In the Replace with Editor
pane you can switch instantly between any of the files that have been displayed just by clicking on the
appropriate tab.

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 17 $

Chapter 1: Programming with Visual C++ 2008

= | @6
Lol Solution 'Ex1_D1' {1 project)

= ¥ Header Files
- 0] stdafxh
- 1] targetver.h
- [Resource Files
= [Source Files
i 4 Ex1_0L.cpp
Eﬂ stdafx.cpp
=] Readvie.bxt

._-Tcl Salution Explorer |2‘5 Class View | = Property Manager |_f_3|Rssu_|n_e View

Figure 1-9

The Class View tab displays the classes defined in your project and also shows the contents of each class.
You don’t have any classes in this application, so the view is empty. When we discuss classes, you will see
that you can use the Class View tab to move around the code relating to the definition and implementa-
tion of all your application classes quickly and easily.

The Property Manager tab shows the properties that have been set for the Debug and Release versions
of your project. I'll explain these versions a little later in this chapter. You can change any of the prop-
erties shown by right-clicking a property and selecting Properties from the context menu; this displays
a dialog box where you can set the project property. You can also press a1t+F7 to display the proper-
ties dialog box at any time; I'll also discuss this in more detail when we go into the Debug and Release
versions of a program.

The Resource View shows the dialog boxes, icons, menus toolbars, and other resources that are used by
the program. Because this is a console program, no resources are used; however, when you start writing
Windows applications, you'll see a lot of things here. Through this tab you can edit or add to the resources
available to the project.

Like most elements of the Visual C++ 2008 IDE, the Solution Explorer and other tabs provide context-
sensitive pop-up menus when you right-click items displayed in the tab and in some cases in the empty
space in the tab, too. If you find that the Solution Explorer pane gets in your way when writing code,
you can hide it by clicking the Autohide icon. To redisplay it, click the name tab on the left of the IDE
window.

Modifying the Source Code

The Application Wizard generates a complete Win32 console program that you can compile and execute.
Unfortunately, the program doesn’t do anything as it stands, so to make it a little more interesting you
need to change it. If it is not already visible in the Editor pane, double-click Ex1_01. cpp in the Solution

17

25905c01l.gxd:WroxPro 4/13/09 2:23 PM Page 18 $

Chapter 1: Programming with Visual C++ 2008

Explorer pane. This file is the main source file for the program that the Application Wizard generated
and it looks like that shown in Figure 1-10.

Exl_01.cpp StartPage - X
(Global Scop<) v w
13/ Exl 0l.cpp : Defines the entry point for the console application. T'
2i| /S
4i| #include "stdafx.h"
€
';Dir.t _tmain(int argc, _TCHAR* argv([])
I
i return 0
}
v
£ 2

Figure 1-10

If the line numbers are not displayed on your system, select Tools > Options from the main menu to
display the Options dialog box. If you extend the C/C++ option in the TextEditor subtree in the right
pane and select General from the extended tree, you can select Line Numbers in the right pane of the
dialog box. I'll first give you a rough guide to what this code in Figure 1-10 does, and you'll see more
on all of these later.

The first two lines are just comments. Anything following " //" in a line is ignored by the compiler. When
you want to add descriptive comments in a line, precede your text by "/ /.

Line 4 is an #include directive that adds the contents of the file stdafx.h to this file in place of this
#include directive. This is the standard way of adding the contents of . h source files to a . cpp source
file a in a C++ program.

Line 7 is the first line of the executable code in this file and the beginning of the function _tmain (). A
function is simply a named unit of executable code in a C++ program; every C++ program consists of at

least one — and usually many more — functions.

Lines 8 and 10 contain left and right braces, respectively, that enclose all the executable code in the function
_tmain (). The executable code is, therefore, just the single line 10 and all this does is end the program.

Now you can add the following two lines of code in the Editor window:

// Ex1_0l.cpp : Defines the entry point for the console application.
//

#include "stdafx.h"
#include <iostream>

18

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 19 :F

Chapter 1: Programming with Visual C++ 2008

int _tmain(int argc, _TCHAR* argvl[])
{
std::cout << "Hello world!\n";
return 0;

}

The unshaded lines are the ones generated for you. The new lines you should add are shown shaded. To
introduce each new line, place the cursor at the end on the text on the preceding line and press Enter to
create an empty line in which you can type the new code. Make sure it is exactly as shown in the preced-
ing example; otherwise, the program may not compile.

The first new line is an #include directive that adds the contents of one of the standard libraries for
ISO/ANSI C++ to the source file. The <iostream> library defines facilities for basic I/O operations, and
the one you are using in the second line that you added writes output to the command line. std: : cout
is the name of the standard output stream and you write the string "Hello world!\n" to std: :cout in
the second addition statement. Whatever appears between the pair of double quote characters is written
to the command line.

Building the Solution

To build the solution, press F7 or select the Build > Build Solution menu item. Alternatively, you
can click the toolbar button corresponding to this menu item. The toolbar buttons for the Build menu
may not display, but you can easily fix this by right-clicking in the toolbar area and selecting the Build
toolbar from those in the list. The program should then compile successfully. If there are errors, ensure
that you didn’t make an error while entering the new code, so check the two new lines very carefully.

Files Created by Building a Console Application

After the example has been built without error, take a look in the project folder by using Windows Explorer
to see a new subfolder to the solution folder Ex1_01 called Debug. This folder contains the output of the
build you just performed on the project. Notice that this folder contains three files.

Other than the . exe file, which is your program in executable form, you don’t need to know much about
what'’s in these files. In case you're curious, however, the . i1k file is used by the linker when you rebuild
your project. It enables the linker to incrementally link the object files produced from the modified source
code into the existing . exe file. This avoids the need to re-link everything each time you change your
program, and the . pdb file contains debugging information that is used when you execute the program
in debug mode. In this mode, you can dynamically inspect information that is generated during program
execution.

There’s a Debug subdirectory to the Ex1_01 project file, too. This contains ten more files that were created

during the build process and you can see what kind of information they contain from the Type description
in Windows Explorer.

19

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 20 $

Chapter 1: Programming with Visual C++ 2008

Debug and Release Versions of Your Program

You can set a range of options for a project through the Project > Ex1_01 Properties menu item.
These options determine how your source code is processed during the compile and link stages. The set
of options that produces a particular executable version of your program is called a configuration. When
you create a new project workspace, Visual C++ 2008 automatically creates configurations for producing
two versions of your application. One version, called the Debug version, includes information that helps
you debug the program. With the Debug version of your program you can step through the code when
things go wrong, checking on the data values in the program. The other, called the Release version, has
no debug information included and has the code optimization options for the compiler turned on to
provide you with the most efficient executable module. These two configurations are sufficient for your
needs throughout this book, but when you need to add other configurations for an application, you can
do so through the Build > Configuration Manager menu. Note that this menu item won’t appear if
you haven’t got a project loaded. This is obviously not a problem, but might be confusing if you're just
browsing through the menus to see what'’s there.

You can choose which configuration of your program to work with by selecting the configuration from
the Active solution configuration drop-down listin the Configuration Manager dialog box,
as shown in Figure 1-11.

2%
Active salution configuratian: Ackive solukion platfiorm:
Jpebug =] [winaz =l
Release Gl T
=Hew...> | | Platform I Build I
<Edi> - J x| wirzz |]

Figure 1-11

Select the configuration you want to work with from the list and then click the C1lose button. While
you're developing an application, you'll work with the debug configuration. After your application has
been tested using the debug configuration and appears to be working correctly, you typically rebuild
the program as a release version; this produces optimized code without the debug and trace capability,
so the program runs faster and occupies less memory.

Executing the Program

After you have successfully compiled the solution, you can execute your program by pressing Ctr1+F5.
You should see the window shown in Figure 1-12.

20

25905c01l.gxd:WroxPro 4/13/09 2:21 PM Page 21 $

Chapter 1: Programming with Visual C++ 2008

N WINDOWS' system32\ cmd.exe

wy to continue . . .

Figure 1-12

As you see, you get the text that was between the double quotes written to the command line. The "\n"
that appeared at the end of the text string is a special sequence called an escape sequence that denotes
a newline character. Escape sequences are used to represent characters in a text string that you cannot
enter directly from the keyboard.

Try It Out Creating an Empty Console Project

The previous project contained a certain amount of excess baggage that you don’t need when working
with simple C++ language examples. The precompiled headers option chosen by default resulted in the
stdafx.h file being created in the project. This is a mechanism for making the compilation process more
efficient when there are a lot of files in a program but this won’t be necessary for many of our examples.
In these instances you start with an empty project to which you can add your own source files. You can
see how this works by creating a new project in a new solution for a win32 console program with the
name Ex1_02. After you have entered the project name and clicked the 0k button, click Applications
Settings on the left side (right below Overview) of the dialog box that follows. You can then select
Empty project from the additional options, as Figure 1-13 shows.

¥in32 Application Wizard - Exl_02 7] x|
_— .
- = Application Settings
[N

Cveryiew Application bype: Add comman header Files fior:

Application Settings " windows spphcabion =i
{+ Console application I e
Rl
i Static hbrary

Additional options:
[¥ Emply project
™ Expert symbicls
I¥ | precompiled headsr
< Pravious Fext = Finish Cancel
Figure 1-13

21

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 22 CE

Chapter 1: Programming with Visual C++ 2008

When you click the Finish button, the project is created as before, but this time without any source files.

Next you add a new source file to the project. Right-click the Solution Explorer pane and then select add >
New Item from the context menu. A dialog box displays; click Code in the left pane, and C++ File(.cpp)
in the right pane. Enter the file name as Ex1_02, as shown in Figure 1-14.

Add New Item - Ex1_02 21|
EER
Categories: Templates: S| 2
=1 Wisual C++ ¥isual Studio installed templates
I
L Code 4] G+ File {.cpp) n] Header Fie (.h)
Data 2] Midl File C.idl) 42| Module-Defirikion File (def)
- Resouree] Component Class] Installer Class
e
o Uity My Templates

' Propesty Shests
;] Search Onlne Templates..,

I Creates a file containing C++ source code

M [Ex1_o2]
Location: | ci\Beqginring Yiswal 4+ 2008 ExamplesiEx] _02\Ex]_02 Browse... |
e]
Figure 1-14

When you click the Add button, the new file is added to the project and is displayed in the Editor window.
Of course, the file is empty so nothing will be displayed; enter the following code in the Editor window:

// Ex1_02.cpp A simple console program
#include <iostream> // Basic input and output library

int main()

{
std::cout << "This is a simple program that outputs some text." << std::endl;
std::cout << "You can output more lines of text" << std::endl;
std::cout << "just by repeating the output statement like this." << std::endl;
return 0; // Return to the operating system

Note the automatic indenting that occurs as you type the code. C++ uses indenting to make programs
more readable, and the editor automatically indents each line of code that you enter, based on what was
in the previous line. You can also see the syntax color highlighting in action as you type. Some elements
of the program are shown in different colors as the editor automatically assigns colors to language ele-
ments depending on what they are.

The preceding code is the complete program. You probably noticed a couple of differences compared to

the code generated by the Application Wizard in the previous example. There’s no #include directive
for the stdafx.h file. You don’t have this file as part of the project here because you are not using the

22

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 23 :F

Chapter 1: Programming with Visual C++ 2008

precompiled headers facility. The name of the function here is main; before it was _tmain. In fact all
ISO/ANSI C++ programs start execution in a function called main () . Microsoft also provides for this
function to be called wmain when Unicode characters are used and the name _tmain is defined to be
either main or wmain, depending on whether or not the program is going to use Unicode characters. For
the previous example, the name _tmain is defined behind the scenes to be main. You use the name main
in all the ISO/ANSI C++ examples.

The output statements are a little different. The first statement in main () is:
std::cout << "This is a simple program that outputs some text." << std::endl;

You have two occurrences of the << operator, and each one sends whatever follows to std: : cout,
which is the standard output stream. First the string between double quotes is sent to the stream and
then std: :endl where std: :endl is defined in the standard library as a newline character. Earlier you
used the escape sequence \n for a newline character within a string between double quotes. You could
have written the preceding statement as:

std::cout << "This is a simple program that outputs some text.\n";

I should explain why the line is shaded, where the previous line of code is not. Where I repeat a line of code
for explanation purposes I show it unshaded. The preceding line of code is new and does not appear earlier
so I have shown it shaded.

You can now build this project in the same way as the previous example. Note that any open source files
in the Editor pane are saved automatically if you have not already saved them. When you have compiled
the program successfully, press Ctr1+F5 to execute it. The window shown in Figure 1-15 displays.

WINDOWS'system32}cmd.exe
5 a s e program that outputs some text.

ines of t
he outpu ment like this.

ntinue . . .

Figure 1-15

Dealing with Errors

Of course, if you didn’t type the program correctly, you get errors reported. To show how this works,
you could deliberately introduce an error into the program. If you already have errors of your own, you
can use those to perform this exercise. Go back to the Editor pane and delete the semicolon at the end of
the second-to-last line between the braces (line 8); then rebuild the source file. The Output pane at the
bottom of the application window includes the error message:

C2143: syntax error : missing ';' before 'return'
Every error message during compilation has an error number that you can look up in the documentation.

Here, the problem is obvious; however, in more obscure cases, the documentation may help you figure
out what is causing the error. To get the documentation on an error, click the line in the Output pane that

23

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 24 $

Chapter 1: Programming with Visual C++ 2008

contains the error number and then press F1. A new window displays containing further information
about the error. You can try it with this simple error, if you like.

When you have corrected the error, you can then rebuild the project. The build operation works efficiently
because the project definition keeps track of the status of the files making up the project. During a normal
build, Visual C++ 2008 recompiles only the files that have changed since the program was last compiled
or built. This means that if your project has several source files and you’ve edited only one of the files
since the project was last built, only that file is recompiled before linking to create a new . exe file.

You'll also use CLR console programs, so the next section shows you what a CLR console project looks like.

Try It Out Creating a CLR Console Project

Press Ctrl1+shift+N to display the New Project dialog box; then select the project type as CLR and the
template as CLR Console Application, asshown in Figure 1-16.

New Proiect 21 %
Project types: Templates: JNET Framewark. 3.5 M EHE
] Visual C++ Visual Studio installed templates
AT
[[AClass Library \TACLR Consale Application
Gengral [EJCLR Empty Project E ‘Windows Forms Application
-~ MFC FAwindowes Forms Contral Lbrary windows Service
- Smark Device
o Test My Templates
N3z
[Distabase Projects (d5earch Online Templates...

Distribubed Systems
[#]- Other Project Types
[#]- Test Projects

| A project Far creating & consale application

Name: | Ex1 o]
Location: | Ci\Baginning Visual C++ 2008\Examples j Browse... |
Soktion: | create new Salution | ¥ create directory for solution
Solution Mame: | Ex1_03
[Fes]
Figure 1-16

Enter the name as Ex1_03. When you click the Ok button, the files for the project are created. There are
no options for a CLR console project, so you always start with the same set of files in a project with this
template. If you want an empty project — something you won’t need with this book — there’s a separate
template for this.

If you look at the Solution Explorer pane shown in Figure 1-17, you see there are some extra files
compared to a Win32 console project.

There are a couple of files in the virtual Resource Files folder. The . ico file stores an icon for the application

that is displayed when the program is minimized; the . rc file records the resources for the application —
just the icon in this case.

24

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 25 $

Chapter 1: Programming with Visual C++ 2008

=R
el Solution 'Excl_0F (1 project)

= |F Header Files

© o [h] resource.h

i =] stdafx.h

= [Resource Flles

) app.ico

A3 eppac

= |7 Source Files
l:j AssemblyInfo.cpp
4 Ex1_03.cpp

o 6] stdafecpp

o [Readvie.bxt

] Sabition Explorer |:F5 Class View |_3Property Manager |_;§JRescurr_e Vigw

Figure 1-17

There is also a file with the name AssemblyInfo.cpp. Every CLR program consists of one or more
assemblies where an assembly is a collection of code and resources that form a functional unit. An
assembly also contains extensive data for the CLR; there are specifications of the data types that are
being used, versioning information about the code, and information that determines if the contents of
the assembly can be accessed from another assembly. In short, an assembly is a fundamental building
block in all CLR programs.

If the source code in the Ex1_03. cpp file is not displayed in the Editor window, double-click the file
name in the Solution Explorer pane. It should look like Figure 1-18.

- Exl_03.pp | Start Page - X
{Global S<ope) =l =
1E A Exl 03.cpp : main project file. =

31| #inelude "stdafx.h"

L' using namespace System:

B

7E int main{array<System: :String *> “args)

ai| | ey
f Console::WriteLine (L"Hello World™):

return 0;

4

Figure 1-18

It has the same #include directive as the default native C++ console program because CLR programs
use precompiled headers for efficiency. The next line is new:

using namespace System;
The .NET library facilities are all defined within a namespace, and all the standard sort of stuff you are

likely to use is in a namespace with the name System. This statement indicates the program code that
follows uses the System namespace, but what exactly is a namespace?

25

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 26 :F

Chapter 1: Programming with Visual C++ 2008

A namespace is a very simple concept. Within your program code and within the code that forms the .NET
libraries, names have to be given to lots of things — data types, variables, and blocks of code called func-
tions all have to have names. The problem is that if you happen to invent a name that is already used in the
library, there’s potential for confusion. A namespace provides a way of getting around this problem. All the
names in the library code that is defined within the System namespace are implicitly prefixed with the
namespace name. So, a name such as String in the library is really System: : String. This means that if
you have inadvertently used the name String for something in your code, you can use System: : String
torefer sString from the .NET library.

The two colons — : : — are an operator called the scope resolution operator. Here the scope resolu-
tion operator separates the namespace name System from the type name String. You have seen this in
the native C++ examples earlier in this chapter with std: : cout and std: : endl. This is the same story —
std is the namespace name for native C++ libraries, and cout and endl are the names that have been
defined within the std namespace to represent the standard output stream and the newline character,
respectively.

In fact, the using namespace statement in the example allows you to use any name from the System
namespace without having to use the namespace name as a prefix. If you did end up with a name conflict
between a name you have defined and a name in the library, you could resolve the problem by removing
the using namespace statement and explicitly qualifying the name from the library with the namespace
name. You learn more about namespaces in Chapter 2.

You can compile and execute the program by pressing ctr1+F5. The output is as shown in Figure 1-19.

WINDOWS' system32\cmd.exe

Hello Yorld
Press any key to continue . . .

Figure 1-19

The output is similar to that from the first example. This output is produced by the line:

Console: :WriteLine(L"Hello World");

This uses a .NET library function to write the information between the double quotes to the command
line, so this is the CLR equivalent of the native C++ statement that you added to Ex1_01:

std::cout << "Hello world!\n";

It is more immediately apparent what the CLR statement does than the native C++ statement.

Setting Options in Visual C++ 2008

26

There are two sets of options you can set. You can set options that apply to the tools provided by Visual
C++ 2008, which apply in every project context. Also, you can set options that are specific to a project
and determine how the project code is to be processed when it is compiled and linked. Options are set
through the Options dialog box that’s displayed when you select Tools > Options from the main menu.
The Options dialog box is shown in Figure 1-20.

o

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 27 $

Chapter 1: Programming with Visual C++ 2008

Clicking the plus sign (+) for any of the items in the left pane displays a list of subtopics. Figure 1-20 shows
the options for the General subtopic under Projects and Solutions. The right pane displays the
options you can set for the topic you have selected in the left pane. You should concern yourself with only a
few of these at this time, but you'll find it useful to spend a little time browsing the range of options avail-
able to you. Clicking the Help button (with the ?) at the top right of the dialog box displays an explanation
of the current options.

You probably want to choose a path to use as a default when you create a new project, and you can do
this through the first option shown in Figure 1-20. Just set the path to the location where you want your
projects and solutions stored.

You can set options that apply to every C++ project by selecting the Projects and Solutions > VC++
Project Settings topic in the left pane. You can also set options specific to the current project through
the Project > Properties menu item in the main menu. This menu item label is tailored to reflect the
name of the current project.

oo 21
- Environment = Wisual Studio prajects kacation:
+-Performantce Toals | CHDocuments and Settings|Ivor HortoniMy Dacumentsivisual Studio 20 ...

= Projects and Solutiors

General

Wisual Studio user project kemplates location:
| CDocuments and Settings|Ivor HortoniMy Dacumentsivisusl Studio 20 ..

Build and Run

VC++ Directories Wisual Studio user kem bemplates location:

WCH+ Project Settings | CiiDocuments and Settings|Ivor HortoniMy Documentsivisusl Studio 20 _I
+- Source Control
= Text Editar I™ always show Error List build finishes with errors
L General I~ Track Active Ikem in Salution Explorer

- File Extension ¥ Show advanced bulld corfigurations
| [AllLanguages ¥ Blways show solution
| B-Basic [V Save new projects when created
i g Efc++ ¥ Warm user when the project location is not Erusted
R ¥ Show Qutput window when buld starts
i [HTML ¥ Promp For symbalic renaming when renaming files
L E-RUSOL =
Cancel
Figure 1-20

Creating and Executing Windows Applications

Just to show how easy it’s going to be, you can now create two working Windows applications. You'll
create a native C++ application using MFC and then you’ll create a Windows Forms application that runs
with the CLR. I'll defer discussion of the programs that you generate until I've covered the necessary
ground for you to understand it in detail. You will see, though, that the processes are straightforward.

Creating an MFC Application

To start with, if an existing project is active — as indicated by the project name appearing in the title bar of
the Visual C++ 2008 main window — you can select Close Solution from the File menu. Alternatively,
you can create a new project and have the current solution closed automatically.

To create the Windows program select New > Project from the File menu or press Ctrl+Shift+N;
then choose the project type as MFC and select MFC Application as the project template. You can then
enter the project name as Ex1_04, as shown in Figure 1-21.

27

o

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 28

Chapter 1: Programming with Visual C++ 2008

When you click the Ok button, the MFC Application Wizard dialogbox is displayed. The dialog box
has a range of options that let you choose which features you’d like to have included in your application.
These are identified by the items in the list on the right of the dialog box, as Figure 1-22 shows. You'll get
to use many of these in examples later on.

21x|
Project types: Templates: MET Framework 3.5 'I EH |§
[Wisual C+4+ Yisual Studio installed templates
LaTL
[T 218 MFC Activex Control 2l MFC Applicabion
- General M MFC DL
MRS
L Smark Device My Templates
o Test
L owinaz (d5earch Online Templates...

[#] Diatabasa Projects

Distributed Systems
[#]- Other Project Types
[#]- Test Projects

| & project Far creating an application that uses the Microsoft Foundation Class Library

M [Ex1_o4]
Location: | Ci\Beginning Visual C++ Z0081Examples j Browse... |
Salution: | create new Salution x| W create directory fFor solution
Solution Mame: | Ex1_04
T
Figure 1-21

MFC Application Wizard - Exl_04 21x|

Welcome to the MFC Application Wizard

Crearview These are the current project settings:
Application Type » Mukiple document inberface
Compound Dacument Suppark * Mo database support
Documenk Template Strings gllccoeeinice e et

Database Support Click, Finish From any window Eo accept the current sattings.

User Inkerface Features After you create the project, see the project's readme. txt file for information
about the praject Features and Files that are generated,
Advanced Features

Genersked Classes

< Previous | Mext = | Finish Cancel

Figure 1-22

28

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 29 $

Chapter 1: Programming with Visual C++ 2008

You can ignore all these options in this instance and just accept the default settings, so click the Finish
button to create the project with the default settings. The Solution Explorer pane in the IDE window looks
like Figure 1-23.

Solutic

Lol Solution 'Ex1_D4' {1 project)
= ¥ Header Files
1] ChidFrm.h
-~ h] Ex1_04.h
0] Ex1_04Doch
] Ex1_0#View.h
K| MairFrm.h
] Resource b
] stdaf.h
i] targetver.h
= | Resource Files
i) Ex1_04.ico
- Ex1_04.ac
- Exl_04sc2
- i) Ex1_04Doc.ico
4 Toolbar bmp
= | Source Files
l'—j ChidFrm. cpp
] Ex1_04 cpp
¢+ Ex1_04Doc.cpp
- €] Ex1_D4View.cpp
- €] MairFrm.cop
- & stdafx.cop
] Readve.kxt

) Sohtion Explorer (5 Class View |':_3|Resourr_e View

Figure 1-23

Note that I have hidden the Property Manager tab by right-clicking it and selecting Hide, so it doesn’t
appear in Figure 1-23. The list shows a large number of files that have been created. You need plenty
of space on your hard drive when writing Windows programs! The files with the extension . cpp con-
tain executable C++ source code, and the .h files contain C++ code consisting of definitions that are
used by the executable code. The . ico files contain icons. The files are grouped into the subfolders
you can see for ease of access. These aren’t real folders, though, and they won’t appear in the project
folder on your disk.

If you now take a look at the Ex1_04 solution folder using Windows Explorer or whatever else you may
have handy for looking at the files on your hard disk, notice that you have generated a total of 26 files.
Three of these are in the solution folder, a further 19 are in the project folder and four more are in a sub-
folder, res, to the project folder. The files in the res subfolder contain the resources used by the pro-
gram — such as the menus and icons used in the program. You get all this as a result of just entering
the name you want to assign to the project. You can see why, with so many files and file names being
created automatically, a separate directory for each project becomes more than just a good idea.

One of the files in the Ex1_04 project directory is ReadMe . txt, and this provides an explanation of the
purpose of each of the files that the MFC Application Wizard has generated. You can take a look at it if
you want, using Notepad, WordPad, or even the Visual C++ 2008 editor. To view it in the Editor window,
double-click it in the Solution Explorer pane.

29

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 30 $

Chapter 1: Programming with Visual C++ 2008

Building and Executing the MFC Application

Before you can execute the program, you have to build the project — meaning, compile the source code
and link the program modules. You do this in exactly the same way that you did with the console applica-
tion example. To save time, press Ctr1+F5 to get the project built and then executed in a single operation.

After the project has been built, the Output window indicates that there are no errors and the executable
starts running. The window for the program you've generated is shown in Figure 1-24.

D Ex1_04 - Exl_D41 -10] x|
¥ TE

Fie Edi View Window | Help

D 21 & %
T

Ready

Figure 1-24

As you see, the window is complete with menus and a toolbar. Although there is no specific functionality
in the program — that’s what you need to add to make it your program — all the menus work. You can try
them out. You can even create further windows by selecting New from the File menu.

I think you'll agree that creating a Windows program with the MFC Application Wizard hasn’t stressed
too many brain cells. You'll need to get a few more ticking away when you come to developing the basic
program you have here into a program that does something more interesting, but it won’t be that hard.
Certainly, for many people, writing a serious Windows program the old-fashioned way, without the aid
of Visual C++ 2008, required at least a couple of months on a fish diet before making the attempt. That’s
why so many programmers used to eat sushi. That’s all gone now with Visual C++ 2008. You never know,
however, what’s around the corner in programming technology. If you like sushi, it’s best to continue with
it to be on the safe side.

Creating a Windows Forms Application

30

This is a job for another Application Wizard. So create yet another new project, but this time select the type
as CLR in the left pane of the New Project dialog box and the template as Windows Forms Application.
You can then enter the project name as Ex1_05, as shown in Figure 1-25.

There are no options to choose from in this case, so click the 0K button to create the project.

The Solution Explorer pane in Figure 1-26 shows the files that have been generated for this project.

25905c01.gxd:WroxPro 2/21/08 9:36 AM Page 31 $

Chapter 1: Programming with Visual C++ 2008

Distribubed Systems
[#]- Other Project Types
[#]- Test Projects

New Project 21X
Project types: Templates: JNET Framewark. 3.5 -] 83 |§
] Visual C++ Yisual Studio installed templates
- ATL
LElR [AClass Library |ZACLR Console Application
General [EJCLR Empty Project E ‘Windows Forms Application
- MFC FAwindowes Forms Contral Lbrary Awindows Service
- Smart Device
L Test My Templates
- Windz
[Distabase Projects (d5earch Online Templates...

| & project Far creating an application with & Windows user inkerface

M [Ex1_os]
Location: | Ci\Beginning Visual C++ Z0081Examples j Browse... |
Salution: | create new Salution x| W create directory fFor solution
Solution Mame: | Ex1_0S
T
Figure 1-25

o Solution Ex1_0S' {1 project)

= |7 Header Files
| = F] Farmilh
: ~ fad Forml.resi
- 1] resource.h
oL (o] stdafeh
= [Resource Files
4 sppiico
2 sppurc
| Source Files
c:] AssemblyInfa.cpp
- €4 Ex1_05.cpp
© e e stdafecpp
- [E] Read¥e bt

) Sohtion Explorer |?_jclass View |_;§]Rcsuun:e View

Figure 1-26

There are considerably fewer files in this project — if you look in the directories, you'll see there are a total
of 15 including the solution files. One reason for this is the initial GUI is much simpler than the native C++
application using MFC. The Windows Forms application has no menus or toolbars, and there is only one

window. Of course, you can add all these things quite easily, but the wizard for a Windows Forms applica-

tion does not assume you want them from the start.

The Editor window looks rather different as Figure 1-27 shows.

31

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 32 $

Chapter 1: Programming with Visual C++ 2008

_~Form1.h [Design] | “Start Page v X

~imixl|

Figure 1-27

The Editor window shows an image of the application window rather than code. The reason for this is
that developing the GUI for a Windows Forms is oriented towards a graphical design approach rather
than a coding approach. You add GUI components to the application window by dragging or placing
them there graphically, and Visual C++ 2008 automatically generates the code to display them. If you
press Ctrl+Alt+X or select View > Toolbox, you'll see an additional window displayed showing a
list of GUI components as in Figure 1-28.

A
T+ pllWindows Forms | <
- Common Controls

& FPointer

Button

CheckBax

[£% CheckedlistBox

=% CombeoBox

T DateTimePicker

A Label

A LinkLabel

[=£7 ListBox

37 List¥iew
|w- MaskedTextBox
[Monthsendar
== MotiFylcon
[17 mMumericlpDown
|4 PicureBios
[0 ProgressBar
(*) RadicButton
2| RichTeutBox —
abl| TextBox
Ry TodTip
- Treeview
f‘; ‘WebBrowser
= Containers
R FPoinker
== FlowLayoutPanel
™| GroupBax

1 panel ill
Figure 1-28

32

o

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 33 $

Chapter 1: Programming with Visual C++ 2008

The Toolbox window presents a list of standard components that you can add to a Windows Forms
application. You can try adding some buttons to the window for Ex1_05. Click Button in the Toolbox
window list and then click in the client area of the Ex1_05 application window that is displayed in the
Editor window where you want the button to be placed. You can adjust the size of the button by drag-
ging its borders, and you can reposition the button by dragging it around. You can also change the cap-
tion just by typing — try entering Start on the keyboard and then press Enter. The caption changes
and along the way another window displays, showing the properties for the button. I won’t go into
these now, but essentially these are the specifications that affect the appearance of the button, and you
can change these to suit your application. Try adding another button with the caption Stop, for example.
The Editor window will look like Figure 1-29.

Form1.h [Design]* | Start Page | 2 e

=10 x|

Start Stiop

Figure 1-29

You can graphically edit any of the GUI components at any time, and the code adjusts automatically. Try
adding a few other components in the same way and then compile and execute the example by pressing
ctrl+F5. The application window displays in all its glory. Couldn’t be easier, could it?

Summary

In this chapter, you have run through the basic mechanics of using Visual C++ 2008 to create applications
of various kinds. You created and executed native and CLR console programs, and with the help of the
Application Wizards, you created an MFC-based Windows program and a Windows Forms program that
executes with the CLR.

The points from this chapter that you should keep in mind are:

Q The Common Language Runtime (CLR) is the Microsoft implementation of the Common
Language Infrastructure (CLI) standard.

Q The .NET Framework comprises the CLR plus the .NET libraries that support applications
targeting the CLR.

33

25905c01.gxd:WroxPro 2/21/08 8:36 AM Page 34 $

Chapter 1: Programming with Visual C++ 2008

QO Native C++ applications are written the ISO/ANSI C++ language.

(]

Programs written in the C++/CLI language execute with the CLR.

Q Attributes can provide additional information to the compiler to instruct it to modify or extend
particular programming elements in a program.

Q Asolution is a container for one or more projects that form a solution to an information-processing
problem of some kind.

Q Aprojectis a container for the code and resource elements that make up a functional unit in a
program.

QO Anassembly is a fundamental unit in a CLR program. All CLR programs are made up of one or
more assemblies.

Starting with the next chapter, you’'ll use console applications extensively throughout the first half of
the book. All the examples illustrating how C++ language elements are used are executed using either
Win32 or CLR console applications. You will return to the Application Wizard for MFC-based programs
and Windows Forms applications as soon as you have finished delving into the secrets of C++.

34

